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Plan of the talks:

Part I: Duality covariant Geometry of DFT

e Efficient reformulation of supergravity (‘generalized geometry’)

e Gauge structure of DFT:
generalized diffeomorphisms, duality-covariantized Courant bracket

e extension: heterotic, type Il, Romans mass deformation,
generalized Scherk-Schwarz, non-geometric fluxes, etc.

Part II: Higher-derivative o deformations

e exact deformation of gauge structure

e physical interpretation on physical subspace
— Green-Schwarz mechanism and «o/-deformed Courant bracket

e further deformations from bosonic closed SFT

e Conclusions and Outlook



Part |: Duality covariant Geometry of DFT

String theory: consistent quantum gravity in D = 10 (or D = 26)
massless fields: 9ij 5 bij = _bjz' , 0,
Spacetime action for massless string fields:
B 1 ..
S — Jde\/jge 2¢ [R + 4(0¢)2 — EH"JkH,L-jk]

where
Hijk = @ibjk + @jbki + 6kbij

Two gauge symmetries: 1) general coordinate invariance,

~

2) gbij = 0i§j — 0j&i

action not uniquely determined by bosonic symmetries (only SUSY)



infinite number of higher-derivative o’ corrections

= spacetime action for massless string fields:
B 1 ..
S::JdevigeZW{R+4qa¢F-—I§HWkHﬁk
1 ..
+ a/(ZkalRijkl +RHH + H* + . ) +0(a?)]

largely ambiguous, not determined by symmetries

in string theory couplings uniquely determined, compatible with T-duality

01

. M,N=1,....2D
10

T-duality group O(D, D) : NN = (

suggests that fundamental field in string theory

g —g"" by
Eii = gij+by; o Hyn-= . J
(¥] 9dij (] MN (bikgk] 9ij — bikgklblj

— Double Field Theory based on doubled coordinates XM — (%, %),
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Two-derivative Double Field Theory

Reformulation (Extension?) of spacetime action for massless string fields:
B 1 .. 1 .
SNS = JdD:B«/—ge 2¢ [R + 4(5(/5)2 — EHZ]kHijk + ZO&’Rz]klRijkl + - ]

generalized metric and doubled coordinates XM — (%4, %),

1] —q'kp, .
HyN = (bg ks ) e O(D, D)

k™ gij — birg"loy;
DFT Action (dilaton density e =29 = ¢=2¢,/—¢):
SDFT = JdQDX 2R, d) T SNS| o
generalized curvature scalar

R = 4HMNO ond — OgpoNHMY — aHMN oy dond + 40 HMN onvd

1 1
+ é HMNaM%KL ONHEKT — EHMNaMHKL OKHNT,



Gauge transformations and generalized Lie derivatives

In DFT gauge invariance governed by generalized Lie derivatives

E{HMN = fpﬁp’HMN + (5M§P — aPgM) Hpn + (ang — aPgN) Hyrp
2& (€—2d> _ &M (fMe_Qd)
Invariance and closure, [251, 252] = 2[51,52](:,

1 1
| ¢1, fz]lg = &1 ones — &b oneY! — ZenoMed + ZeonaMer
2 2

modulo strong constraint

iy O 1
Moy 0N = 200; = 0 NMN = (1 O)

solved by

N Y
M 0 else

O(D, D) covariant, captures 1I1A/M-theory & 1IB simultaneously



Conventional gauge transformations and Courant bracket

Setting ¢¢ = 0 gauge transformations imply for ¢M = (&, ¢%)
og = Leg , b = d€+£§b

Viewing & + £ as section in T @ T* (‘generalized geometry’)
C-bracket reduces to Courant bracket

[51 +£1,60 + 52] = &1, & | + Lebo— L& — (Zglfz — i, 1)

exact term not fixed by closure but by gauge covariance of C-bracket
or ‘B automorphism’ of Courant bracket



Large Gauge Transformations and Non-Geometric Spaces

Generalized g.c.t. that reproduce this infinitesimally:
S(X)=8(X)  Ay(X) = FaNAn(X)

and analogously on higher tensors, where  [0.H., Zwiebach, 1207.4198]

1 (aXP 0Xlh 0Xh; oxN

Fu == -
M= 5\ox'™M oxy " 0Xp 0X'P

) e O(D, D)

Setting X'M = XM — ¢M(X) we get ¢ = L¢.
o 2V =z"(z), . =27; leadstousualg.c.t,
=7, — &(z), ¥ =1x" leadsto b;; — b;; + 0;&; — 0,
e composition according to BCH of C-bracket,
equivalent to exp(fg) [Berman, Cederwall, Perry (2014)]

e truly non-geometric spaces [O.H., D. Lust & B. Zwiebach (2013)]



Supersymmetric and Heterotic Extensions

(Generalized) vielbein formalism required [Siegel (1993), O.H. & Ki Kwak (2010)]

_ _ Nab O
HMN _ pABp Mp N oo ( a _)

local SO(1,9);, x SO(1,9)r Lorentz symmetry
Gauge fixing to diagonal subgroup

EAM _ (Eai Eafb:) _ i ( ez'a,+bz'j€aj. eafL:)
Eg EF' V2 \—eig + bijeg! ez’

Fermions: singlets under O(10, 10) and £
[Coimbra, Strickland-Constable, Waldram, 1107.1733; O.H., S. Ki Kwak, 1111.7293]

W, vector of SO(1,9),, spinorof SO(1,9)Rr
o spinor of SO(1,9)R,
€ : spinor of SO(1,9)g



N = 1 supersymmetric Lagrangian

L—e2d (R(E, d) — WPV W, + 5y Vap + zwavap)

N = 1 supersymmetry transformations

1_ 1_ a
EEM&EGM = Ee’yg W, Oed = —Zep 0cW, = Vge dep = V'V ze
Proof of supersymmetric invariance: variation of bosonic term
1 —
el L = 55,073 + Efyb\lfaRag

variation of fermionic terms
215 L = —2U PV Ve + 2577V5 (1P Vie) + 2V Vap + 200V, (1P V3e)

= —2Wy? [WBVB, Va]e + 2p (yavmgvg — Vava) €

T 1_ 1_ _ 7

= Wa’beage — EPRG = _EGPR — efyb\U“Rag

Thus: 56(55 + SF) =0
10



Add vector multiplets: SO(1,9 +n) x SO(1,9) < O(10 + n, 10)
(n = 16: heterotic string truncated to Cartan of Eg x Eg or SO(32))

Frame field: A=(a,a)=(a, a,a),a=0,...,9, a=1,...,n

where c;; = b;; + %AiaAja

Additional gauginos x. encoded in

Formally same Lagrangian and supersymmetry variations as above!

— reduces to standard action and SUSY rules setting 0" = 0
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Comparison: standard NV = 1 supergravity action

S — Jdl% ee—2¢[(R + 40 0 — %H”kHwk iF]Fij)
— iy IR Dby — 239" DA — %Xalﬁxa
+ 2904 (0;) 7 ; — Pi(dP)Y' N — %ch VIR E (9 + %%A)
o g (B ™+ 65 — 2y Py + 5o

+ quartic fermions]

where

—~

Aije = 3 (Gbje) — A0 Ana)

12



Comparison: standard N = 1 supersymmetry rules

1_ 1_
dee; " = € ~yap,; — Ze)\eia :
— e 1_ &
dep = —€X 5€Az' = EG’YiX )
o 1 29 o
bex™ = — 7 Fij%e
4
1 L kim k_lmy B
Setp; = sz—é%;(c%)ﬂr%(% — 96, ") Hye
1 1 .. .
boh = — 20+ A e,
1 1 1

Ocbjj = 5(5%% — €vj%;) — §E%j>\ + EEW[iXaAj]a -

13



Type |l Double Field Theory

NS-NS: dilaton d, lift of 7 € O(10,10) to S € Spin(10, 10)
RR: Majorana-Weyl spinor x of O(10, 10)

Action:
_ = (= 2d 1 f
S = Jdmda: (e R+4(@x) S&X)

Dirac operator in terms of raising and lowering operators 1;, 1* of O(10, 10)
. . 1
§=i0+ 980 = §° = EUMNﬁMaN =0
(Self-)duality constraint ( C': charge conjugation matrix )

ix = Kix K=cC1s

Reduces to democratic type IIA (or 11B) supergravity for ¢¢ = 0,
where conventional RR p-forms C(P) encoded as

1 : :
X = ;E Ciy.ip 'L .. 0"|0)

14



Unification of [IA/IIB and relation to generalized geometry

Type |l DFT encodes both IIA and IIB for different solutions of constraint
0"=0, ;#0: &y = (8&) =~ €+ e T(M)@T (M)
SDFTH’E:O = Stype lIA

For different solution T-dual theory:

'£0, =01 &y

112

E+€ e T'(M)©T(M)

SDFTH‘aZO = Shype lIA*

timelike T-duality: type IIA* and 1IB* [Hull, hep-th/9806146]
intermediate frames:  SprT,,| = Stype 1B

More intriguing in EXFT; different bundles for different solutions

Ee(6) 2 SL(6) x SL(2) : T(M)® AT (M) @ - --

Advantage of DFT/EFT: universal (covariant) formulation for all theoqiSes



Massive Type lIA: Romans theory

Massive type IIA obtained for
C(l)(a:, 7) = Ci(z)dz' + miidat
Ansatz consistent because gauge transformations can be re-written

Sex = £dx

so that linear £ dependence drops out.
General field strengths

F = dx = ("0 + $i0")x = Frno + %;0"(m#1)3:(0)
lead to non-trivial O-form field strength

o = m

= ‘(—1)-form’ = 1-form depending on T [Lavrinenko, Lu, Pope, Stelle (1999)]

= Type Il DFT reduces to (democratc formulation of) massive Type IIA
16



Generalized Scherk-Schwarz compactification

Scherk-Schwarz Reduction of DFT in generalized metric form.
[ Aldazabal, Baron, Marques & Nunez; Geissbuhler (2011)]

Hyn(z,Y) = Uy (Y)Hap(@)UPN(Y),  UeO(D,D)
Flux components in lower-dimensional (4D) theory directly given by

Fapo = 3npa@ HY p0 YN gon Uy

[see also: Andriot, O.H., Larfors, LUst, Patalong & Blumenhagen, Deser, Plauschinn, Rennecke]

yields gauged supergravities with ‘non-geometric fluxes’
however, not all gaugings obtained because of strong constraint

= relaxation of strong constraint? [ Geissbuhler, Marques, Nunez & Penas (2013)]

Intriguing first steps, but complete picture still elusive

17



Summary

Most conservatively:

e Strong constraint solved by

N DY
M 0 else

but technically, J;, g, b and ¢ never used!

e (very economic!) reformulation of low-energy action for string theory
= geometry can be thought of as ‘generalized geometry’ [Hitchin, Gualtieri]
(to the extent it had been developed)

Concrete reasons for more:

e Full closed string field theory is a truly doubled field theory

e mild relaxations of strong constraint possible
— massive lIA & gauged supergravity

e potentially: geometry of o/ corrections!

18



String Theory and Double Field Theory II:
o/ Corrections

Olaf Hohm

Corfu, September 2014

19



Motivation:

o/ corrections encode truly stringy effects beyond supergravity

usually written with higher powers of R,,,,,.; and H = db,
e.g. determined by string S-matrix calculations

very mesSsSY. [Metsaev &Tseytlin (1987), Gross & Sloan (1987), Hull & Townsend (1987)]

|s there some principle? T-dualty/U-duality invariance?
[A. Sen (1991), K. Meissner (1996)]

Use double field theory to make T-duality manifest
= novel (duality-covariant) gauge principle

20



T-duality of o’ corrections

Obstacle to writing (Riem)? in O(d,d) covariant form:

pidkl -

Is there O(d, d) scalar Z(H, d) s.t. Z(H, d)|~ = Rk

3=0,b;;=0

No! — problematic tensor structure in (Riem)2  [0. H., B. Zwiebach (2012)]

e 1 . 1 .
S = |[dz./g (R + Za/RijklR”kl) - J dz /g R + Zo/ J dz OFh'P 0'hpy 0;0,h9; + -

[ 1
= | dz /g R — éaljdx (hpg ok ptP Ophi4+ -+

Using R;; ~ [h;; + - -- problematic structure can be redefined away:

1 k
h;/] = hij — Zalﬁkthﬁ hjp + .-
Note: cannot be lifted to covariant redefinition 6g;; ~ R;; + - - -

but compatible with Meissner (1997)! — o’ deformed diffeomorphisrgs!



Doubled o' Geometry

Geometrical structures for generalized vector = = (¢M) in o/ = 0 DFT:

1 o
E1lE2) = @& un . [E1.Z20Y = &ioné] - 555 M o

N

L=vM = ¢PopvM 4 (M¢ep — opeM)VE

All receive non-trivial higher-derivative o corrections:
(Z11Z2) = &' N — (OneY) (OMED)
1
(=1, =2]Y = S[NﬁN«SQ] — 551 ki €2K + = (5K€1) (%55()

L=VvM = ¢PopvM 4 (0Mep — opeM VP — (oMogehyo vE

Closure and gauge invariance exact! (L=(V, W) = ¢V oy (V, W), etc.)
Not removable by O(D, D) covariant redefinitions

Non-vanishing for x = 0 = deformation of Courant bracket, etc.
22



o/ = 0 DFT relations for H € O(D, D)
(HmN = HuxgHEN = nun TrH = MV Hyn = 0
get o/ deformed = dynamical equations!

(M* M) N

1
2(M?) N — EﬁMMPQﬁNMPQ +- = 2nyN

trM = pMN My n — 3000 MMYN 400 = 0

In derivative expansion:
10y . _ 2 _
O@™) 1 Myn = Hun, H =17

1
o) : Myny = Hun+ E{HaVQ)}MN
Then
0 =trM =3R(H,¢) |dilaton eq.] V-2 =g [gravity eq.]

plus infinite tower of higher-derivative o’ corrections! ”



CFT Derivation and Action

doubled world-sheet scalars XM (z), M =1,...,2D,
chirality condition: pPM = x!M = ZzM 7 a%]

postulate the (two) Virasoro generators
1 ~

OPE defines (various) ‘quantum products’. OPE yields Virasoro?

D  28(z2)  S'(22)

S(21)S(22) = 4+ —5—"+ + finite, same for T
Z12 £12 712
2 /
S(z1)T (z2) = T§Z2) + T(z2) + finite
£12 Z12

provided dilaton and gravity equations hold!

Gauge invariant action

5=f6¢(<’f|5 — HT|T+T)) =fe¢Tr(M—%M3+---)

24



Interpretation on physical subspace?

(Perturbative) analysis shows that b-field transforms as

Sc.gb = d€ + Leb + Sir(d(0€) AT)

§+¢

with (Christoffel) connection 1-form (I")¥; = " ¥ dz?

deformed gauge invariant 3-form curvature
H(b,T) = db+5Q(M), Q) =tr(FTAadi+20 AT AT)

= (@Green-Schwarz anomaly cancellation mechanism of heterotic string
but with deformed diffeomorphisms rather than deformed Lorentz

25



Deformation of Courant bracket

Deformed gauge transformations close according to bracket

[51 +£1,60 + 52]/ = [&1.&] + L¢80 — L& — 5d(ig, &2 — ie,€1)
—5(¢(é1,€2) — @lé2,61))

with the map ¢ that produces a ‘one-form’ from 2 vectors
F(V,W) = tr(d(aV)oW) = 0;0,V'eWhda’

not genuine 1-form = anomalous transformation under diffeomorphisms

Bracket covariant under deformed diffeomorphisms

SereV = LeV —iydd — (&, V)

26



o’ Corrections for Bosonic Strings and Closed SFT

o/ corrections for bosonic string (Riemann-sqg.) ?  (Z» invariant b — —b)

Closed bosonic SFT = deformed gauge algebra for cubic theory

(1. ]V = e, 15 + L ARKL Ky (P oMKy p

with Ky v = 20),€ ) @and background generalized metric Hyn

= o/-deformed diffeomorpisms as implied by (perturbative) redefinition
1 k
h;] = hz’j — Za’ékhip& hjp + -

agrees with earlier results on duality-invariant Riemann-sg.
[Meissner (1996), Hohm & Zwiebach (2011)]
More general Z» even/odd deformations (with parameters ~+)

[ €1, 52]2{ = &, 52]?74 + 5 (VAR =) K[lKP&MKQ]LP
27



Cubic Action

&
S
>N
al

N~ N~ N
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Alternative heterotic construction?

O(<a’) corrections to heterotic string theory:

define torsionful spin connection [Bergshoeff & de Roo (1989)]
+ 1
w,tgal))(e? b) = w,uab(e> * EH,uab
then
(wiods Yan) s vap =Dty — Dy tha

transforms as SO(1,9) vector multiplet under SUSY!
— super-Yang-Mills action gives Riemann-squared & LCS modifications

Use heterotic DFT for O(10,10 + n), n = dim(SO(1,9)),
identify gauge fields with w(~) [Bedoya, Marques, Nunez (2014)]

drawback: compatibility with O(d, d) not manifest
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Summary & Outlook

DFT provides strikingly economic reformulation of supergravity

Beyond supergravity (non-zero «'): duality covariance requires
novel field variables with non-standard diffeomorphisms

However, usual diffeomorphism covariance replaced by
duality-covariant gauge principle

so far only partial results:

background-independent extension for bosonic strings?
Field-dependent gauge algebra? Higher order in o/?
Type Il Strings and M-theory extensions?

Extension to ‘Exceptional Field Theory’
with exceptional duality groups Eg 6, E7(7), Eg(g), --- 7
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