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Abelian anomalies

 anomalies: classical symmetries which are

violated by radiative corrections (loops).

* For Yang-Mills Lagrangian (massless spinor):
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In one loop approximation the symmetry breaks

down to:
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Non Abelian anomalies
* For left (right) handed currents:

We have the non abelian anomaly:

To be compared with the abelian anomaly:
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Zuminos connection

* The close resemblance between the previous
expressions led to the discovery of a
connection between abelian and non-abelian
anomalies.

* Non abelian anomalies in 2n dimensions can
be obtained from abelian anomalies in 2n+2
dimensions by a reduction method (without
having to evaluate Feynman diagrams).

 What we need is differential geometry.



Differential Forms
* Expressing the field strength tensor as a 2"

rank form: g — J4 + 4°

the previous expressions (abelian/non abelian
anomaly) can be written as total divergencies:
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The reduction method
e Starting from the primary form (Chern character)

Q, .(4) which is closed, metric independent,
gauge invariant, and represents the abelian

anomaly, we can write: |Q = J®"
27742 27+]1

 Because it is gauge invariant we get from

Poincare lemma:
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. W, is the non abelian anomaly






Tensor Gauge Theory

* New gauge fields are introduced. Rank — (s+1) tensors,

symmetric over the A indices: -

e Extended gauge transformations:

form a closed algebraic structure:




* Extended Field Strength Tensors:

* Gauge invariant Lagrangians:




Tensor Gauge Theory with mixed

symmetries

* New set of fields with different symmetry
properties: A . .

* and gauge transformations:
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* which form a closed algebraic structure:
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* Field strength tensors:
G, =0,4,-0,4 -ig[4,4]
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* Can be written as differential forms
G =dd+ 4~
G, =dAd, +{A4,4}
G =dAd +{A4, 4 +{A4,,A4}
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Closed, metric independent, gauge invariant
forms (Chern characters) in higher dimensions
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From Poincare lemma, these closed forms can be locally written
as exterior derivatives of secondary forms. Thus, they can be
viewed as abelian anomalies (Chern characters).
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The simplest representative of the

cohomology class

 Two forms that differ by and exact form are
cohomologous.
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The challenge is to find the simplest
representatives for the secondary forms



The simplest secondary forms
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S(secondary forms) =
d(potential anomalies)

* There are no
anomalies with
respect to the
standard gauge
parameter!!
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