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Outline

Q Supersymmetric backgrounds: Introductory comments

© (Conformal) symmetries of curved spacetime

© (Conformal) symmetries of curved superspace

@ Supersymmetric backgrounds in d = 3, N' = 2 supergravity

e Supersymmetric backgrounds in d =5, N' = 1 supergravity
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Supersymmetric backgrounds: Introductory comments

Supersymmetric backgrounds in supergravity

Supersymmetric solutions of supergravity
M. Duff et al. (1981,1982)
P. van Nieuwenhuizen & N. Warner (1984)
M. Duff, B. Nilsson & C. Pope, Kaluza-Klein Supergravity (PR, 1986)
Concept of Killing spinors

All supersymmetric solutions of minimal (gauged) supergravity in 5D
J. Gauntlett, J. Gutowski, C. Hull, S. Pakis & H. Reall (2003)
J. Gauntlett & J. Gutowski (2003)

Superspace formalism to determine (super)symmetric backgrounds in
off-shell supergravity

I. Buchbinder & SMK, Ideas and Methods of Supersymmetry and
Supergravity or a Walk Through Superspace, 10P, 1995 + 1998
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Supersymmetric backgrounds: Introductory comments

Superspace formalism to construct (super)symmetric backgrounds is
universal since

@ it is geometric;

@ it may be extended to any off-shell supergravity theory formulated in
superspace.

Some applications of the superspace formalism:

o Rigid supersymmetric field theories in 5D N = 1 AdS superspace
SMK & G. Tartaglino-Mazzucchelli (2007)

@ Rigid supersymmetric field theories in 4D N = 2 AdS superspace
SMK & G. Tartaglino-Mazzucchelli (2008)
D. Butter & SMK (2011)
D. Butter, SMK, U. Lindstrom & G. Tartaglino-Mazzucchelli (2012)

o Rigid supersymmetric field theories in 3D (p, g) AdS superspaces
SMK, & G. Tartaglino-Mazzucchelli (2012)
SMK, U. Lindstrom & G. Tartaglino-Mazzucchelli (2012)
D. Butter, SMK & G. Tartaglino-Mazzucchelli (2012)
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Supersymmetric backgrounds: Introductory comments

Recent developments

Exact results (partition functions, Wilson loops etc.)
in rigid supersymmetric field theories on curved backgrounds
(e.g., S3, S*, 53 x St etc.) using localization techniques
V. Pestun (2007, 2009)
A. Kapustin, B. Willett & |. Yaakov (2010)
D. Jafferis (2010)

Necessary technical ingredients:

@ Curved space M has to admit some unbroken rigid supersymmetry
(supersymmetric background);

o Rigid supersymmetric field theory on M should be off-shell.

These developments have inspired much interest in the construction and
classification of supersymmetric backgrounds that correspond to off-shell
supergravity formulations.
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Supersymmetric backgrounds: Introductory comments

Classification of supersymmetric backgrounds in off-shell

supergravity

Component approaches

G. Festuccia and N. Seiberg (2011)
H. Samtleben and D. Tsimpis (2012)
C. Klare, A. Tomasiello and A. Zaffaroni (2012)
T. Dumitrescu, G. Festuccia and N. Seiberg (2012)
D. Cassani, C. Klare, D. Martelli, A. Tomasiello and A. Zaffaroni (2012)
T. Dumitrescu and G. Festuccia (2012)
A. Kehagias and J. Russo (2012)

Such results also naturally follow from the superspace formalism

developed in the mid 1990s

ADN =1 SMK (2012)
3IDN =2 SMK, U. Lindstréom, M. Ro&ek, |. Sachs
& G. Tartaglino-Mazzucchelli (2013)
5DN =1 SMK, J. Novak & G. Tartaglino-Mazzucchelli (2014)
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Supersymmetric backgrounds: Introductory comments

Component approaches vs superspace formalism

@ Both component approaches and superspace formalism can be used
to derive supersymmetric backgrounds in off-shell supergravity.
Practically all classification results have been obtained within the
component settings.

@ Superspace formalism is more useful in order to determine all
(conformal) isometries of a given backgrounds.

@ Superspace formalism is more powerful for constructing the most
general rigid supersymmetric field theories on a given background.
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(Conformal) symmetries of curved spacetime

(Conformal) symmetries of curved spacetime

(Conformal) symmetries of a curved superspace may be defined similarly
to those corresponding to a curved spacetime within the Weyl-invariant
formulation for gravity (variation on a theme by Hermann Weyl).
S. Deser (1970)
P. Dirac (1973)
Three formulations for gravity in d dimensions:
@ Metric formulation;
@ Vielbein formulation;
@ Weyl-invariant formulation.

| briefly recall the metric and vielbein approaches and then concentrate in
more detail of the Weyl-invariant formulation.
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(Conformal) symmetries of curved spacetime

Metric and vielbein formulations for gravity

Metric formulation

Gauge field: metric gmn(x)
Gauge transformation: 8gmn = Vimén + Vlm
& =&M(x)0 a vector field generating an infinitesimal diffeomorphism.

Vielbein formulation

Gauge field: vielbein e,?(x), e:=det(en?)#0
The metric is a composite field &mn = em?en’nap
Gauge transformation: oV, = [PV, + %KbCMbc, V.l
Gauge parameters: €2(x) = £Men?(x) and K22(x) = —Kb(x)
Covariant derivatives (Mp. the Lorentz generators)
m 1 bc 1 cd
va = €3 am + Ewa Mbc 5 [va> vb] = 5 ab Mcd

e,™ the inverse vielbein, ;" en? = 6,°;
w4 the torsion-free Lorentz connection.
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(Conformal) symmetries of curved spacetime

Weyl transformations

Weyl transformations
The torsion-free constraint

1 1
T =0 = [V5,Vs] = Top"Ve + SR Meg = 5 Rap™ Mg
is invariant under Weyl (local scale) transformations
Vo V= (Vo + (V20)Mea) |

with the parameter o(x) being completely arbitrary.

m o, m a —0 a —20
€ —e e, em- — € " €en , 8mn — € Emn

Weyl transformations are gauge symmetries of conformal gravity.
Einstein gravity possesses no Weyl invariance.
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(Conformal) symmetries of curved spacetime

Weyl-invariant formulation for Einstein gravity

Weyl-invariant formulation for Einstein gravity

Gauge fields: vielbein ep,?(x) ,  e:=det(en?) #0
& conformal compensator p(x), @ #0

Gauge transformations (K := £°V, + %K”CMbC)

1
oV, = [PV, + be‘Mbc,Va] + 0V, + (VPo)My, = (6 + 65)Va ,

§p = Vo + 5 (d 2)op = (0k + 80 )¢
Gauge-invariant gravity action
1 1d-—
S= dxe (vawa@ + ,7&0 + Ap?d/d= 2)>
2 4d—
Imposing a Weyl gauge condition ¢ = % % = const

reduces the action to

1 AN S
Sfﬁ ddxeRf? d%xe
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(Conformal) symmetries of curved spacetime

Conformal isometries

Conformal Killing vector fields
A vector field £ = €m0, = £%€,, with e, := €,"0p,, is conformal Killing if
there exist local Lorentz, Kbc[f], and Weyl, o[¢], parameters such that

1
(O + 00)Va = [€V + S K*[]Mse, V| + €]V, + (V0l]) Mss = 0
A short calculation gives
1 1
Kblg] = E(bec —-veer), olé] = gvbfb
Conformal Killing equation

Vg + Ve = o]

Equivalent spinor form in d = 4: V(a(dgﬁ)/?) =0
(Va — vocd and ga — gad)
Equivalent spinor form in d = 3: Viap&ys) =0
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(Conformal) symmetries of curved spacetime

Conformal isometries

o Lie algebra of conformal Killing vector fields

o Conformally related spacetimes (V,, ¢) and (V,, 9)
V, = e (va + (pr)Mba> , 7 =e2ld-ry,

have the same conformal Killing vector fields £ = &%¢e, = g"’éa.

The parameters K<[¢] and o[£] are related to K[¢] and o[¢] as
follows:

KIE = 895+ SK[EMeg = KIE]
old] = olg] - ¢p

@ Conformal field theories

Symmetries of curved superspace Sergei M. Kuzenko



(Conformal) symmetries of curved spacetime

Isometries

Killing vector fields
Let £ = £%¢e, be a conformal Killing vector,

1
(5 + 80)Va = [€2W5 + SK*[€]Mse, Vo] + olE]Va + (V2ole)) My 0.
It is called Killing if it leaves the compensator invariant,
1
(0 +d0)p = Ep + 5(d = 2)o[{]p = 0.

These Killing equations are Weyl invariant in the following sense:
Given a conformally related spacetime (V,, @)

Vo= o (Vot (Vo0)My,) , §=edld i,

the above Killing equations have the same functional form when
rewritten in terms of (V,, @), in particular

6+ 3(d —2)olélF=0.

Symmetries of curved superspace Sergei M. Kuzenko



(Conformal) symmetries of curved spacetime

Isometries

Because of Weyl invariance, we can work with a conformally related
spacetime such that
p=1
Then the Killing equations turn into
bV, + ZKE[E]Mye, Vo] = 0 =0
5 b+ 2 [6] bcy Va| — ; O'[f] -
Standard Killing equation

vaé-b 4 Vbé-a =0

@ Lie algebra of Killing vector fields

@ Rigid symmetric field theories in curved space
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(Conformal) symmetries of curved superspace

(Conformal) symmetries of curved superspace

Weyl-invariant approach to spacetime symmetries has a natural
superspace extension in all cases when supergravity is formulated as
conformal supergravity coupled to certain conformal compensator(s) =

zM = (x™m ") local coordinates of curved superspace
Da=(D.,Dy) = Ea+Qa+ ®a superspace covariant derivatives
Ean = EAM(2)0m superspace inverse vielbein
Qa = 30 (2) M superspace Lorentz connection
O =0,/ (2)T, superspace R-symmetry connection

Supergravity gauge transformation

1
0kDa=[K,Dal,  0kZ=KZ, K:=¢"Dp+ KMy +K'T)
Super-Weyl transformation

1
06Ds=0Dy+ - 50Da:§0Da+~-~, 0o= = w=o=,

with w= a non-zero super-Weyl weight
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(Conformal) symmetries of curved superspace

Conformal isometries of curved superspace

Let ¢ = ¢BEg be a real supervector field. It is called conformal Killing if

((S;C + 50)'DA =0,

for some Lorentz K?¢[¢], R-symmetry K'[¢] and super-Weyl o[¢]
parameters.

o All parameters K’¢[¢], K'[¢] and o[€] are uniquely determined in
terms of £B.
@ The spinor component ¢ is uniquely determined in terms of £P.

@ The vector component obeys an equation that contains all the
information about the conformal Killing supervector field.
Examples:

3 IDéagB’Y) =0
/ L
Diabpys =0

1
~
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(Conformal) symmetries of curved superspace

Isometries of curved superspace

Let ¢ = ¢BEg be a conformal Killing supervector field,
(Oxcle) + 0o1e))Pa =0, ()

for uniquely determined parameters K*<[¢], K'[¢] and o[¢].
It is called Killling if the compensators are invariant,

(5)c[g] +w=o[¢])==0. (xx)

The Killing equations (x) and (xx) are super-Weyl invariant in the sense
that they hold for all conformally related superspace geometries.

Using the compensators = we can always construct a scalar superfield
@ = ¢(Z), which (i) is an algebraic function of =; (ii) nowhere vanishing;
and (i) has a nonzero super-Weyl weight wy, d,¢ = wyo¢.

(Oktg +weal€])¢ =0 .

Super-Weyl invariance may be used to impose the gauge ¢ = 1, and then

olg=0.
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(Conformal) symmetries of curved superspace

(Conformal) supersymmetries of curved superspace

Of special interest are curved backgrounds which admit at least one
(conformal) supersymmetry. Such a superspace must possess a conformal
Killing supervector field ¢# of the type

falzov £a|7é0

and describe a bosonic background with the property that all spinor
components of the superspace torsion and curvature tensors

1
[Da,Dg} = Tag“Dc + ERABCndd +Rag' Ty
have vanishing bar-projections,
e(T..)y=1=>T.7|=0, e(R.7)=1—=R.7|=0.

These conditions are supersymmetric.
At the component level, all spinor fields may be gauged away.
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Supersym

d = 3, N = 2 supergravity

3D N =2 curved superspace, M3/*, parametrized by local coordinates
M = (x™ 0",0,), m=0,1,2and p=1,2
Superspace structure group SO(2,1) x U(1)g
Superspace covariant derivatives

Dp = (D, Dy, D) = EA+ Qa+104T .
Algebra of covariant derivatives
{D.,Ds} = —4RM,p5 , {Dw,Ds} = 4RM,p ,
{Do,Ds} = —2i(7)apDe — 2CapT — 4icapST
+HSM o — 2605C7° M.ys

Map = —Mpy +— Mypg = Mg, Lorentz generators
Dimension-1 torsion superfields: (i) real scalar S; (i) complex scalar R
such that JR = —2R; (iii) real vector C; <— Cup.

Bianchi Ildentities:

D,R=0, (D? - 4R)S =0
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Supersym

Conformal isometries

The conformal Killing supervector fields obey the equation

((5}( + 50)'DA =0,

where
1
kDa = [K,Dal] , K=¢De + EKCndd +irJ
and 1
0oDy = EaDa +(D"0)Myo — (Dao)T

It suffices to require (dxc + d,)D, = 0, which implies

i= - -
&= 76Dﬂfﬁa v Kap =Dalp) — D(alp) = 28apS
1 - i g
g = E(Daga + Daga) 3 T = _Z (Daga — Da&-a)
All parameters £%, K,3, 0 and T are expressed in terms of £,

Symmetries of curved superspace Sergei M. Kuzenko



Supersym

Conformal isometries

The remaining vector parameter £? satisfies

Da8py) =0 (*)

and its conjugate.
Implication: superfield analogue of the conformal Killing equation

2
Dafb + Dbfa = gnabpcfc .

Eq. (%) is fundamental in the sense that it implies (dx + 05)Da =0
provided the parameters £, K,3, 0 and 7 are defined as above.
The conformal Killing supervector field is a real supervector field

é- - fAEA ) §A = (ga’ga’é_-a) = (527 _%ﬁﬁgﬂav —%D5§Ba>

which obeys the master equation (*).
If & and & are two conformal Killing supervector fields, their Lie bracket
[€1,&2] is a conformal Killing supervector field.



Supersym

Conformal isometries

Equation (dx + 0,)D, = 0 implies some additional results that have not
been discussed above. Define

T := (€8, K, 1)

It turns out that

@ DT is a linear combination of T, o and Dco;
@ DsDgo can be represented as a linear combination of T, ¢ and
Dco'.

The super Lie algebra of the conformal Killing vector fields on M3/* is
finite dimensional. The number of its even and odd generators cannot
exceed those in the A = 2 superconformal algebra o0sp(2/4).
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Supersym

Charged conformal Killing spinors

Look for curved superspace backgrounds admitting at least one
conformal supersymmetry. Such a superspace must possess
a conformal Killing supervector field £€# with the property

&l=0, € =¢Y#£0.

All other bosonic parameters are assumed to vanish, o| = 7| = K,5| = 0.
Bosonic superspace backgrounds without covariant fermionic fields:

D,S| =0, D.R| =0, D.Cpy|=0.

These conditions mean that the gravitini can completely be gauged away

1
Da| =D, :=e+ EwabCMbc +ib,J =D, +ib,J € = €"0m .

Introduce scalar and vector fields associated with the superfield torsion:
s =8|, r=R|, ¢ =Ca .

S-supersymmetry parameter: 1), := Dyo|.



Supersym

Charged conformal Killing spinors

Q-supersymmetry parameter €* := £%| obeys the equation
i ~ =\ . ~ e} ~ « . ~ =\
D.e* + E(ﬁ/an) '+ icape P(5°€) — s(F.€)* —ir(5,6)* =0,
which is equivalent to

(D(aﬁ - i%ﬁ)ev) = (@mﬂ*i(b + C)(aﬁ)ev) =0,
_ 2i

e (s 2 35 0

This follows by bar-projecting the equation (Cnp, = —iD(4Cs))

0= Daga + %(’Ya)aﬁl_)ﬁo— - igabc(’yb)aﬁccgﬁ - (73)&6(558 + gﬁR)
1

. 4 2
b .
—5eanct (1) <1Caﬂv — 3Ca(DnS — gﬁa(/ﬂ’w)R) )

which is one of the implications of (dx + d,)D, = 0.



Supersym

Supersymmetric backgrounds

Rigid supersymmetry transformations (in super-Weyl gauge ¢ = 1)
are characterised by

U[é—] = 0 g 7704 = 0 9
The conformal Killing spinor equation turns into

D.e® = —icapecP(59€)® + s(F2€)™ + ir(5.€)®
1, ) )
D,=e+ Ewa Mpe +ibJ =9, +1ibJ .
1 ) .
[D,,Dy] = ERab“’Mcd +iFapT = [Da,Dp] + iFapT -
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Supersym

Supersymmetric backgrounds with four supercharges

The existence of rigid supersymmetries imposes non-trivial restrictions on
the background fields. In the case of four supercharges, these are

D,s =0, D,r = 2ib,r D,Cp = 2€,pcC S,
rs =20, rc,=0.
¢, is a Killing vector field,
D¢+ Dpc; =0

The U(1)g field strength proves to vanish, F,, = 0.
The Einstein tensor G,p := R — %nabR is

Gap = 4|:Cacb + 7751[)(52 + Fr)} .

For the Cotton tensor W, := %sachCdb = Wha, with
Wabe = 2D, Rp)c + %UC[QDb]R, we obtain

1
W = —24s [cacb — gnabc2] .
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Supersym

Compensators

Type | supergravity: Chiral compensator
1
Da® =0, 0e® = =00, di:—Ed).

The freedom to perform the super-Weyl and local U(1)g transformations
can be used to impose the gauge ¢ = 1.
Consistency conditions:

S§=0, ¢, =0, ®op =Cap -
Supersymmetric backgrounds with four supercharges:
rc;, =0, D,r=0, D,c,=0.
Such spacetimes are necessarily conformally flat,
Wap =0 .

Solution with ¢, = 0 corresponds to (1,1) AdS superspace.
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Supersym

Compensators

Type Il supergravity: Real linear compensator
(D? - 4R)G =0, 5G = 0G .

Super-Weyl invariance allows us to choose the gauge G = 1.
Consistency conditions:

R=R=0.
All supersymmetric backgrounds with four supercharges:
D,s=0, D,Cp = 2€4pcC°S .
The Cotton tensor

1 1
Wap = —24s|cycp — gnabcdcd} = —6s [Rab - §nabR:|

Solution with ¢, = 0 corresponds to (2,0) AdS superspace.
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Supersym

General feature of maximally supersymmetric backgrounds

For any background admitting four supercharges, if there exists a tensor
superfield T such that its bar-projection vanishes, T| = 0, and this
condition is supersymmetric, then the entire superfield is zero, T = 0.

Supersymmetric conditions
D.S| =0, D.R| =0, D.Cpy|=0.

imply
DyS =0, DR =0, D.Csy =0
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Supersym

Example: Maximally supersymmetric backgrounds in Type

| SUGRA

Dimension-1 torsion superfields

S§=0, RC,=0, DasR =0, DaCp =0

are covariantly constant.

Algebra of covariant derivatives:
{Do,Ds} = —4RMup,  {Da,Dg} =4RM,yp ,
{Da. D} = ~2i(1°)apDec — 2CapT — 22a5C"" Mo
[Da, Dg] = icave(7°)s"CDy — ()3, RD”
[DayD,B] = _igabc(’yb)ﬁ’yccp'y - i('ya)ﬁfyR,DW y
[Da,Db] = 4epc ((SCdRR—FCCCd)Md .
4 different superalgebras: (a) R#0, G, =0 (1,1) AdS superspace;
(b) R=0, G, is time-like; () R=0, C, is space-like;
(d) R=0, C,is null.



Supersym

Example: Maximally supersymmetric backgrounds in Type

Il SUGRA

Dimension-1 torsion superfields:
R=0 5 DAS =0 5 DaCb =0 5 DaCb = 2€abCCCS
cbe, = const .

The algebra of covariant derivatives is

{Do,Ds} =0,  {Da,Ds} =0
{Da,Ds} = —2iDyp — 2CapT — KeapST + HSMup — 2605C7 M.y .

Solution with C, = 0 corresponds to (2,0) AdS superspace.
Spacetime is of type N (for ¢, null), type Dy (for ¢, spacelike) or Dy (for

¢, timelike) in the Petrov-Segre classification.
D. Chow, C. Pope & E. Sezgin (2010)
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d =5, N =1 supergravity

5D N =1 curved superspace, M°>!® parametrized by local coordinates
zM = (x™, 0", m=0,1,2,3,4and o =1,2
Superspace structure group SO(4,1) x SU(2)g
Superspace covariant derivatives
DA = (Dg,Dg) — EA" +QA"+¢A
Algebra of covariant derivatives
(D, DL} = —2i7D, 5 —icgpel XEIM, 5 + 7eT™49(T5) 3N My,
L cabede(s ) L Cali My, + 4 STM, 5 + 3ic, 527 SM )
_55 ( éb)dﬂ e" Mg, + 4 &ﬁ—&- le,p€ Kl
i ) i
—IEUC&B Ju — 41(X6¢ﬁ + N&B)JU R
All torsion and curvature tensors are given in terms of four dimension-1
superfields:

ST=8" Xyp=-Xp, Njp=-Ng, G'=0C".

ERR
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5D (conformal) isometries

The conformal Killing supervector fields obey the equation
(Okie) +901)P4A =0,

where

oxDj = [, D4l K= 5617@ + Kéa/\/leg + KNy,

1
2
and

) 1 . . .
06Dy = 50D +2(DVo)Msa — 3(Daxo)JH

In a super-Weyl gauge ¢ = 1, the Killing supervector fields obey the
equation
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Classification of maximally supersymmetric backgrounds |

All backgrounds with eight supercharges are characterized by

DS =0, DiG"=0, DiX;;=0, DiN;=0.
Case 1 S=1/3SUS; #0
Implication:

Gi=0, X;=0, N,=0.

5D AdS superspace Ads®B
Algebra of covariant derivatives

{Di. D)} = —21e"Dy5 +4iSTM, 5 + 3ic, 567" Jur |

) 1 .
[Ds, D}] = 5(Ts)57 S/ D5
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Classification of maximally supersymmetric backgrounds Il

Case 2 G +£0
Implication: )

SV=0, X5 =0, Ny =0.
Sup_erspace"geometry is described by a single covariantly constant tensor
GY, DGV =0.

{ng%} = —ZiEUD&B — %Eégeaé(zég)@[gc&'j/\/lgé — iE"jC&ﬂAlikl )

. 1 A .
[,Dévpjé] = 7(z§b)ﬁ‘yCBJkD—lA; )

2
1/ e 5 1 .~ 5 4
[Ds, D3] = 1(5[[;CB]kICd]kI - §5f§5§] CEkICékI) M., .
Integrability condition C;(/, C)% = 0.
Solution:
Gi=cCci, Cicg=2, DiC=0, D;Ci=0.
b b i ACh A

Three different superalgebras
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Classification of maximally supersymmetric backgrounds Il

Case 3 Si=08& CG=0
The superspace geometry is determined by the tensors X;; and N;;
obeying the differential constraints

DngB =0
1 ed
DaXmi = SespeqrnXa N
1
DsNpa = 5
and the algebraic ones

XaNge =0 XgpXeyg = NispNegg -
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Compensators

So far no compensators for 5D A/ = 1 supergravity have been specified.
To describe (gauged) supergravity, two compensators are required.

@ Vector multiplet compensator W = W # 0

Uply — Lo pitiphyw = Lc i
DEDIW — 2,3 DUDIW = 257w

The super-Weyl transformation law of W

oW =0cW.
e O(2) multiplet compensator H¥ H? := 1HUH; > 0.
HI = kel DUHM =0

The super-Weyl transformation law of H7

8, HY = 3aHV |
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Compensators

@ Super-Weyl invariance may be fixed by setting W = const or
H = const.

@ Bosonic conditions
DLW|=0, DiH* =0
are supersymmetric for backgrounds with eight supercharges iff

W = const , DLH* =0

@ Consistency conditions
W - i B
G =0, SY=S5H", Nsp = —Xap

It also holds that X,; = F;, the field strength of the vector
multiplet.
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Maximally supersymmetric off-shell supergravity

backgrounds

o Case S#0
G =o, , Ny = X5 =0
5D AdS Superspace
@ Case S=0
G =0, Si=o0, N

Superspace geometry is formulated in terms of a single superfield
obeying the equation
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Supersymmetric solutions in Poincaré and anti-de Sitter

supergravities

Supergravity equations of motion
H-W3=0, H/4+yHi =0, W4+3xW=0,
with x the cosmological constant.
HY composite O(2) multiplet
HY = iD*CwD)w + %WDUW — 25T W2
W composite vector multiplet

i ij - cij Hij
W = 2 H(DY +12i57) ()
Using the above equations of motion, one naturally reproduces all
supersymmetric solutions of minimal (gauged) supergravity in 5D
J. Gauntlett, J. Gutowski, C. Hull, S. Pakis & H. Reall (2003)
J. Gauntlett & J. Gutowski (2003)
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Most general nonlinear sigma model in 5D AdS superspace

5D AdS superspace AdS®®

{Di. D} = ~2ie"D, 5 +4i UMy + 3ie, 567 S

Matter couplings are most naturally described in AdS®® x CP?,
with CP! parametrized by homogeneous coordinates v;.
Off-shell sigma model

L® = SivyK(T,T)

SMK & G. Tartaglino-Mazzucchelli (2007)
K(®,d) Kahler potential of a real analytic Kahler manifold M".
T(v) covariant arctic hypermultiplet.
o-model target space:
(Open domain of the zero section of) the cotangent bundle of M".
This target space is hyperkahler, for any real analytic Kahler space M".
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For the most general supersymmetric nonlinear sigma model in 4D
N =2 AdS and 5D NV =1 AdS, its target space is a non-compact
hyperkahler manifold endowed with a Killing vector field which generates

an SO(2) group of rotations on the two-sphere of complex structures.
D. Butter & SMK, arXiv:1105.3111
J. Bagger & C. Xiong, arXiv:1105.4852
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