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Itai Ryb

Rikard von Unge
Maxim Zabzine

U. Lindström 4D Semi



Superspace

d = 2 , N = (2,2)

Algebra:
{D±, D̄±} = i∂

++
=

Constrained superfields:

D̄±φa = 0 ,

D̄+χ
a′

= D−χa′
= 0 ,

D̄+X` = 0 ,

D̄−Xr = 0 .

Notation: c := a, ā , t := a′, ā′ , L := `, ¯̀ , R := r , r̄ .
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Gates-Hull-Roček=Bihermitean=Generalized Kähler.

(M,g, J(±),H)

J2
(±) = −11 , J t

(±)gJ(±) = g , ∇(±)J(±) = 0

Γ(±) = Γ0 ± 1
2g−1H , H = dB .

E := g + B
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Superspace Action

The (2,2) superspace formulation of GKG uses the generalized
Kähler Potential.

S =

∫
D+D̄+D−D̄−K (φc , χt ,XL,XR)

K → K (XL,XR)

Reduction to (1,1) superspace

S =

∫
D+D− (D+XED−X ) .

The reduction goes via

D± =: D+ − iQ± , Q+XR| =: ψR
+, Q−XL| =: ψL

−

Both the auxiliary spinors ψL
− and ψR

+ have been eliminated and
E := g + B.
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Semichiral model with 4D target space

So, we consider the action,

S =

∫
d2xd2θd2θ̄K (XL,XR)

where L = (`, ¯̀) and R = (r , r̄), the SUSY algebra is

{D±, D̄±} = i∂++
=

and the semichiral fields satisfy

D̄+X` = 0 , D̄−Xr = 0 .
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4D Geometry

Complex structures

(J(±))2 = −11

J(±)tg J(±) = g

In 4D
{J(+), J(−)} = 2c11,

where c = c(XL,XR). This allows us to construct an SU(2)
worth of almost (pseudo-) complex structures J(1), J(2), J(3),

J(1) :=
1√

1− c2

(
J(−) + cJ(+)

)
,

J(2) :=
1

2
√

1− c2
[J(+), J(−)] ,

J(3) := J(+) .

For |c| < 1 the geometry is almost hyperkähler, while for |c| > 1
the geometry is almost pseudo-hyperkähler
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Additional SUSY

Ansatz for the additional supersymmetry,
M. Goteman, U.L., and M. Roček, I.Ryb 2011; M. Goteman, U. L. and
M. Roček, 2012

δX` = ε̄+D̄+f (XL,XR) + g(X`)ε̄−D̄−X` + h(X`)ε−D−X` ,
δX¯̀

= ε+D+ f̄ (XL,XR) + ḡ(X¯̀
)ε−D−X

¯̀
+ h̄(X¯̀

)ε̄−D̄−X
¯̀
,

δXr = ε̄−D̄− f̃ (XL,XR) + g̃(Xr )ε̄+D̄+Xr + h̃(Xr )ε+D+Xr ,

δXr̄ = ε−D−
¯̃f (XL,XR) + ¯̃g(Xr̄ )ε+D+Xr̄ + ¯̃h(Xr̄ )ε̄+D̄+Xr̄ .
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[δ
(+)
1 , δ

(+)
2 ]X` ?

= iε+
[2ε̄

+
1]∂X

`

[δ1, δ2]X` =

−ε+
[2ε̄

+
1]

(
|f¯̀|2i∂++X` + (f ¯̀̄fr + fr h̃)D̄+D+Xr + ...

)
+ε̄−[2ε

−
1](−gh)i∂=X` + . . . ,

|f¯̀| > 0⇒ on-shell algebra
gh = −1⇒ Only Hyperkähler geometries
δX` = D̄+D−(εF `(XL,XR))?
Central charge transformations. Vanish on-shell.
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Counterexample?

A SU(2)⊗ U(1) WZW model may be described as the target
space of a (2,2) SUSY sigma model in many ways. See e.g.,
A. Sevrin, W. Staessens and D. Terryn 2011

In terms of chiral fields D̄±φ̂ = 0 and twisted chiral fields
D̄+χ̂ = D−χ̂ = 0 we have

K = −lnχ̂ln ˆ̄χ+

∫ φ̂ ˆ̄φ
χ̂ ˆ̄χ

dq
ln(1 + q)

q

K
φ̂ ˆ̄φ

+ Kχ̂ ˆ̄χ = 0 ,⇒ (4,4)

It has a nontrivial H = dB.

U. Lindström 4D Semi



Changing coordinates φ = lnφ̂, χ = lnχ̂ implies

K → K = −χχ̄+

∫ φ+φ̄−χ−χ̄
dq ln(1 + eq) ,

and makes it amenable to dualization of the translation
symmetry

φ→ φ+ λ, χ→ χ+ λ .
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The dual potential is semichiral and reads
I.Ryb, U.L, M. Roček, R. von Unge and M.Zabzine 2009

− 1
2α2 X 2

φ +
1
α

XφXχ −
∫ X

dq ln(eq − 1) ,

where the semichiral fields enter in the combinations

Xφ = i
2(X` − X̄` − Xr + X̄r )

Xχ = i
2(−X` + X̄` − Xr + X̄r )

X = 1
2(X` + X̄` − Xr − X̄r )

.

This is the semichiral model which we expect to carry (4,4).
Note that it is NOT Hyperkähler.
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How is the (4,4) realized?

Analyze at the (2,2) level?
Reduce to (1,1) !

In this case the form of the dualization shows that the (1,1)
descriptions are related by coordinate transformations. So, find
the coordinate transformation from the (1,1) reduction of the
chiral-twisted chiral model to the reduction of the semichiral
one. Use this to find the expressions for the extra complex
structures in the latter. Then check if it can be lifted to the (2,2)
semichiral formulation. In a picture:
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The reduction of K (φ, φ̄, χ, χ̄) identifies the right-handed SU(2)
of complex structures

I(A)I(B) = −δAB + εABC I(C)

as generated by

I(1) =


0 0 0 eχ̄−φ

0 0 eχ−φ̄ 0
0 −eφ̄−χ 0 0

−eφ−χ̄ 0 0 0



I(2) =


0 0 0 ieχ̄−φ

0 0 −ieχ−φ̄ 0
0 −ieφ̄−χ 0 0

ieφ−χ̄ 0 0 0

 ,

with I(3) = J(+) = J, the canonical complex structure.
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From the (1,1) version of the dualization, we find the
coordinate transformation (φ, χ)→ (XL,XR) for three
combinations of the coordinates.
The full transformations are then determined by the
requirement that it takes J = J(+) = I(3) → J(+)

(Check: the transformation of g).

The coordinate transformation of I(1)
(+) and I(2)

(+) give us the
additional complex structures in (φ, χ)→ (XL,XR) space.
We may then consider the question of lifting to (2,2) Can
they be realised as transformations of a manifiest (2,2)
semichiral model?
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In terms of a direct product of 2x2 matrices they are:

I(A) = j⊗ A(A) = j⊗ (a(A)σ1 − b(A)σ2)

j2 = −N , (A(A))2 = N−1 ,

where A = 1,2.

Need to discuss the full symmetries at the (1,1) level.
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Extra SUSY for semis in (1,1)

(2,2)→ (1,1)⇒

XL → (X L, ψL
−)

XR → (X R, ψR
+)

The Lagrangian is

L = D+X AEAB(X )D−X C + ΨR
+KRLΨL

− := L1 + L2 ,

where we define

ΨR
+ := ψR

+ − D+X AJR
(+)A

ΨL
− := ψL

− − JR
(−)AD−X A .

On shell Ψ± = 0 and L1(X L,X R) is the (1,1) Lagrangian.
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Assume that we have found the additional transformations of
the (1,1) coordinates generated by the SU(2) set of complex
structures J(A)

(+) that leave the L1 part of the action invariant. We
would now like to extend them to symmetries of the full action
and subsequently check if the full set can come from
transformations of the (2,2) semichiral fields.
We know one invariance of the full action, that generated by
J(+). Guided by how that invariance works we analyse the
conditions for an invariance of L1 to extend to the full action.
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The most general ansatz for the X transformation is

δX A = ε+
[
IA
(+)BD+X B + MA

RΨR
+

]
A = L,R .

We find the transformations for the Ψs via their definitions and
the fact that

ψL
− := Q−XL| , ψR

+ := Q+XR|

which is the (1,1) manifestation of that XA| = X A and ψA sit in
the same semichiral multiplet. The algebra closes on-shell.
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One finds that the conditions for invariance of the action are
related to the commutator of the extra complex structure I and
J(−)

(1) ML[R,Ṙ]−M[RṘ],L = 0

(2) ML
Ṙ − KṘL̇M L̇

RK RL = 1
2KṘL̇[I(+), J(−)]L̇AGAL

(3) MR
Ṙ = 1

2KṘL[I(+), J(−)]LAGAR

(4) −K(Ṙ|L|[M, J(−)]LR) = 0

and

(5) K[Ṙ|L|M(M, J(−))L
R]AD−X A = −1

2D−(K[Ṙ|L|[M, J(−)]LR])

(6) . . .

Test?
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Hyperkähler

I := J(+) , J :=
1√

1− c2
(J(−) + cJ(+)) , K :=

1
2
√

1− c2
[J(+), J(−)] .

I : MR
Ṙ = δR

Ṙ , M[ṘR] = 0 ⇐⇒ KLML
Ṙ = µ,Ṙ

J : MR
Ṙ =

c δR
Ṙ√

1− c2
, KLML

Ṙ = µ,Ṙ

K : MR
ṘKLR = − 1√

1− c2
KṘLJL

(−)L = − 1√
1− c2

JKṘL

M[ṘR] = − 1√
1− c2

KṘLJL
(−)R = − 1√

1− c2
CṘR

⇐ ML
Ṙ = − 1√

1− c2
K LRJKRṘ

Each case satisfies the requirements when c constant .
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The complex structures from SU(3)⊗ U(1)

I(1)and I(2) satisfy criteria (1)− (4)

• They fail to satisfy (5)
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Conclusions

Problems with (4,4) away from Hyperkähler semichiral
model with 4D target space.
(2,2) in (1,1) in new formulation adapted to on-shell
(1,1) characterisation of additional supersymmetries of the
(2,2) model.
Hyperkähler examples shown to satisfy these.
The S3 ⊗ S1 dualized to semichiral model
Does not fulfil the conditions for having a (2,2) origin.

Maybe we studied the problem from the wryng point of view, as
exemplified by my son in the following picture:
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THANK YOU FOR YOUR
ATTENTION!
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