Status of experimental searches at the LHC:ALICE

Heavy-ion Physics at LHC

Luciano Ramello – Università del Piemonte Orientale & INFN

Outline

- Introduction
- The ALICE detector
- Global properties
- Particle production
- Collective effects
- Jet quenching
- Open heavy flavours
- Quarkonia
- Outlook

why study heavy ion (A-A) collisions? what can be learned from pp and p-A collisions?

INTRODUCTION

Why study heavy-ion collisions?

- to understand two fundamental non-pert. aspects of QCD:
 - (de-)confinement
 - chiral symmetry breaking/restoration
- to study the phase diagram of QCD
- to recreate conditions of the QCD \rightarrow hadronic matter phase transition in the early Universe (~10 µs after the Big Bang)

NATURE

EXPERIMENT

Theoretical/phenomenological tools to interpret observations:

- perturbative QCD and lattice QCD
- Glauber model (to relate centrality to # of collisions, e.g.)
- relativistic hydrodynamics
- hadronization physics (mainly fixed from e⁺e⁻, pp experiments)

The QCD phase diagram

Space-time evolution of a collision

- Thermal freeze-out
 - Elastic interactions cease
 - Particle dynamics (momentum spectra) are fixed

T_{fo} (RHIC) ~ 110-130 MeV

- Chemical freeze-out
 - Inelastic interactions cease
 - Particle abundances are fixed (except maybe resonances)

T_{ch} (RHIC) ∼ 170 MeV

- Thermalization time
 - System reaches local equilibrium

t_{eq} (RHIC) ~ 0.6 fm/c

Key control parameters

- collision energy (per nucleon pair) $\sqrt{s_{NN}}$
- centrality percentile (referred to the total inelastic cross-section)
- system size:
 - nuclear species (mostly Cu, Au, Pb, U)
 - pp collisions ⇒ baseline for hard-probe observables → compare A-A observable to pp one scaled by the # of binary collisions N_{coll}
 - p-A collisions ⇒ possible effects of cold nuclear matter (CNM)

Brief history of HI collisions

fixed target:

- **Bevalac** (LBL) $\sqrt{s} < 2.4 \text{ GeV}$
- SIS (GSI) √s < 2.7 GeV
- AGS (BNL) √s < 5 GeV
- SPS (CERN) √s < 20 GeV
- FAIR (GSI) √s < 9 GeV

"Livingston plot" J. Schukraft – arXiv:nucl-ex/0602014

- collider:
 - **RHIC** (BNL) 2000- \sqrt{s} < 200 GeV
 - LHC (CERN) 2008- $\sqrt{s} < 5500 \text{ GeV}$

energy doubling time: pp ~4 years A-A ~1.7 years an experiment dedicated to heavy-ion physics at the LHC

* THE ALICE DETECTOR

LICE Detector as built: JINST 3 S08002 (2008)

ALICE Physics performance report: J. Phys. G32, 1295 (2006) J. Phys. G30, 1517 (2004)

ALICE: the detector concept

- designed for handling central A-A collisions with $dN_{ch}/d\eta$ up to 8000
- central barrel with tracking and PID for charged particles in a 0.5 T B-field (L3 solenoid)
- very low material budget ⇒ high precision tracking down to very low p_T
- photon & jet reconstruction: PHOS & EMCal
- forward muon arm with dipole magnet
- (very) forward detectors including ZDC's for centrality determination and extended rapidity coverage

Particle Identification with ALICE

more PID with ALICE

electron/pion separation with TRD

anti-nuclei ID with TPC

high momentum PID with HMPID (Cherenkov detector)

Muons with ALICE

ALICE data samples in LHC Run I

System	Energy √s _{NN} (TeV)	Year	Integrated Iuminosity	Main Goal
Pb-Pb	2.76	2010	10 μb ⁻¹	First Pb-Pb data taking at LHC
Pb-Pb	2.76	2011	0.1 nb ⁻¹	Study hot & dense QCD matter
p-Pb & Pb-p	5.02	2013	I 5 nb ⁻¹ I 5 nb ⁻¹	Study Cold Nuclear Matter effects
РР	0.9	2009-10	0.15 nb ⁻¹	Commissioning
PP	7	2010	7 nb ⁻¹	
РР	2.76	2011	I.I nb ⁻¹	Reference for
РР	7	2011	4.8 pb ⁻¹	Pb-Pb and p-Pb
РР	8	2012	9.7 рb ⁻¹	

charged particle multiplicity transverse energy ...as a function of centrality

0

GLOBAL PROPERTIES

Centrality determination in Pb-Pb

Phys. Rev. C 88, 044909 (2013)

VZERO (scint. hodoscope) ampl. used to determine centrality percentiles from 0% (most central) to 90%

Centrality determination in p-Pb

Charged particle multiplicity

Pb-Pb 0-5% centr.: $dN_{ch}/d\eta = 1584 \pm 4$ (stat) ± 76 (syst)

$dN_{ch}/d\eta$ vs. centrality in Pb-Pb

- the yield per participant pair has the same shape vs. N_{part} at RHIC and LHC (with a scale factor of 2.1)
- among 2-component models (pQCD + soft interactions), only HIJING 2.0 tuned to high energy pp and central Pb-Pb data is in agreement with the ALICE result
- models including saturation [13, 14] reproduce well the centrality dependence (though [13] overpredicts the magnitude)

Phys. Rev. Lett. 110, 032301 (2013) **NSD** p-Pb at 5.02 TeV $|\eta| < 2$ $dN_{cb}/d\eta : 16.95 \pm 0.75$

Disentangle

- final state effects : hot QCD matter
- initial state effects: cold nuclear matter

Probe nuclear wave-function at small x

QCD at high gluon density: parton shadowing, gluon saturation?

Models that include shadowing or saturation approximately get right value

- HIJING 2.1 (gluon shadowing tuned to RHIC) : closest to the data and describes the rapidity shape rather well
- Gluon saturation models: steeper η_{lab} dependence than the data

Space-time volume of homogeneity region

PLB 696, 328 (2011)

• identical pion interferometry (HBT) in Pb-Pb

at 0-5% centrality ⇒ freeze-out volume and lifetime:

• freezeout volume ~ $2 \times V_{RHIC}$

• actual volume of homogeneity region is $(2\pi)^3 \times ($ product of radii)

• lifetime ~I.4 $\times \tau_{RHIC}$

Source radius in pp, p-Pb and Pb-Pb

Comparison of source radii can provide info on the role of:

- initial conditions (p-Pb radii similar to pp) vs.
- hydrodynamics (larger radii, p-Pb more similar to Pb-Pb)
- \bullet extraction of radii with 3π cumulants
- for a given N_{ch} :
 - p-Pb radii 5-15% larger than in pp
 - Pb-Pb radii 35-45% larger than in p-Pb

p-Pb and pp can be reproduced by initial conditions from saturation (GLASMA) (p-Pb may accommodate also hydro) Pb-Pb requires hydro-dynamical phase

Mean p_T vs. multiplicity

pp and p-Pb show much stronger increase than Pb-Pb

- Color reconnection describes data better in pp
- Glauber MC (sum of indep. pp, pn) fails
- No model can describe p-Pb and Pb-Pb consistently (EPOS close to p-Pb data)

arXiv:1307.1094 PLB 727, 371 (2013)

identified particle yields vs. p_T yield ratios, comparison to thermal models

PARTICLE PRODUCTION

Identified hadron spectra

- combined result of tracking detectors (ITS, TPC, TOF, HMPID) $\Rightarrow p_T$ spectra in a wide range for all three systems
- input for flavour and mass dependence of particle yields
- evolution of yields with colliding system and centrality

Hadron spectra in 0-5% Pb-Pb

Models: VISH2+1 (viscous hydro) HKM (hydro + UrQMD) Krakow (hydro + bulk viscous corrections) good agreement for central collisions, hydrodynamics give s a good description (also EPOS 2.17 hydro + UrQMD, bulk + jets)

Blast-wave fits to extract:

- kinetic freeze-out temperature
- radial flow velocity

 T_{kin} ~ 95 MeV (similar to RHIC) <β_T> ~0.65 c (10% larger than at RHIC) ⇒ larger radial flow than at RHIC

The baryon anomaly

- Λ production is strongly enhanced in central Pb-Pb collisions
- Clear centrality dependence
- Quantitatively the same effect as the one observed earlier at RHIC
- Ratio Λ/K_{S}^{0} in p-Pb collisions is similar to that in peripheral Pb-Pb collisions
- No Λ enhancement in jets

Particle yield ratios in pp

ALI-PREL-74045

Yield ratios among several hadrons (including light nuclei) show weak (if any) energy dependence between 0.9 and 7 TeV

Particle yields: pp, p-Pb & Pb-Pb

ALI-PREL-74423

Yield ratios look similar among different systems...

... but in Pb-Pb we see an ehancement of Ω and a decrease of p and K*

Particle yields vs. thermal model

Models: THERMUS: CPC 180 (2009) 84 GSI: PLB 673 (2009) 142 SHARE: arXiv:1310.5108

Equilibrium models for Pb-Pb central collisions describe rather well with 2 parameters (T, volume) the yields of all particles... ... including light nuclei collective flow, few particle correlations

°

COLLECTIVE EFFECTS

The functional form of $v_2(p_T)$ does not change between RHIC and LHC energies The overall v_2 is larger at LHC due to the larger average p_T

Phys. Lett B 708, 249 (2012) [see also PRL 107, 032301 (2011)]

- higher Fourier components (n>2) arise due to fluctuations in the initial geometry
- the Fourier components can be extracted via the correlation of produces particles with the n-th symmetry plane Ψ n:

$$\frac{\mathrm{dN}}{\mathrm{d}\phi} \propto 1 + \sum_{n=1}^{\infty} 2v_n(p_T) \cos\left(n(\phi - \Psi_n)\right)$$

• or via the analysis of 2-particle correlations (trigger and associate particle) separated by a $\Delta\eta$ gap (typ. 0.8), under the assumption of factorization:

$$\frac{\mathrm{dN}^{\mathrm{pairs}}}{\mathrm{d}\Delta\phi} \propto 1 + \sum_{n=1}^{\infty} 2V_{n\Delta}(p_T^t, p_T^a) \cos\left(n\Delta\phi\right)$$

 $V_{n\Delta}(p_T^t, p_T^a) = \langle v_n \{2\}(p_T^t) v_n \{2\}(p_T^a) \rangle$ 38

Correlations: double ridge in p-Pb

unexpected observation of double ridge in high multiplicity p-Pb

PLB 719, 29 (2013)

double ridge described by both Color Glass Condensate (initial state effect) or hydrodynamics (final state effect)

projected

modification of jets in the hot medium

JET QUENCHING

jets in ALICE: charged particles in barrel ($|\eta|$ <0.9, full azimuth) EM energy in EMCal ($|\eta|$ <0.3, 1/3 azimuth)

10⁻⁵

30

Jet suppression in Pb-Pb

10⁻⁶

Charged jets in p-Pb

No modification of jet cross section in p-Pb relative to pp ⇒ no significant cold nuclear matter effects observed in jet measurements in p-Pb

pp reference for R_{pPb} at the needed energy of 5.02 TeV obtained by scaling the measured jet spectrum in pp collisions at 7 TeV

Charged particle suppression in Pb-Pb

Charged particle suppression in p-Pb

- Strong suppression of charged hadrons in Pb-Pb (wrt pp) up to very high momenta
- p-Pb results confirm that strong suppression in Pb-Pb is due to hot nuclear matter effects

Charged particles at high p_{T}

 R_{DA} consistent with unity up to 50 GeV/c:

charged particle (jet) quenching is a genuine hot matter effect

check of N_{coll} scaling in Pb-Pb extended up to 100 GeV/ $c^{(2)}$ by CMS using direct photons, W and Z as reference particles

Identified particle suppression

- $p_T < 3$ GeV/c: ratios K/ π and p/ π in agreement with hydro
- $p_T > 8-10$ GeV/c: ratios similar in pp and Pb-Pb \Rightarrow particle composition of in-medium jets similar to those in vacuum

predictions of significant modifications of high- p_T hadrochemistry induced by jet quenching disfavoured

Identified particle spectra in p-Pb

another class of hard probes Dokshitzer and Kharzeev, PLB 519, 199 (2001) measured via fully reconstructed decay modes... ...or via semileptonic decays

OPEN HEAVY FLAVOURS

Importance of Heavy Flavours

- Heavy quarks produced in initial hard scattering, experience full system evolution
- the number of HQ is conserved ⇒ unique tool to characterize the medium
- at LHC HQ are produced copiously ⇒ precision measurements
- Partons lose energy by:
 - medium-induced gluon radiation
 - elastic collisions with other partons
- Energy loss ΔE in the medium depends on:
 - medium properties (transport coefficients _)
 - $^\circ\,$ parton properties (mass*, colour charge) $\, q$
 - path length L

$$\langle \Delta E \rangle \propto \alpha_s C_R \hat{q} L^2$$

Expectation from radiative energy loss: $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$ Could be reflected in a hierarchy of meson R_{AA} : $R_{AA}(B) > R_{AA}(D) > R_{AA}(\pi)$

* Gluon radiation is suppressed for angles $\theta{<}M_Q{/}E_Q$

Pb-Pb:

 D^0 , D^+ and D^{*+} R_{AA} agree within uncertainties

Strong suppression of prompt D mesons in central collisions, up to a factor 5 for $p_T \sim 10 \text{ GeV}/c$

Hint of higher R_{AA} for D_s^+ at low p_T

p-Pb vs. Pb-Pb:

Suppression observed in central Pb-Pb due to strong final state effects induced by hot partonic matter

see also (Pb-Pb 0-20% centr.) JHEP 09 (2012) 112

D consistent with π within errors but improved accuracy needed to conclude (consistency described by theory taking into account different p_{T} shapes and fragmentation functions)

Charm vs. beauty

Comparing D with (non prompt) J/ ψ from B decay with p_{T} ranges tuned to have same average \bar{p}_{T} for both mesons, the expected mass ordering is observed

Charm vs. beauty

pQCD models including mass dependent radiative and collisional en. loss predict a difference similar to the one observed in data

Results very similar to the ones just shown for D and B mesons have been obtained from leptons from Heavy Flavour decays, both in the central barrel (e, μ) and in the muon spectrometer (μ)

Elliptic flow of heavy flavours

- Due to their large mass, b and c quarks should take longer to be influenced by the collective expansion of the medium, with $v_2^{b} < v_2^{c}$
- Measurements of HF v₂ probe:
 - at low p_{T} , collective motion and thermalization of heavy quarks
 - at high p_{T} , path-length dependence of energy loss

Significant interaction of charm quarks with the medium \rightarrow suggest collective motion of low p_T charm quarks in the expanding fireball

Heavy flavour R_{AA} and v₂: models

R_{AA} in central Pb-Pb

v₂ in semi-central Pb-Pb

Challenging description, for theory, of nuclear modification and charm flow measurements together WHDG: Horowitz et al., J Phys. G38 (2011) 124114
POWLANG: Alberico et al., EPJ C71 (2011) 1666
Cao, Qin, Bass, arXiv:1308.0617
Aichelin et al.: PRC79 (2009) 044906,
J. Phys. G37 (2010) 094019
BAMPS: Fochler et al., J. Phys. G38 (2011) 124152
TAMU: Rapp, He et al., PRC 86 (2012) 014903
UrQMD: Lang et al., arXiv:1211.6912, arXiv:1212.0696

the historical hard probe for QGP temperature Matsui and Satz, PLB 178, 416 (1986) Digal et al., PRD 64, 094015 (2001) Braun-Munzinger and Stachel, PLB 490, 196 (2000)

QUARKONIA

0

figure from A. Mocsy

Importance of quarkonia

- Binding of a qq pair is subject to the effect of colour screening in the QGP
- If the radius of the state is > screening radius $\lambda_D(T)$
 - the state cannot be formed above a certain temperature
 - $^\circ~$ therefore, J/ $\psi~$ suppression was proposed as a signature of QGP formation (Matsui and Satz, 1986)
- Differences in binding energies / screenign lengths of different states
 'sequential' melting of charmonium and bottomonium states
- Suppression of J/ ψ first seen at SPS in central Pb-Pb collisions (NA50 experiment), then at RHIC
- Furthermore, at RHIC/LHC energies, thermal regeneration of qq pairs becomes important

Sequential dissociation of $Q\overline{Q}$ states

Digal et al., PRD 64, 094015 (2001)

Quarkonia in Pb-Pb and p-Pb (1)

ALICE: PLB 743 (2014) 314

Pb-Pb: clear J/ ψ suppression with almost no centrality dependence above N_{part}~100. Less suppression at mid-y wrt forward y for central events.

Comparison with PHENIX [PRC 84 (2011) 054912]: ALICE results show weaker centrality dependence and smaller suppression for central events \Rightarrow at LHC the contribution to J/ ψ from statistical recombination is larger

Quarkonia in Pb-Pb and p-Pb (2)

also in p-Pb, the $//\psi$ production is heavily modified due to Cold Nuclear Matter effects

-PREL-73445

 R_{pA} decreases towards forward rapidity, in agreement with shadowing and coherent energy-loss models

Quarkonia in Pb-Pb and p-Pb (3)

rough extrapolation of CNM effects, evaluated in p-Pb and Pb-p, to the Pb-Pb kinematical range

 \Rightarrow evidence of hot matter effects in Pb-Pb!

Bottomonium in p-Pb

what next?

Run2 in 2015 – 2017

- Complete geometry for all detectors
- Upgraded detectors, readout, trigger
- LHC energy up to 13 TeV for pp (~5.1 TeV for Pb-Pb)
- Collect 10 pb⁻¹ with pp rare triggers, 70 nb⁻¹ with pp minimum bias trigger, 1 nb⁻¹ with Pb-Pb.
- Run3 2020-2022 and beyond:
 - Major detector upgrade: new ITS and new TPC readout
 - Improvement in vertexing capability and tracking a low p_T
 - Increase data-taking rate by factor 100! (→ 50kHz Pb-Pb)
 - Precision studies of charm and beauty mesons and baryons and quarkonia at low p_T
 - Low mass lepton pairs and thermal photons
 - $-\gamma$ -jet and dijets with particle identification in a large kinematic range
 - Heavy nuclear states

Jet reconstruction

- FastJet¹ is used for jet finding
 - anti- k_{T} algorithm for signal jets
 - $k_{\rm T}$ algorithm for background correction
 - Resolution parameters R = 0.2-0.6
 - Transverse momentum calculated by using FastJet's $p_{\rm T}$ particle recombination scheme
- Jets are corrected for background + fluctuations
 - depending on collision system
- Additionally, calorimeter clusters are corrected for energy from charged tracks to avoid double-counting:

$$E_{\rm clus}^{\rm corr} = E_{\rm clus}^{\rm orig} - \sum p^{\rm matched}$$

¹ Cacciari, Salam. Phys. Lett. B641(2006), arXiv:0512210 [hep-ph]

Jets in pp collisions

- At 2.76 TeV: Cross sections for R=0.2 and R=0.4 measured and compared to NLO calculations
- Important reference for heavy-ion collisions
- Good agreement with NLO calculations including hadronization

Radial jet structure in pp collisions

PLB 722 (2013) 262

Full jets @ 2.76 TeV

- Ratio was measured for full jets with R=0.2/R=0.4
- Best theory-data agreement for NLO calculations taking hadronization effects into account

R_{pA} of electrons from beauty decays

further check of binary scaling (Ncoll) in p-Pb:

also electrons from beauty decays show R_{DA} consistent with unity as do:

- charged hadrons for $p_T > 10$ GeV/c,
- charged jets up to 100 GeV/c,
- D mesons

R_{pA} of muons from HF decays

further check of binary scaling (Ncoll) in p-Pb:

also muons from charm, beauty decays show R_{pA} consistent with unity as do:

- charged hadrons for $p_{\rm T}$ > 10 GeV/c,
- charged jets up to 100 GeV/c,
- D mesons