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Quantum Chromo Dynamics (QCD)

with action for quarks and gluons:

S =

∫
d4x





1
4trFµνF

µν +

Nf∑

f=1

q̄f [iγD +mf ]qf





is a promising candidate theory of the strong interactions

Perturbative Asymptotic Freedom (*)

→many HE (hard) processes can be computed by renormalized
perturbation theory and are in good agreement with experiment

(*) Nobel Prize 2004, Gross, Politzer, Wilczek
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• Does pure Yang-Mills theory have a mass gap?

• Are quarks and gluons confined?

US$ 1 Million Prize by Cray Mathematics Institute!

Can we show that QCD correctly describes hadronic physics?

IF YES, THIS WOULD BE A GREAT ACHIEVEMENT!

Spectrum: neglecting weak & electromagnetic interactions

some hadrons are stable e.g. proton, neutron, pions,...

vast amount of data on scattering and resonances
(see the Particle Data Book)

2



e.g. does QCD reproduce Pion–Proton Scattering data?
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For LE properties of QCD need non-perturbative regularization!
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LATTICE REGULARIZATION OF PATH INTEGRAL

(Wilson, Smit, 1974)

quark fields q(x): Grassmann variables

at points x on a hypercubic lattice Λ

gauge fields associated with links •−−→−−• (a: lattice spacing)

x x+ aµ̂

Uµ(x) ∼ P exp

∫ 1

0

dt Aµ(x+ taµ̂) ∈ SU(3)

µ̂: unit vector in µ direction
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Measure:
∫

[dUdq̄dq] ≡
∫ ∏

x∈Λ dUµ(x)dq̄(x)dq(x)

compact → a non-perturbative definition of Euclidian path integral

Expectation values:

〈O〉 = Z−1

∫
[dUdq̄dq] e−S[U,q̄,q]O[U, q̄, q]

well defined for a finite lattice Λ

Lattice Action S[U, q̄, q] chosen invariant under

gauge transformations: Uµ(x)→ g(x)Uµ(x)g(x+ aµ̂)−1

Gauge fixing not required for gauge invariant observables
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ACTION: S(Fields(x), g0, ...) , Finite lattice: N3 ×N0 points

INPUT

g0 , N . . .

SOFTWARE

−→

Feynman path

integral

〈O〉 =

∫

field space

O e−S

by Numerical

Simulation

COMPUTER

CPU time ↓
Raw data

for

observables

OUTPUT

am = result
+ statistical
+ systematic

PROCESSING

←−

CONTROL ERRORS!
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Restricting first to pure gauge theory, evaluation of

〈O〉 ∝
∫

[dU ] exp(−S[U ])O[U ]

reduces to evaluation of an enormous integral!

e.g. for SU(3) gauge theory, 104 lattice,

dimension of integral = 8× 4× 104 = 320000

Even if approx 2 pts/dimension, the sum has 2320000 = 1096329 terms.

integral done by importance sampling (Monte Carlo)

methods introduced in statistical mechanics
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expectation value: 〈O〉 =
∫

[dU ]p[U ]O[U ] ,

p[U ] = exp(−S[U ])/
∫

[dV ] exp(−S[V ]) > 0 ,
∫

[dU ]p[U ] = 1

Representative ensembles: {U1, U2, ..., UN}
chosen with probability p[U ][dU ]

estimate: 〈O〉 = 1
N

∑N
i=1O[Ui] + O(N−1/2)
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Usually representative ensembles are Markov chains where Uk
obtained from Uk−1 by a stochastic process

The chain depends on U1 and a transition probability T (U → U ′)

sufficient conditions for a valid algorithm::

1 T (U → U ′) ≥ 0 ∀U,U ′ , ∑U ′ T (U → U ′) = 1

2.
∑
U p[U ]T (U → U ′) = p[U ′]

3. T (U → U) > 0 ∀U
4. For a given region of configuration space S one can find

U ∈ S, U ′ /∈ S with T (U → U ′) > 0
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link algorithms: e.g Metropolis
1. chose a link at random

2. chose X ∈ sU(3) randomly in a ball with uniform distribution

3. generate a random number r uniformly in the region [0, 1],

accept U ′ = eXU if p[eXU ] > rp[U ]

otherwise set U ′ = U

clearly need excellent random number generators

e.g. program RANLUX (Lüscher; James (1994))

other link algorithms: e,g. heat-bath...
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Computation of masses

e.g. Nucleon correlation function: ( N ∼ εijkqiqjCγ5τ
2qk)

〈N(t = na,p = 0)N(0)〉 ∝
∫

[dUdq̄dq]e−S[A,q̄,q]N(t,0)N(0)

∼n large exp{−n/ξN(g0, . . .)}
assuming the theory has an (effective) transfer matrix
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Computation of masses

e.g. Nucleon correlation function: ( N ∼ εijkqiqjCγ5τ
2qk)

〈N(t = na,p = 0)N(0)〉 ∝
∫

[dUdq̄dq]e−S[A,q̄,q]N(t,0)N(0)

∼n large exp{−n/ξN(g0, . . .)}
assuming the theory has an (effective) transfer matrix

g0: bare coupling; ξN(g0, . . .): nucleon correlation length

value of lattice spacing a is not an input!

setting scale e.g. declare a/ξN(g0, . . .) = physical proton mass

MN = 946MeV→ a(g0, . . .) in physical units

Note: value in fm also depends on quantity chosen to set scale
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Important to understand PHASE DIAGRAM of a given

regularization, i.e. existence of critical points, or lines,...

Continuum limit: g0→ gcrit s.t. ξ →∞
i.e. a→ 0 if consider MN fixed
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Important to understand PHASE DIAGRAM of a given

regularization, i.e. existence of critical points, or lines,...

Continuum limit: g0→ gcrit s.t. ξ →∞
i.e. a→ 0 if consider MN fixed

“Conventional Wisdom” (CW)

• gcrit = 0

• Continuum limit of lattice QCD is asymptotically free

CW is plausible but not yet rigorously proven
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Important but unproven conjecture of UNIVERSALITY:

a large class of actions depending on the same set of fields
(and symmetries) have identical continuum limits

→ huge freedom in choosing lattice action
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Important but unproven conjecture of UNIVERSALITY:

a large class of actions depending on the same set of fields
(and symmetries) have identical continuum limits

→ huge freedom in choosing lattice action

many different lattice actions maintaining physical locality

in use by various collaborations

• have their respective advantages & disadvantages

• agreement in the continuum limit gives confidence in results
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e.g. for pure gauge theory action can chose: S =
∑3
i=0 ci(g0)Si

Si =
∑
S(i) tr

[∏
l∈S(i) Ul

]
. Wilson action: ci = 0 for i 6= 0.

S S

S S
classical continuum limit: Si = ai + bia

4
∑
x,µν tr

[
Fµν(x)2

]
+ . . .

Universality class may be larger than expected: e.g. contain

actions which do not have the naive classical continuum limit

see e.g. Bietenholz, Gerber, Pepe, Wiese, arXiv:1009.2146
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FERMION ACTIONS

Action is bilinear in the quark fields → “integrate” out exactly:

〈O[U, q̄, q]〉 ∝
∫

[dU ] exp(−S[U ])O[U,D[U ]]

S[U ] = Sgauge[U ]− ln det(iD[U ] +m)

huge saving in CPU-time if neglect the fermion determinant

→ “Quenched approximation” → uncontrolled systematic errors

“serious” dynamical simulations since ∼ 2000
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Chiral symmetry for massless quarks and its supposed
spontaneous breaking is an important property of QCD

NIELSEN-NINOMIYA THEOREM: Cannot construct local (free)

lattice D with {D, γ5} = 0 without “doubling” the quark “spectrum”
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Chiral symmetry for massless quarks and its supposed
spontaneous breaking is an important property of QCD

NIELSEN-NINOMIYA THEOREM: Cannot construct local (free)

lattice D with {D, γ5} = 0 without “doubling” the quark “spectrum”

Wilson-Dirac operator: D = 1
2{γµ(∇∗µ +∇µ)−a∇∗µ∇µ}

∇µ,∇∗µ : gauge covariant forward & backward difference operators

many good properties,

BUT the “Wilson term” −1
2a∇∗µ∇µ violates chiral symmetry
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Chiral symmetry for massless quarks and its supposed
spontaneous breaking is an important property of QCD

NIELSEN-NINOMIYA THEOREM: Cannot construct local (free)

lattice D with {D, γ5} = 0 without “doubling” the quark “spectrum”

Wilson-Dirac operator: D = 1
2{γµ(∇∗µ +∇µ)−a∇∗µ∇µ}

∇µ,∇∗µ : gauge covariant forward & backward difference operators

many good properties,

BUT the “Wilson term” −1
2a∇∗µ∇µ violates chiral symmetry

Old suggestion by Wilson and Ginsparg (1982),

avoid NN Theorem by demanding only {D, γ5} = aDγ5D

Revived 1997: Hasenfratz, Laliena, Niedermayer; Lüscher; Neuberger
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Fermion actions differ mainly on how chiral symmetry is treated

Action χ–symmetry (dis)advantages

Wilson (O(a) improved) (m0 = 0), broken conceptually simple

Staggered, Kogut, Susskind “too much” relatively cheap

Overlap Neuberger exact expensive

Ginsparg-Wilson, Hasenfratz Lüscher

Domain wall quarks, Kaplan approximate

Perfect action ” ”

Hasenfratz, Niedermayer

Twisted mass QCD weakly broken a compromise

Frezzotti, Sint, P.W
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Claims of lattice phenomenological successes using staggered quarks

but problems when Nf/4 6= integer

“Rooting trick”: Det(iD +m)→ Det(iD +m)1/4 by hand!

tampering with functional integral intuitively dangerous
- can lead to violation of accepted principles: locality,...

but attempts (e.g. by Creutz) to prove this so far unsuccessful

“Rooted staggered fermions, good, bad or ugly?”

“At least ugly” (Sharpe, LAT06)
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Advances particularly since ∼ 2000 due to...

• Exponential growth in computer power.

Access of big collaborations to Peta-flop supercomputers

• Improved simulation algorithms

• Effort to control/reduce lattice artifacts & finite size effects

• Use of better–suited fermion actions

• Inclusion of extrapolations using chiral perturbation theory

& heavy quark effective theory

24



-14-�

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

1940 1950 1960 1970 1980 1990 2000 2010 2020

computer speed

ENIAC

IAS machine
IBM704

LARC
IBM7030(Stretch)

CDC6600

ILLIAC-IV
CRAY-1

Hitachi S810/20Fujitsu VP200
NEC SX-2

QCDPAX

NWT
CP-PACS

ASCI Red

ASCI White
NEC ES

BluGene/L
RoadRunner

Tianhe-1A
Fujitsu K
CRAY XK7 Titan

flo
ps

year 

ENIAC 
(1946)�

CRAY-1 
(1976)�

Exponential increase since ENIAC in 1946 

flop ≡ 2
add +mult[ ](sec)

Growth of computer speed over 7 decades�

Th
eo

re
tic

al
 p

ea
k 

plot from Akira Ukawa

25



-18-	
18 

Lattice QCD machines and  
 the supercomputer development  

APE100（Italy）	

GF11(USA) 

QCDPAX（JPN）	

QCDSP(USA）	

QCDOC(USA) 

PACS-CS(JPN）	

BlueGene/L,P 

CP-PACS（JPN） 

BlueGene/Q 

JPN project machines	

Vector machines	

Vector parallel machines	

Parallel machines	

QCD machines	

plot from Akira Ukawa
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Is there a limit to exponential growth?

reply from Ukawa Akira Aug 29, 2014:

“... said that below 5nm, semiconductors will cease to function ..”

“Current technology is 20nm, & 10 nm technology expected ∼ 2020.

Perhaps 5nm in ∼ 2030,.. that is one possible limit.”

issue of power consumption vs computing power: SIMD or MIMD

“..big issue: how many people (besides minorities like us) in the
world needs such a huge amount of computing power?”

“ making a test chip for checking design & functions now costs ∼ 107$.

“..assuming you burn your chip twice, once for checking and second for

actual fabrication, no project can start with a budget below 2×107$.”
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Wilson quarks not as expensive as previously thought!

# Ops in TFlop Yr req. for an ensemble of 100 gauge fld. configs.

Nf = 2, V = 2L× L3, O(a)-improved Wilson quarks, m = mMS(2GeV)

5.00
[
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m
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a

]7 [ L
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, Ukawa,LAT01
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Acceleration due to progress in algorithms

most frequently used is the HMC algorithm where

new configurations generated by solution of molecular dynamics eqns:

d
dτU(x, µ) = U(x, µ)π(x, µ) , d

dτπ(x, µ) = −F (x, µ)

Force: F = ∂S
∂U = Fglue + Fquark,UV + Fquark,IR

Find Fglue� Fquark,UV � Fquark,IR

multi-time step integration; enlarge δτquark,IR which costs most time!

Hasenbusch ’01, Lüscher ’03, Urbach et al ’05, Clark & Kennedy ’06

various QCD simulation programs publically available
e.g. openQCD-1.4 (June 2014): J. Bulava, L. Del Debbio, L. Giusti,

B. Leder, M. Lüscher, F. Palombi, S. Schaefer
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Configurations stored: International Lattice Data Grid

Also improved ways of solving the Dirac equation

needed for computing correlation functions

Time required for solving depends on the

condition number = ratio of highest and lowest eigenvalues,

reduced by preconditioning, low-mode deflation,...

Simulations of lattice QCD to study static properties of hadrons with

physical pion masses now feasible

They include u, d, s sea quarks and have a < 0.1fm., L > 2.5fm
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Many results on hadron phenomenology

• Low-lying spectrum

• resonances and phase shifts (from finite volume effects Lüscher)

• Running couplings, and running quark masses

• decay constants, B–parameters, ....

• Hadronic contributions to g − 2

• Meson distribution amplitudes

• Elastic and transition form factors

• Moments of (generalized) structure functions, . . . . . .

• QCD at finite temperature, finite density
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Low-lying hadron spectrum
plot from Budapest-Marseille-Wuppertal collaboration (Science 2009)
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Many other groups e.g. PACS-CS obtain similar results;

it is a success of the whole lattice community
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Systematic error sources

• Lattice spacing a effects

• Finite volume effects, box size L

• Unphysical quark masses

input from (& now output to) Chiral Perturbation Theory

• Neglect of certain sea quarks

use of Heavy Quark Effective Theory

• Noisy correlation functions
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Lattice artifacts

consider e.g. mass spectrum: mk = 1/(aξk) , a=lattice spacing

presently ξ attained not so large → need extrapolations

usually near the continuum limit attempt fit of form:

[mk/m1] (g0) = [mk/m1] (gcrit) + ckO((am1)p) , k > 1

what is the value of p?? integer??? log corrections ???
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Most of our knowledge concerning renormalization of quantum
field theories stems from perturbation theory

few rigorous proofs: many results are structural and hence considered

to carry over to non-perturbative formulations

supporting evidence from integrable models in 2d, and axiomatic

work in 3d, and in framework of 1/n expansions

the same situation holds for lattice artifacts
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Symanzik (’80) conjecture: leading artifacts of lattice
correlation functions at widely separated points xk are given by

Z
r/2
ϕ 〈φ(x1) . . . φ(xr)〉latt = 〈ϕ0(x1) . . . ϕ0(xr)〉cont+apT1 + apT2 + ..

T1 = −
∫

ddy 〈Leff
1 (y)ϕ0(x1) . . . ϕ0(xr)〉cont

Symanzik’s effective Lagrangian: Leff
1 =

∑
j cjOj

Oj: local operator dimension d+ p,
with same symmetries as lattice action

coefficients cj are a–dependent - but thought to be weak (log)

T2 appears if φ is a composite field
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If Symanzik’s conjecture is true one expects

a) generic O(a2) artifacts in pure Yang–Mills’ theory,

since no gauge invariant scalar dim 5 operator,

but O(a) effects with pure Wilson fermions

b) possible to construct O(a2)–improved lattice actions for YM,

O(a)-improved Wilson fermions.

Also need improved composite operators....

whether these are useful in simulations is a practical question
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Scaling of lowest glueballs (Peardon & Morningstar)
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Data from Improved action (anisotropic lattice)

Wilson action and New action

indications of UNIVERSALITY
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Leading finite size effects given by infinite volume physics

known from Quantum Mechanics (emphasized by Parisi)

Extended to framework of QFT by Lüscher (1986)
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Leading finite size effects given by infinite volume physics

known from Quantum Mechanics (emphasized by Parisi)

Extended to framework of QFT by Lüscher (1986)

Stable particle masses (m = M(∞)): M(L)−m =

− 3
16πm2L

{
λ2e−

√
3

2 mL + m
π

∫∞
−∞ dy e−

√
m2+y2LF (iy) + . . .

}

λ: 3 point coupling; F (ν) forward scattering amplitude, ν = pq/m
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Leading finite size effects given by infinite volume physics

known from Quantum Mechanics (emphasized by Parisi)

Extended to framework of QFT by Lüscher (1986)

Stable particle masses (m = M(∞)): M(L)−m =

− 3
16πm2L

{
λ2e−

√
3

2 mL + m
π

∫∞
−∞ dy e−

√
m2+y2LF (iy) + . . .

}

λ: 3 point coupling; F (ν) forward scattering amplitude, ν = pq/m

Lowest energy of 2 particles in periodic box size L:

W = 2m− 4πa0
mL3

{
1 + c1

a0
L + c2

(
a0
L

)2}
+ O(L−6)

s-wave scattering length: a0 = limp→0
1

2ip

(
e2iδ0(p) − 1

)

(Huang& Yang 1957) c1 = −2.83.., c2 = 6.37...
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→ extract S-matrix data from spectra measured in the
Euclidean framework; no analytic continuation required

e.g. s-wave phase shift: (Lüscher (1991)) from

2-particle energies: W = 2
√
m2 + k2 , k 6= 2π

L n , n ∈ Z3

k cot δ0(k) = 2√
πL
Z00(1; q2) , k = |k| , q = kL

2π

generalized zeta-function: Z0,0(s, q2) = 1√
4π

∑
n∈Z3

(
n2 − q2

)−s

lattice results for ππ I = 0, 2 phase shifts...

extensions to other channels, moving frames, resonances...
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FIG. 11. P -wave ⇡⇡ elastic scattering phase-shift, �1(Ecm), as determined by describing the finite-volume spectra by resonant
parameterisations as described in the text. The barrier factor variations and the Peláez & Ynduráin fit all lie on top of each
other. Also shown as gray points are the data previously presented in Fig. 10. Energy region plotted is from ⇡⇡ threshold to
KK threshold.

we choose our usual scale setting procedure where
at = atm⌦

mphys
⌦

using the ⌦ baryon mass determined

on these lattices (atm⌦ = 0.2951) and the physical ⌦

baryon mass mphys
⌦ = 1672MeV, then the simple Breit-

Wigner fit corresponds to mR = 863.5(19)(6) MeV and
�R = 10.1(6)(1) MeV. As expected in a calculation with
heavier than physical mass light quarks, the resonance
mass is somewhat larger than the physical ⇢ mass. The
small width is explained by the much-reduced phase-
space for decay of an 864 MeV resonance into two pions
of mass 391 MeV compared with the physical kinemat-
ics. We observe from the rather similar �2/Ndof that
the data do not clearly distinguish between the various
parameterisations which vary only in the tails of the res-
onance. This may be due to the very narrow nature of
the resonance with the small phase space for decay.

B. Role of higher partial-waves

From Eq. 7 and Table III it is apparent that in principle
many partial waves contribute to the determination of
the finite-volume spectrum in each irrep, in particular
when the system is in-flight. The next lowest ` that can
contribute in ⇡⇡ I = 1 scattering is ` = 3 which is leading

in e.g. irreps (~P = [001], B1) and (~P = [001], B2). For
the lattice volumes we consider, the lowest energy level
in these irreps is always above the elastic region, and
as such we cannot apply Eq. 7 without concern about
neglecting other open channels (in this case KK). If we
assume that there is zero coupling into KK and proceed

in a cavalier manner with application of Eq. 7 we obtain
points at energies only slightly above the KK threshold
that have �3 compatible with zero (roughly (�1 ± 1)�).

One way to obtain estimates of �3 in the elastic
regime is to consider a number of approximately de-
generate energy levels coming from di↵erent irreps. By
writing a version of Eq. 7 for each one we can ap-
proximately solve that coupled set of equations for
�1, �3 at the relevant energy. This approach was de-
scribed in some detail for ⇡⇡ I = 2 scattering in
[17]. An example set of levels is ([000], T�

1 , n = 0),
([001], E2, n = 0) and ([011], B2, n = 0) which on the 243

lattice all have an energy atEcm ⇡ 0.153(1). Solving the
coupled system of equations we find �1 = 145.7(22)� and
�3 = �0.048(55)�. The same set of levels on the 203 lat-
tice have atEcm ⇡ 0.155(1) and give �1 = 151.1(30)� and
�3 = +0.002(24)�.

We also tried parameterised fits to all data points, as
in the previous section but including a scattering length
parameterisation for the ` = 3 wave, p7

cm cot �3 = 1/a3, as
well as a resonant parameterisation of �1(Ecm). The fits
were of essentially the same quality (in �2/Ndof) and gave
a3 = �3.4(33)(6)⇥106 ·a7

t with a negligible change in the
` = 1 Breit-Wigner parameters. This parameterisation
gives �3 = �1.3(13)� at the KK threshold.

In summary, the lattice data require no non-zero value
of �3 throughout the elastic region and our analysis in
the previous section based upon �3 = 0 is justified.

These observations (at m⇡ ⇠ 400 MeV) are in ac-
cord with experimental expectations (at the physical pion
mass). In the ⇡⇡ partial wave analysis of Estabrooks
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FIG. 10. P -wave ⇡⇡ elastic scattering phase-shift, �1(Ecm), determined from solution of Eq. 7 applied to the finite-volume
spectra shown in Fig. 9 under the assumption that �`>1 = 0. Energy region plotted is from ⇡⇡ threshold to KK threshold.

atmR = 0.15226(34)(11)
2
4

1 �0.14 �0.09
1 0.32

1

3
5g = 5.06(15)(2)

R/at = 16.6(52)(17)

�2/Ndof = 43.6
29�3 = 1.68,

which shows a slightly improved quality of fit, although
there is clearly some correlation between the coupling g
and the range R. The range expressed in physical units
R = R

at

atm⌦

mphys
⌦

⇡ 0.6 ± 0.2 fm would seem to be reason-

able on the usual hadronic scale. The resulting energy
dependence is shown by the red curve in Fig. 11 where
it is seen to approach 180� more rapidly than the simple
Breit-Wigner.

The particular form of the damping function is a
model-dependent choice and we can explore the sensi-
tivity by trying other parameterisations. For example a
gaussian form (previously considered in a quark model
study [35]),

�gau.
`=1 (Ecm) =

g2

6⇡

p3
cm

E2
cm

e�p2
cm/6�2

e�p2
R/6�2

. (11)

Fitting the same dataset we obtain

atmR = 0.15224(34)(14)
2
4

1 �0.18 0.16
1 �0.47

1

3
5g = 5.08(17)(3)

at� = 0.029(7)(3)

�2/Ndof = 43.5
29�3 = 1.67,

indicating that the particular functional form of the
damping appears to be relatively unimportant. In phys-

ical units, � = at� · mphys
⌦

atm⌦
⇡ 160(40) MeV. The energy

dependence is shown by an orange curve in Fig. 11 that
lies almost exactly on the red curve already described.

Another parameterisation that has been used to fit ex-
perimental phase-shift data is provided by Peláez and
Ynduráin (see Ref. [36] and their subsequent papers),

cot �1(Ecm) =
Ecm

2p3
cm

(m2
R � E2

cm)

⇥
"

2m2
⇡

m2
REcm

+ B0 + B1
Ecm �

p
s0 � E2

cm

Ecm +
p

s0 � E2
cm

#
,

which, while it appears cosmetically to be very di↵er-
ent to a Breit-Wigner, in fact has an energy depen-
dence which is rather similar, with the three parameters
mR, B0, B1 able to conspire to provide damping. The
additional parameter, s0, is not allowed to float, and fol-
lowing the proposers’ suggestion is set to 2m⇡ + m⇢, as
determined on this lattice, at

p
s0 = 0.29. Fitting yields

atmR = 0.15227(34)(12)
2
4

1 �0.06 �0.05
1 0.99

1

3
5B0 = 2.71(77)(21)

B1 = 6.0(33)(9)

�2/Ndof = 43.7
29�3 = 1.68,

a reasonable description of the data. The extremely high
degree of correlation between B0 and B1 suggests that
they may not be the most natural way to parameterise
this amplitude. The energy dependence is plotted in
Fig. 11 using a green curve that lies almost exactly under
the orange and red curves already plotted.

We have presented the data and fits in units of
the inverse temporal lattice spacing thus far to avoid
ambiguities with how one sets the lattice scale. If

I = 1 �� scattering (� resonance) Dudek-Edwards-Thomas, PRD87(2013)034505

�1(Ecm)

2-flavor anisotropic clover fermion

m� � 400 MeV

as � 0.12 fm
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FLAG Working Group

S. Aoki, Y. Aoki, C. Bernard, T. Blum, G. Colangelo, M. Della Morte,

S. Dürr, A.X. El Khadra, H. Fukaya, R. Horsley. A. Jüttner, T.

Kaneko, J. Laiho, L. Lellouch, H. Leutwyler, V. Lubicz, E. Longhi, S.

Necco, T. Onogi, C. Pena, C.T. Sachrajda, S.R. Sharpe, S. Simula,

R. Sommer, R.S. Van de Water, A. Vladikas, U. Wenger, H. Wittig

USEFUL AIM: Answer the question “What is currently the best
lattice value for a particular quantity in a way that is readily
accessible to non-experts”

e.g. running coupling, light quark masses, fk/fπ, BK,.....

Eur. Phys. J C71 (2011) 1695; arXiv:1310:8555

44



e.g. Running coupling - Many non-perturbative definitions:

• from static potential at short distances (UKQCD, Necco&Sommer)

• from lattice observables at µ ∼ a−1 (HPQCD)

• from gluon vertices (Boucaud et al, ETMC)

• from Schrödinger Functional (SF) (finite volume, Alpha Collab.)

• from gradient flow

Advantages and disadvantages reviewed in FLAG report

Only the SF method cleanly separates lattice artifacts
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Nonperturbatively defined running coupling with Nf = 4
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• Measure the coupling over a wide range of energies

• Observe domain where PT behavior sets in!

• use PT at HE to relate to MS scheme

for Nf = 2 obtain Λ
(2)

MS
= 245(16)(16)MeV (using r0 = 0.5fm)
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FLAG rate lattice results according to “quality criteria”

? “when the systematic error has been [...] convincingly shown to

be under control”

◦ “when a reasonable attempt [...] has been made although this

could be improved”

� “when no or a clearly unsatisfactory attempt [...] has been made”
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31.08.2014 15

Compilation and global estimates: FLAG WGCompilation and global estimates: FLAG WG

Schrödinger functional:
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αMS determined from non-perturbative measurement of an observable

at scale µ and computing perturbative series:

O(µ) = c1αMS(µ) + c2αMS(µ)2 + . . .

Define: αeff ≡ O(µ)/c1

Meaning of FLAG symbols:

? Renormalization scale: αeff < 0.2 throughout

? Perturbative behaviour: verified over a factor 2 in αeff; ....

? Continuum extrapolation: at least 3 lattice spacings

with µa < 0.5 for αeff ≤ 0.3

◦ Renormalization scale: αeff < 0.4; at least one with αeff < 0.25

.........................
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06.08.2014 17

Compilation and global estimates: FLAG WGCompilation and global estimates: FLAG WG

FLAG lattice estimate:

PDG non-lattice estimate

α
(5)

MS
(mZ) = 0.01183± 0.0012
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Muon anomalous magnetic moment aµ = 1
2(g − 2)µ

possible sign of new physics?

estimate ×1011

experiment E821 − SM 261(78) Hagiwara et al

287(80) Davier et al

present experimental error ±63

present SM error ±49

expected error Fermilab E989 ±16

expected improved SM error ±35

electroweak contribution 154(1)

HL× L (“Glasgow concensus”) 105(26)

lattice determinations of HVP under way since ∼ 2003
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Hadronic vacuum polarization (HVP) contribution from Euclidean
correlation function (Blum, 2003; Roskies, Leon, Remiddi, 1990)

a
(HV P )
µ = 4α2

∫∞
0

dQ2 I(Q2) , I(Q2) = f(Q2,m2
µ)
[
Π(0)−Π(Q2)

]

∫
d4Q eiQx〈Jµ(x)Jν(0)〉 =

(
Q2δµν −QµQν

)
Π(Q2)

Problem: I(Q2) peaked at Q2 ∼ m2
µ/4

periodic bc 2π/L ' mµ/2→ L = 25fm

then a ∼ 0.06fm→ L/a ∼ 400

→ used twisted pbc I(Q2)

and/or do clever fits of Π(Q2)

Present errors on lattice determinations of HVP at 3− 5% level

cf from e+e− error ∼ 0.6%
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Hadronic light by light scattering contribution

Not possible to obtain from scattering data and dispersion relations

Lattice computation: Blum, Chowdhury, Hayakawa, Izubuchi,

(arXiv.1407.2923)

− QCD+QED

QCD+QED QED

= 3×
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SUMMARY

? much algorithmic progress in the last decade

? serious dynamical quark simulations of QCD
with mπ ∼ 140MeV under way

? the (effort to) control the various systematic errors
is essential for the quality of a lattice experiment

? indication of chiral logs

? lattice + χPT gives reasonable agreement with experiment

? indicates that QCD could well be the theory of the strong
interactions, having a mass gap, confinement and
asymptotic freedom at HE
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Many further lattice studies of non-perturbative phenomena

QCD studies (not mentioned so far) under way:

e.g. QCD at finite temperature, nuclear physics,

QCD at finite density (problem: action is complex)

Standard Model studies: inclusion of electromagnetism

e.g. electromagnetic mass differences: BMW collab. arXiv1406.4088

triviality of φ4
4,QED4 - rigorous proof still lacking

Beyond Standard Model studies

Supersymmetry, walking technicolor, ......
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MESON DISTRIBUTION AMPLITUDES

〈0|q̄(z)γργ5P exp
[
i
∫ z
−zA(x) · dx

]
s(−z)|K(p)〉z2=0

= fKipρ
∫ 1

−1 dξ eiξp·zφK(ξ, µ)

Moments: 〈ξn〉K(µ) =
∫ 1

−1 dξ ξnφK(ξ, µ)

expressed as matrix elements of local operators

〈ξ〉K(µ)fKpρpν = 〈0|q̄(0)γργ5

↔
Dνs(0)|K(p)〉
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0.027(02) QCDSF ’06

QCDSF results for 2nd moment:

〈ξ2〉MS
K (2GeV) = 0.26(2), 〈ξ2〉MS

π (2GeV) = 0.27(4)
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omitted for clarity, as are data at masses beyond the range
of the graph.) The discrepancy in the vicinity of m2

! !
0:35 GeV2 is of the order of magnitude of the finite volume
effects in Fig. 1.

Conclusions.—In summary, we have calculated gA in
full QCD in the chiral regime. The hybrid combination of
improved staggered sea quarks and domain wall valence
quarks enabled us to extend calculations to the lightest
mass, 354 MeV, and largest box size, 3.5 fm, yet attained,
and to obtain statistical accuracy of 5% with negligible
error from volume dependence. Chiral perturbation theory
implies mild dependence on the pion mass, and a three
parameter constrained fit yields an excellent fit to the data
and generates an error band of size 7% at the physical pion
mass which overlaps experiment. Thus, this calculation
represents a significant milestone in the quest to calculate
hadron structure from first principles.

The fact that gA is so accurately measured and amenable
to lattice calculations offers significant opportunities for
further refining and testing the precision of lattice calcu-
lations. Extending the range of pion masses to include 300
and 250 MeV and decreasing error bars to 3% offers the
prospect of reducing the present statistical error by a factor
of 2, and the feasibility of this with existing MILC con-
figurations is being explored. Additional opportunities in-
clude calculation on MILC lattices with lattice spacings
a " 0:09 and 0.06 fm to determine finite lattice spacing
dependence, and using partially quenched hybrid "PT [27]
to account for differences in valence and sea quarks in
extrapolating to the continuum limit.

We are grateful for helpful discussions with Will
Detmold, Martin Savage, Tony Thomas, Wolfram Weise,
and Ross Young, and to Tony Thomas and Ross Young for
pointing out an error in conventions used in defining chiral

constants in an earlier version of this manuscript. This
work was supported by the DOE Office of Nuclear
Physics under Contracts No. DE-FC02-94ER40818,
No. DE-FG02-92ER40676, and No. DE-AC05-
84ER40150, the EU I3HP under Contract No. RII3-CT-
2004-506078 and by the DFG under Contract No. FOR
465. Computations were performed on clusters at Jefferson
Laboratory and at ORNL using time awarded under the
SciDAC initiative. We are indebted to members of the
MILC and SESAM Collaborations for providing the dy-
namical quark configurations which made our full QCD
calculations possible.
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FIG. 2 (color online). Comparison of all full QCD calculations
of gA, as described in the text. The solid line and error band
denote the infinite volume "PT fit of Fig. 1, and its continuation
to higher masses is indicated by the dotted line. Two of our data
points and one SESAM point have been displaced in mass by the
symbol width for clarity.

PRL 96, 052001 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
10 FEBRUARY 2006

052001-4

NUCLEON
AXIAL COUPLING

• consistent results among groups

• finite volume effects

• weak dependence on mπ

• LAT06: gA(mπ = 140MeV) = 1.23(8); cf exp. 1.2695(29)

• dynamical 2+1 at smaller mπ under way (RBC/UKQCD/QCDSF)
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ISOVECTOR F1 FORM FACTOR
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mπ = 775 MeV
mπ = 696 MeV
mπ = 605 MeV
mπ = 498 MeV
mπ = 359 MeV

(LHPC data ’06)

mπ still large, but approach experiment as mπ decreases

Difficulty: momenta quantized in units 2π/L for periodic bc
e.g. L = 24a with a = 0.1fm gives 2π/L ∼ 0.52GeV

(Bedaque, Sachrajda et al): using twisted pbc pi = (2πn+ θi)/L
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Ratio of electric and magnetic isovector form factors

Alexandrou et al ’06 data

Present disagreement with JLab experimental data
Lattice artifacts??
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MOMENTS OF STRUCTURE FUNCTIONS

0 1 2 3 4 50.1

0.2

〈x〉u−d

QCDSF: quenched

overlap

LHPC: 2+1 dynam.

mπ/fπ.

large χPT logs: 〈x〉u−d = C
[
1− r2(A ln r2 +B) + . . .

]

r = mπ/(4πfπ); A = 6g2
A + 2 ∼ 11
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Ratios of Moments: Lattice/DIS
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Chiral logs not yet seen in dynamical simulations

But if fit to χPT get good agreement with experiment
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See sea quark effects

cf Lepage et al use rooted staggered fermions
a) At given g0: measure e.g. a charmonium level splitting a∆

b) set ∆ to experimental value → a(g0)

c) use gMS(a−1) = g0 + c1g
3
0 + . . . as input for PT RG evolution
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Lattice artifacts

“conventinal wisdom”: The continuum limit is approached as

∼ (aM)p lnq(Ma) with p = 1 or 2

theoretical framework: Symanzik’s effective action
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4. Finite-volume method to weak matrix elements
Weak transition matrix elements from finite volume correlation functions

Laurent Lellouch (Annecy, LAPTH) , Martin Luscher (CERN) 
 Commun.Math.Phys. 219 (2001) 31-44

32 L. Lellouch, M. Lüscher

lattice sizes, and a simple formula then relates the square of the corresponding transition
amplitude in finite volume to the physical decay rate in infinite volume.
The problem is thus reduced to calculating the required finite-volume transition am-

plitudes. Since the initial and final states are isolated energy eigenstates, these matrix
elements can in principle be computed using established techniques, such as those com-
monly employed to determine form factors. An additional difficulty is that the relevant
two-pion states are not the lowest ones in the specified sector. Two-particle states in
finite volume have, however, previously been studied [4]–[14] and practical methods
have been devised to calculate the higher levels.
To keep the presentation as transparent as possible, we shall consider a simplified

generic theory with two kinds of spinless particles, referred to as the kaon and the pion.
Details are given in the next section, and we then first discuss the form of the two-pion
energy spectrum in finite volume. This is essentially a summary of the relevant results of
refs. [15]–[17]. In Sect. 4 we define the transition amplitudes in finite volume and state
the formula that relates them to the corresponding decay rates in infinite volume. The
following sections contain the proof of this relation and a discussion of its application
to the physical kaon decays.

2. Preliminaries
As announced above, we consider a generic situation where there are two particles, the
“kaon” and the “pion”, with spin zero and masses such that

2mπ < mK < 4mπ . (2.1)
We assume that the symmetries of the theory are such that the kaon is stable in the absence
of the weak interactions and that the pions scatter purely elastically below the four-pion
threshold. The weak interactions, described by a local effective lagrangian Lw(x), then
allow the kaon to decay into two pions. The corresponding transition amplitude is

T (K → ππ) = 〈π p1, π p2 out|Lw(0)|K p〉, (2.2)
withp1,p2 andp the four-momenta of the pions and the kaon.We shall only be interested
in the physical case where the total momentum p = p1 + p2 is conserved. Lorentz
invariance and the kinematical constraints then imply that the transition amplitude is
independent of the momentum configuration.
The meson states in Eq. (2.2) are normalized according to the standard relativistic

conventions (AppendixA) and their phases are constrained by the LSZ formalism. In the
case of the pions, for example, one assumes that there exists an interpolating hermitian
field ϕ(x) such that

〈0|ϕ(x)|π p〉 =
√

Zπ e−ipx (2.3)
for some positive constant Zπ . If the phase of the kaon states is chosen in the same way,
the CPT symmetry implies

T (K → ππ) = Aeiδ0 (2.4)
with A real and δ0 the S-wave scattering phase shift of the outgoing pion state. The
decay rate is then given by the usual expression

$ = kπ

16πm2
K

|A|2 , kπ ≡ 1
2

√

m2
K − 4m2

π , (2.5)

proportional to the pion momentum kπ in the centre-of-mass frame.

K � �� decay amplitude
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decay rate in infinite volume
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and the kaon will thus have an appreciable probability to decay into the two-pion state
if one waits long enough (the formula breaks down at very large times, because the
higher-order terms are then no longer negligible).
The central result obtained in the present paper is that thefinite-volumematrix element

M is related to the decay rate of the kaon in infinite volume through

|A|2 = 8π
{

q
∂φ

∂q
+ k

∂δ0
∂k

}

k=kπ

(

mK

kπ

)3
|M|2 (4.5)

[cf. Eqs. (2.5), (3.5)]. The relation holds under the same premises as Eq. (3.5) and the
comments made in Sect. 3 thus apply here too. Another restriction is that the two-pion
final state has to be non-degenerate in the specified sector of the unperturbed theory.
This condition is satisfied for n < 8 [17], but degeneracies can occur at higher level
numbers and the formula then ceases to be valid.
In principle Eq. (4.5) allows one to compute the kaon decay rate in infinite volume by

studying the theory in finite volume.Note that in the course of such a calculation it should
also be possible to determine the two-pion energy spectrum and thus the scattering phase
δ0 in the elastic region.
The proportionality factor in Eq. (4.5) essentially accounts for the different normal-

izations of the particle states in finite and infinite volume. One can easily check this in
the free theory, where the pion self-interactions are neglected. In this case and for n ≤ 6,
the nth two-pion energy level passes through mK at

L = 2π
kπ

√
n. (4.6)

Equation (4.5) then assumes the form

|A|2 = 4
νn

(mKL)3 |M|2 , (4.7)

νn ≡ number of integer vectors z with z2 = n, (4.8)

which is precisely what is derived from the relative normalizations of the plane waves
in finite and infinite volume that describe the (non-interacting) kaon and pion states
(Sect. 6).

5. Proof of Equation (4.5)

The interpretation of the proportionality factor in Eq. (4.5) given above also applies in the
interacting case. This follows from the fact that the transition matrix elements probe the
S-wave component of the two-pionwave function near the origin and that this component
is the same in finite and infinite volume apart from its phase and normalization. The latter
can be worked out explicitly in the framework of refs. [15]–[17], but the calculation is
rather involved and will not be presented here.
Instead we shall go through a different argument, where one studies the influence of

the weak interaction on the energy spectrum in finite volume. This can be done directly,
using ordinary perturbation theory, or one may start from Eq. (3.5) and take the weak-
interaction effects on the scattering phase into account. The combination of the results
of these calculations then yields Eq. (4.5).

infinite volume

finite volume
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Fig. 1.Two-pion energy spectrum in QCD below the inelastic threshold, in the sector with isospin 0, calculated
from Eqs. (3.1)–(3.5) with the scattering phase shift given by next-to-leading order chiral perturbation theory.
The levels shown in this plot are all non-degenerate

4. Kaon Decays in Finite and Infinite Volume

Let us imagine that a state |K〉 describing a kaon in finite volume with zero momentum
has been prepared at time x0 = 0. In the absence of the weak interactions, this is an
energy eigenstate (and thus a stationary state) with energy mK . However, through the
interaction hamiltonian

Hw =
∫

x0=0
d3x Lw(x), (4.1)

the time evolution of the state becomes non-trivial and it starts to mix with the other
eigenstates of the unperturbed hamiltonian. It is straightforward to work this out using
ordinary time-dependent perturbation theory. For the transition probability at time x0 = t
to any finite-volume two-pion state |ππ〉 with energyW , the result

P(K → ππ) = 4 |〈ππ |Hw|K〉|2 sin
2( 1
2ωt

)

ω2
, ω ≡ W − mK, (4.2)

is then obtained (in this equation the states are assumed to be normalized to unity and
higher-order weak-interaction effects have been neglected).
From Eq. (4.2) one infers that the transition probabilities tend to be very small unless

the energy of one of the two-pion final states happens to be close to the kaon mass.
Recalling Fig. 1, it is clear that this will be the case only for certain box sizes L. In the
following we focus on these special values of L and introduce the associated transition
matrix element

M = 〈ππ |Hw|K〉, (4.3)

where both states are normalized to unity as before, while their phase will not matter
and can be chosen arbitrarily. SinceW = mK in this case, Eq. (4.2) becomes

P(K → ππ) = |M|2 t2 (4.4)

finite volume matrix element
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3. Two-Pion States in Finite Volume

In a spatial box of size L×L×Lwith periodic boundary conditions, the eigenvalues of
the total momentum operator are integer multiples of 2π/L. The energy spectrum is also
discrete in this situation, with level spacings that can be appreciable. In the following
we consider the subspace of states with zero total momentum and trivial transformation
behaviour under cubic rotations and reflections.
The energy spectrum of the two-pion states in this sector below the inelastic threshold

W = 4mπ has been studied in detail in refs. [15]–[18]. In particular, for the lowest energy
value the expansion

W = 2mπ − 4πa0
mπL3

{

1+ c1
a0
L

+ c2
a20
L2

}

+ O(L−6), (3.1)

c1 = −2.837297, c2 = 6.375183, (3.2)

has been obtained, where

a0 = lim
k→0

δ0(k)

k
(3.3)

is the S-wave scattering length (here and below the scattering phase is considered to
be a function of the pion momentum k in the centre-of-mass frame). The higher energy
values in the elastic region are determined through

W = 2
√

m2
π + k2, (3.4)

nπ − δ0(k) = φ(q), q ≡ kL

2π
, (3.5)

where n = 1, 2, . . . labels the energy levels in increasing order and the angle φ(q)
is a known kinematical function (Appendix B). Apart from the lowest level, the energy
spectrum at any given value ofL is thus obtained by inserting the solutions k of Eq. (3.5)
in Eq. (3.4)1.
All these results are valid up to terms that vanish exponentially at large L. Box sizes

a few times larger than the diameter of the pion should be safe from these corrections.
Equation (3.5)moreover assumes that the scattering phases δl for angularmomenta l ≥ 4
are small in the elastic region, which is usually the case since δl is proportional to k2l+1
at low energies.
For illustration, let us consider QCD with three flavours of quarks, unbroken isospin

symmetry and quarkmasses such that themasses of the charged pions and kaons coincide
with their physical values. In the subspace with isospin 0, the two-pion energy spectrum
is then given by Eqs. (3.1)–(3.5), with δ0 the appropriate pion scattering phase. If we
insert the phase shift that is obtained at one-loop order of chiral perturbation theory
[20]–[22], this yields the curves shown in Fig. 1. For any other reasonable choice of
the scattering phase the plot would look essentially the same, because the interaction
effects are proportional to 1/L3 and thus tend to be small. Note that the spacing between
successive levels is quite large. One is clearly very far away from having a continuous
spectrum when L ≤ 10 fm.
1 Similar formulae have been derived for the spectrum in the subspaces of states with non-zero total

momentum [19]. The extension of our results to these sectors could give further insight into the connection
between finite and infinite volume matrix elements and may prove useful in practice.

�� scattering phase shift in finite vplume
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K

Fig. 2. Kaon resonance contribution to the elastic pion scattering amplitude in the s-channel. The diagram
appears at second order of the expansion in powers of the weak interaction, with the bubbles representing the
first-order Kππ vertex function

As already mentioned in Sect. 2, the kaon is assumed to carry a quantum number
(alias strangeness) that forbids its decay into pions in the unperturbed theory. Since only
the strangeness-changing part of the weak interaction lagrangian contributes to the kaon
transition amplitudes, all other terms may be dropped without loss. The matrix elements
of the weak hamiltonianHw between states with the same strangeness are then all equal
to zero. As a consequence most energy values in finite volume are affected by the weak
interaction only to second order.
First order energy shifts do occur, however, if there are degenerate states at lowest

order that mix under the action of Hw. This is the case at the values of L where one
of the two-pion energy values coincides with the kaon mass, i.e. at the special points
considered in the preceding section. Degenerate perturbation theory then yields

W = mK ± |M| + . . . (5.1)

for the first order change of these energy values (here and below the ellipses denote
higher-order terms that do not contribute to the final results).
The energy shifts (5.1) can also be calculated by including the weak corrections to

the scattering phase on the left-hand side of Eq. (3.5). From the above one infers that
the solutions of Eq. (3.5) we are interested in are given by

k = kπ ± "k + . . . , "k ≡ mK

4kπ
|M| . (5.2)

Compared to the kaon resonance width (which is of second order in the weak interac-
tion), these values of k are far away from the kaon pole. The weak corrections to the
pion scattering amplitude in the relevant range of energies are hence small and can be
safely computed by working out the perturbation expansion in powers of the interaction
lagrangian.
One might think that these corrections are all of second or higher order, because the

interaction is strangeness-changing. The reason this is not so is that the kaon propagator
in a diagram like the one shown in Fig. 2 evaluates to

iZK

p2 − m2
K

= ± iZK

2mK |M| + . . . (5.3)

at the energies (5.1) and thus reduces the effective order of the term by 1. This diagram
is in fact the only one that yields a first-order contribution to the scattering amplitude. It
can be calculated by noting that the momenta flowing into the three-point vertices are all
on shell up to higher-order corrections. The vertices are hence proportional to the kaon
decay amplitude A. Together with Eq. (5.3) this leads to the result

δ̄0(k) = δ0(k) ∓ kπ |A|2
32πm2

K |M| + . . . (modπ) (5.4)
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We describe the computation of the amplitude A2 for a kaon to decay into two pions with isospin

I ¼ 2. The results presented in [T. Blum et al., Phys. Rev. Lett. 108, 141601 (2012)] from an analysis of

63 gluon configurations are updated to 146 configurations giving ReA2 ¼ 1:381ð46Þstatð258Þsyst10$8 GeV
and ImA2 ¼ $6:54ð46Þstatð120Þsyst10$13 GeV. ReA2 is in good agreement with the experimental result,

whereas the value of ImA2 was hitherto unknown. We are also working toward a direct computation

of the K ! ð!!ÞI¼0 amplitude A0 but, within the Standard Model, our result for ImA2 can be combined

with the experimental results for ReA0, ReA2 and "0=" to give ImA0=ReA0 ¼ $1:61ð28Þ % 10$4. Our

result for ImA2 implies that the electroweak penguin (EWP) contribution to "0=" is Reð"0="ÞEWP ¼
$ð6:25& 0:44stat & 1:19systÞ % 10$4.

DOI: 10.1103/PhysRevD.86.074513 PACS numbers: 11.15.Ha, 11.30.Rd, 12.15.Ff, 12.38.Gc

I. INTRODUCTION

It was in K ! !! decays that both indirect [1] and
direct [2–5] CP violation was first discovered and a quan-
titative understanding of the origin of CP violation, both
within and beyond the Standard Model, remains one of the
principal goals of particle physics research. Lattice QCD
provides the opportunity of computing the nonperturbative
QCD effects in general and in hadronic CP-violating
processes, in particular. The evaluation of these effects in
K ! !! decays is an important element in the research
programme of the RBC-UKQCD Collaboration and in this
paper we report on the evaluation of the (complex) decay
amplitude A2, corresponding to the decay in which the two-
pion final state has isospin 2. This is the first realistic
ab initio calculation of a weak hadronic decay. Our final
result can be found in Eq. (25), which we reproduce here
for the reader’s convenience:

ReA2 ¼ 1:381ð46Þstatð258Þsyst10$8 GeV;

ImA2 ¼ $6:54ð46Þstatð120Þsyst10$13 GeV:
(1)

This is an update of the result presented recently in
Ref. [6] with greater statistics (146 configurations com-
pared to 63 in [6]). More importantly, in this paper we
present the details of the calculation and the analysis which
could not be presented in the original letter [6]. For ReA2

we find good agreement with the known experimental

value [1:479ð4Þ % 10$8 GeV obtained from Kþ decays],
whereas the value of ImA2 was previously unknown.
This is the first quantitative calculation of an amplitude

for a realistic hadronic weak decay and hence extends the
framework of lattice simulations into the important domain
of nonleptonic weak decays. To reach this point has re-
quired very significant theoretical developments and tech-
nical progress. These are discussed in the following
sections and include:
(1) the control of !! rescattering effects and finite-

volume corrections when two hadrons are present
in the final state;

(2) the use of carefully devised boundary conditions to
tune the volume so that the decay can be simulated
at physical kinematics;

(3) the development of techniques for nonperturbative
renormalization which has made it possible to cal-
culate the matrix elements of the four-quark opera-
tors in the effective Hamiltonian with good
precision and without the use of lattice perturbation
theory;

(4) the improvement of algorithms and teraflops-scale
computing which has made it possible to perform
simulations at physical quark masses.

It has therefore required a major endeavor to control all the
ingredients of the calculation to arrive at the final result.
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ReA2 = 1.479(4)� 10�8GeV
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K+ decays

a�1 = 1.364 GeV, m� = 142 MeV, mK = 506 MeV

W2� = 486 MeV

Ci
K!!ðtÞ

CKðtK # tÞC!!ðtÞ
¼ Mi

ZKZ!!;e
(17)

and fitting to a constant in time t. The quantity Ci
K!! is the

K ! !! correlator with the operatorQi inserted at t and the
kaon and two-pion interpolating operators placed at fixed
times tK and 0, respectively. ZK and Z!!;e are determined
from the kaon and two-pion correlation functions using
Eqs. (12) and (14). For illustration, the left-hand side of
Eq. (17) is plotted in Fig. 5 for each of the three operators
for the choice tK ¼ 24. The figure demonstrates that suffi-
ciently far from the kaon and two-pion sources the data is
indeed consistent with the expected constant behavior. We
determine the matrix elements by fitting the data between
t ¼ 5 and t ¼ tK # 5, where t denotes the time distance
from the two-pion source. The results for Mi=ðZKZ!!;eÞ

obtained from the fits are indicated on the plot together with
their errors.
The finite-volume matrix elements computed in the

lattice simulations Mi are related to the corresponding
infinite-volume ones Ai by the Lellouch-Lüscher factor
[27,28]:

Ai ¼
2
4

ffiffiffiffiffiffiffiffi
2ntw

p

2!q!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@"

@q!
þ @#

@q!

s 3
5 2ffiffiffiffiffiffiffiffi

2ntw
p L3=2 ffiffiffiffiffiffiffi

mK
p

E!!Mi;

(18)

where the quantity in square brackets (denoted by LL in
Table III) contains the effects of the Lellouch-Lüscher
factor beyond the free-field normalization. # is the
s-wave phase shift, q! is a dimensionless quantity related
to the pion momentum k! by q! ¼ k!L=2! and " is a
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operator are contracted (i) with fields from the same cur-
rent in ð!sdÞLð!sdÞL and (ii) with one field from each of the
two currents. Color counting and the vacuum insertion
hypothesis suggest that the two contributions come in the
ratio 1:1=3, whereas we find that in QCD they have the
opposite sign. This had been noticed earlier; see e.g., [16]
and references therein.

We postpone a discussion of the implications of these
results to the "I ¼ 1=2 rule until the next section, but we
believe that the partial cancelation observed in the evalu-
ation of A2 is a significant component.

Evaluation of ReA0.—The evaluation of A0 at physical
kinematics has not yet been completed. The results pre-
sented here are obtained at threshold, with the two pions in
their zero-momentum ground state with each pion at rest
up to finite-volume effects. Even at threshold, we have had
to overcome many theoretical and technical problems,
including the evaluation of the 48 contractions contributing
to the correlation functions, the renormalization of the
operators in the effective Hamiltonian, the subtraction of
power divergences, and the evaluation of the finite-volume
corrections. The threshold calculations do not require,
however, the isolation of an excited state. The pions in a
physical decay each have a nonzero momentum in the
center-of-mass frame, which corresponds to an excited
state in lattice calculations. Given the poor statistical
signals after the subtraction of power divergences and the
evaluation of disconnected diagrams, the evaluation of
A0 at physical kinematics is currently impracticable with
standard techniques and is the main motivation for our
development of G-parity boundary conditions [6–9].

With the two pions at threshold, we find [3,10]

ReA0

ReA2
¼

!9:1ð2:1Þ for mK ¼ 878 MeV; m! ¼ 422 MeV

12:0ð1:7Þ for mK ¼ 662 MeV; m! ¼ 329 MeV:

(5)

While these results differ significantly from the observed
value of 22.5, because the calculations are not performed at
physical kinematics, there is nevertheless already a signifi-
cant enhancement in the ratio and it is interesting to under-
stand its origin. In Table II, we present the contributions to
ReA0 from each of the lattice operators in the 243 simula-
tion with a$1 ¼ 1:73ð3Þ GeV and from each MS-NDR
operator at a renormalization scale 2.15 GeV. In both cases,
the dominant contribution comes from the current-current
operators Q2.

Since, in a finite volume, Eð!!Þ2 ! Eð!!Þ0 , one cannot
satisfy the condition mK ¼ E!! for both isospin channels
simultaneously with the same quark masses. Here, we
quote results using the fixed meson masses quoted in
Eq. (5), which is sufficient for our current discussion. For
these masses Eð!!Þ0 ¼ 766ð29Þ MeV [629(15) MeV] and
Eð!!Þ2 ¼ 876ð15Þ MeV [668(11) MeV] for the 163 (243)

lattice. A study that interpolates in the kaon mass to make
both decays energy conserving may be found in Ref. [3].
The dominant contribution from the lattice operator Q2

to the "I ¼ 1=2 correlation function is proportional to the
contractions 2s1 $s2 and corresponds to type 1 diagrams
in the language of Ref. [3] (see Fig. 3 in Ref. [3]). In Fig. 4,
we show the total contribution of Q2 to the correlation
function, as well as the total connected contribution and
that of type 1 diagrams given by iffiffi

3
p f2s1 $s2 g. The errors

on the total contribution are dominated by the disconnected
diagrams. The observation that s1 and s2 have opposite
signs leads to an enhancement between the two terms
rather than the suppression in the factorization approxi-
mation s2 ¼ 1

3s1. Similarly, in the case of Q1, the type 1
combination iffiffi

3
p f2s2 $s1 g is dominant. In this case, both

the correlation function and the Wilson coefficient

TABLE II. Contributions from each operator to ReA0 for
mK ¼ 662 MeV and m! ¼ 329 MeV. The second column con-
tains the contributions from the seven linearly independent
lattice operators with 1=a ¼ 1:73ð3Þ GeV and the third column
those in the ten-operator basis in the MS-NDR scheme at
" ¼ 2:15 GeV. The numbers in parentheses represent the sta-
tistical errors.

i Qlat
i [GeV] QMS-NDR

i [GeV]

1 8:1ð4:6Þ % 10$8 6:6ð3:1Þ % 10$8

2 2:5ð0:6Þ % 10$7 2:6ð0:5Þ % 10$7

3 $0:6ð1:0Þ % 10$8 5:4ð6:7Þ % 10$10

4 & & & 2:3ð2:1Þ % 10$9

5 $1:2ð0:5Þ % 10$9 4:0ð2:6Þ % 10$10

6 4:7ð1:7Þ % 10$9 $7:0ð2:4Þ % 10$9

7 1:5ð0:1Þ % 10$10 6:3ð0:5Þ % 10$11

8 $4:7ð0:2Þ % 10$10 $3:9ð0:1Þ % 10$10

9 & & & 2:0ð0:6Þ % 10$14

10 & & & 1:6ð0:5Þ % 10$11

ReA0 3:2ð0:5Þ % 10$7 3:2ð0:5Þ % 10$7

FIG. 4 (color online). Contributions of Qlat
2 to ReA0 (purple

crosses). The blue squares and black circles denote the con-
nected and type 1 contractions, respectively.
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week ending
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a�1 = 1.73 GeV

Re A0

Re A2
= 22.45(6)
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