ATLAS Overview

Nikos Konstantinidis (University College London) Corfu Summer Institute, 8/9/14

- Operation and performance overview in Run 1
- Highlights of recent results
- The future: upgrades for Run 2, 3, 4...
- Summary & Outlook

Detector overview and performance in Run 1

The ATLAS detector

Detecting particles in ATLAS

Calorimeters

Depth granularity helps determine z-origin of an EM cluster:

Eta segmentation of 1st sampling (strips) powerful for γ/π^0 separation:

ATLAS Run 1 data taking

ATLAS p-p run: April-December 2012

Pixel SCT TRT LAr Tile MDT RPC CSC TGC Solenoid Toroid 99.9 99.4 99.8 99.1 99.6 99.6 99.8 100. 99.6 99.5	Inn	er Trac	ker	Calori	meters	Mu	ion Spe	ctrome	ter	Magr	nets
99.9 99.4 99.8 99.1 99.6 99.8 100. 99.6 99.8 99.5	Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
	99.9	99.4	99.8	99.1	99.6	99.6	99.8	100.	99.6	99.8	99.5

All good for physics: 95.8%

Luminosity weighted relative detector uptime and good quality data delivery during 2012 stable beams in pp collisions at vs=8 TeV between April 4th and December 6th (in %) – corresponding to 21.6 fb⁻¹ of recorded data.

	√s [TeV]	Years	Lumi (rec.)
рр	7	2010-11	5.1 fb ⁻¹
рр	8	2012	21.3 fb ⁻¹
Pb+Pb	2.76	2010-11	160 μb ⁻¹
Pb+p	5	2013	30 nb ⁻¹

~90% of the luminosity delivered by LHC good for physics!

The pile-up challenge!

• Enormous effort to mitigate the impact of pile-up in physics!

Mean Number of Interactions per Crossing

Track reconstruction at high pile-up

····· µ=1: Default

····· μ=21; Default

····· μ=41; Default

— μ=21; Robust

μ=1; Robust

- Higher occupancy in tracking detectors
 - \rightarrow higher combinatorics \rightarrow more fakes
- Tighten track quality requirements to control fakes, and achieve a linear behaviour vs. pile-up
 - \rightarrow at a small price in good track efficiency

Primary Efficiency

0.9

0.8

0.7

0.6

0.5

ATLAS Preliminary

Simulation

Removing pile-up jets: Jet Vertex Fraction

PV0 is the hard-scatter (HS) vertex: the one with highest $\sum_{i} \left(p_T^{\text{track j}} \right)^2$

ATLAS Overview

JVF is pile-up dependent:

Jet Vertex Tagger: A likelihood-based combination of a pile-up-corrected revision of JVF and

$$R_{\rm pT} = \frac{\sum_k p_{\rm T}^{\rm trk_k}({\rm PV}_0)}{p_{\rm T}^{jet}}$$

Efficiency ATLAS Simulation Preliminary Pythia8 dijets 1.2 Anti-k, LCW+JES R=0.4 ----- JVF>0.6 lŋl < 2.4 JVT>0.6 solid markers: 20 < p₋ < 30 GeV open markers: $30 < p_{\tau} < 40 \text{ GeV}$ * * *_ 0.8 0.6 10 20 30 N_{Vtx}

JVT is a lot more robust against pile-up and offers ~2 times better pile-up rejection

ATLAS Overview

ATLAS-CONF-2014-018

Pile-up and missing $E_{\rm T}$

• E_T^{mis} based on momentum conservation in the transverse plane

$$E_{\rm T}^{\rm miss} = \sqrt{(E_x^{\rm miss})^2 + (E_y^{\rm miss})^2}$$

 $E_{x(y)}^{\text{miss}} = -\left(E_{x(y)}^{\text{jets}} + E_{x(y)}^{e} + E_{x(y)}^{\gamma} + E_{x(y)}^{\tau} + E_{x(y)}^{\mu} + E_{x(y)}^{\text{Soft Term}}\right)$

- Soft term is the energy sum of all energy clusters or tracks which are not associated with any of the identified physics objects
 - Most sensitive to pile-up
 - Corrected by multiplicative factor
 Soft Term Vertex Fraction:

$$STVF = \frac{\sum_{i \in PV0} p_T^{track \ i}}{\sum_j p_T^{track \ j}}$$

ATLAS Overview

Highlights of recent results

ATLAS Standard Model measurements

Standaı	d Model Production Cross S	ection M	easurements	Status: July 2014	∫£ dt [fb ^{−1}]	Reference
pp tota/			•		8×10 ⁻⁸	ATLAS-CONF-2014-04(
ets R=0.4	ATLAS Preliminary	$0.1 < \rho_1$	r < 2 TeV	0	4.5	ATLAS-STDM-2013-11
ijets R=0.4		$0.3 < m_{\tilde{d}} < 5~{ m TeV}$	¢	0	4.5	JHEP 05, 059 (2014)
W total	Run 1 $\sqrt{s} = 7.8 \text{ TeV}$		¢	9	0.035	PRD 85, 072004 (2012)
Z		\$		4	0.035	PRD 85, 072004 (2012)
tī				i i i i i i i i i i i i i i i i i i i	4.6	ar00v:1406.5375 [hep-e
tota/				4	20.3	ar)0v:1406.5375 [hep-e
t _{t-chan}				P	4.6	arXiv:1406.7844 [hep-e
tota/					20.3	ATLAS-CONF-2014-00
WW+WZ	<u>୍</u> ରୁ 🏴				4.7	ATLAS-CONF-2012-15
ww	S P			0	4.6	PRD 87, 112001 (2013
tota/				<u> </u>	20.3	ATLAS-CONF-2014-0
γγ liducial	<u> </u>			•	4.9	JHEP 01, 086 (2013)
Wt					2.0	PLB 716, 142-159 (20
tota/					20.3	ATLAS-CONF-2013-1
wz		LHC pp	√s = 7 TeV	D	4.6	EPJC 72, 2173 (2012
tota/				0	13.0	ATLAS-CONF-2013-0
ZZ			Theory		4.6	JHEP 03, 128 (2013)
tota/			Data	0	20.3	ATLAS-CONF-2013-0
liducial	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		stat stat+syst		1.0	ATLAS-CONF-2011-1
VVγ sucial, njet=0	<u>ଁ</u> (P				4.6	PRD 87, 112003 (201
Zγ tucial, njet=0	<u>୍</u> ରୁ ବ	LHC pp	$\sqrt{s} = 8 \text{ TeV}$	0	4.6	PRD 87, 112003 (2013
tEW			Theory		20.3	ATLAS-CONF-2014-0
tīZ	95% CL upper limit		Data		4.7	ATLAS-CONF-2012-1
tota/		▲	stat		20.3	ATLAS-CONF-2014-0
Zjj EWK	<u>۵</u>		stat+syst		20.3	JHEP 04, 031 (2014)
$H \rightarrow \gamma \gamma$					20.3	Preliminary
[±] W [±] jj ewk					20.3	arXiv:1405.6241 [hep-
t _{s-chan}	95% CL upper limit				0.7	ATLAS-CONF-2011-1
u		· · · · ·				
10	0^{-3} 10^{-2} 10^{-1} 1 10^{1} 10^{2} 1	.0 ³ 10 ⁴	10^5 10^6 10^{11}	0.5 1 1.5 2		
-						
			σ [pb]	data/theory		
			~ [P~]	satura thoury		

ATLAS Overview

Vector Boson Fusion & Scattering

- In the SM, the Higgs plays the vital role of unitarising the longitudinal Vector Boson Scattering (VBS) cross section at high effective □s
 - An important test of the role of the Higgs
- Vector Boson Fusion: an important Higgs production mechanism
 - Useful to test theoretical modelling of VBF in non-Higgs channels
- Key feature of VBS/VBF topology: two high-p_T, forward jets
 - large dijet invariant mass
 - large rapidity gap between the two jets (no other jets in between)
- ATLAS has two recent measurements
 - VBF: Z production
 - VBS: same-sign WW production

Vector Boson Fusion & Scattering

ATLAS Overview

Enhance EW W[±]W[±]jj with $|\Delta y_{jj}|$ >2.4 and m_{jj}>500GeV:

 $\sigma^{\text{EW}_{\text{fid}}} = 1.3 \pm 0.4(\text{stat}) \pm 0.2(\text{syst}) \text{ fb}$ $\sigma^{\text{EW}_{\text{SM}}} = 0.95 \pm 0.06 \text{ fb}$

arXiv:1405.6241

Vector Boson Fusion & Scattering

Events 30 ATLAS Data 2012 20.3 fb⁻¹, √s = 8 TeV 🖾 Syst. Uncertainty 25 W[±]W[±]jj Electroweak m_{ii} > 500 GeV W[±]W[±]jj Strong Only the first step towards measuring 20 WLWL at high effective DS 15 10 2 3 5 8 9 0 1 4 6 l∆y_{ii}l

Enhance EW W[±]W[±]jj with $|\Delta y_{jj}|$ >2.4 and m_{jj}>500GeV:

 $\sigma^{\text{EW}_{\text{fid}}} = 1.3 \pm 0.4(\text{stat}) \pm 0.2(\text{syst}) \text{ fb}$ $\sigma^{\text{EW}_{\text{SM}}} = 0.95 \pm 0.06 \text{ fb}$

arXiv:1405.6241

"Boosted" Z->bb production

 $Z \rightarrow bb$ candidate selection:

- -2 b-tagged anti-k_t R=0.4 jets, $|\eta|$ <2.5, p_T>40GeV
- $\Delta R(jet1, jet2)$ <1.2, dijet pT>200GeV

Data-driven estimate of the bkg (nearly all gluon \rightarrow bb)

"Boosted" Z→bb production

Nikos Konstantinidis

ATLAS Overview

- 19

arXiv:1404.7042

PDFs: W+c measurement

- Improving our understanding of the proton's structure vital for the LHC physics programme
- s-content probed by W+c production (d-quark contribution ~10%)

- ATLAS measurements using W plus
 - (a) jets with a reconstructed soft muon
 - (b) jets with a reconstructed D*

PDFs: W+c results

- Data consistent with all PDF sets, but favour no suppression of sbar over s density
- Also, data support no variation of s+sbar density relative to d-sea, in the range of the measurement.

Top-pair production cross section

- Measured differentially in semi-leptonic tt events (~80% pure) at 7TeV (4.6fb⁻¹)
- Data unfolded to parton-level kinematics
- Cross section vs hadronic top p_T , m_{tt} , p_{tt}^T , y_{tt}
- Data appears to have softer spectrum than all MC programs
 - And mostly true for different PDF sets
 - Important in searches for high-mass ttbar resonances
 - Relevant for all analyses where tt is a big background
- Measurement is systematics limited, dominated by the unfolding dependence on MC generators

arXiv:1407.0371

Nikos Konstantinidis

ATLAS Overview

- From summer 2013 to summer 2014
 - Much improved calibration of photons, electrons and muons
 - Significant reduction of systematic uncertainties in Higgs mass measurement
- Many improvements to the di-photon and 4-lepton analyses
- In $H \rightarrow 4$ leptons
 - Moved from cut-based to MVA-based electron-ID
 - x2 better fake electron rejection for same eff
 - Combine track and cluster for electron energy for $E_T < 30 GeV$
 - MVA-based discriminant against ZZ* bkg
 - Better modelling of muon pT in the simulation

Improvements for Higgs mass measurement

Nikos Konstantinidis

ATLAS Overview

ATLAS Run 1 Higgs mass

 $\mathsf{H}\to\gamma\gamma$

 $m_H = 125.98 \pm 0.42 (\text{stat}) \pm 0.28 (\text{sys}) \text{ GeV}$

 $= 125.98 \pm 0.50 \text{ GeV}$

 $\mu=1.29\pm0.30$

 $H \rightarrow 4$ leptons

 $m_H = 124.51 \pm 0.52 (\text{stat}) \pm 0.06 (\text{sys}) \text{ GeV}$ = 124.51 ± 0.52 GeV $\mu = 1.66^{+0.45}_{-0.38}$

The two measurements are compatible at the 2σ level (p-value: 4.6%).

ATLAS Run 1 combined result:

 $m_H = 125.36 \pm 0.37 (\text{stat}) \pm 0.18 (\text{sys}) \text{ GeV}$ = 125.36 ± 0.41 GeV

Higgs width at the LHC

- For $m_H = \sim 125 \text{GeV}$, the SM predicts $\Gamma_H = \sim 4.2 \text{MeV}$
 - This is ~3 orders of magnitude smaller than the experimental resolution for the diphoton and 4leptons peaks (O(GeV)) → impossible to measure
- Theorists to the rescue:
- Proposed by F. Caola, K. Melnikov (Phys. Rev. D88 (2013) 054024), N. Kauer and G. Passarino, JHEP 08 (2012) 116, J. Campbell et al. (arXiv:1311.3589)

- Determine $\Gamma_{\rm H}$ indirectly, by measuring on-shell/off-shell $\sigma({\rm H}\rightarrow ZZ)!$

Nikos Konstantinidis

ATLAS Overview

Higgs width in ATLAS from off-shell ZZ AUCL

- 4ℓ channel uses Matrix Element based discriminant
- $2\nu 2\ell$ channel uses transverse mass discriminant
- Results produced as function of the ratio of k-factors:

$$R_{H^*}^B = \frac{K(gg \to ZZ)}{K(gg \to H^* \to ZZ)} = \frac{K^B(m_{ZZ})}{K_{gg}^{H^*}(m_{ZZ})}$$

Nikos Konstantinidis

Higgs width in ATLAS from off-shell ZZ AUCL

- 4*l* channel uses Matrix Element based discriminant
- 2v2l channel uses transverse mass discriminant
- Results produced as function of the ratio of k-factors:

$$\mathsf{R}^B_{H^*} = \frac{\mathsf{K}(gg \to ZZ)}{\mathsf{K}(gg \to H^* \to ZZ)} = \frac{\mathsf{K}^\mathsf{B}(m_{ZZ})}{\mathsf{K}^{H^*}_{gg}(m_{ZZ})}$$

-4 -3.5 -3 -2.5 95% C.L. upper limits for various alternative hypotheses

Higgs differential cross sections

2

≥3 Niets

syst. unc.

 $gg \rightarrow H$ (MINLO HJ+PS) + X

 $gg \rightarrow H$ (POWHEG+PS) + XH

 $XH = VBF + VH + t\bar{t}H$

2

n_{iets} 29

≥ 3

$X \rightarrow HH \rightarrow bbbb results$

Resonance mass range: 500-1500GeV

Search for two back-to-back, boosted dijets, each with mass~125GeV

Jet requirements:

4 b-tagged anti- k_t (R=0.4) jets with p_T >40GeV

Type

tī

Multijet

Z+jets

Data

Total Bkgd

 $G^* (m_{G^*} = 500 \text{ GeV})$

 $G^* (m_{G^*} = 700 \text{ GeV})$

Dijet requirements: p_T>200GeV, ∆R(b,b)<1.5

$X \rightarrow HH \rightarrow bbbb results$

Resonance mass range: 500-1500GeV

Search for two back-to-back, boosted dijets, each with mass~125GeV

Jet requirements:

4 b-tagged anti- k_t (R=0.4) jets with p_T >40GeV

Type

tī

Multijet

Z+jets

Data

Dijet requirements: p_T>200GeV, ∆R(b,b)<1.5

Ø

X→HH→bbγγ

- Resonance mass range investigated: 260-500GeV
 - Look for excess in $m_{\gamma\gamma bb}$ spectrum
 - Data-driven bkg shape by relaxing b-tagging
- Looked also for non-resonant enhancement

 Look for excess in 120<m_{γγ}<130GeV window
 σ(non-res)<2.2(/1.0)pb obs.(/exp.) @95%CL

The future: **ATLAS upgrades for Run 2, 3, 4...**

LHC Roadmap

	20	13 – 20	15 201	8 – 20	19 2	2023 – 202	5
	Run 1	LS1	Run 2	LS2	Run 3	LS3	HL LHC
~	□s = 7-8Te 0.5x10 ³⁴ cn pile-up ~2 ~25fb ⁻¹	eV n ² s ⁻¹ 20	□s = 13-14TeV ~1x10 ³⁴ cm ² s ⁻¹ pile-up ~40 ~100fb ⁻¹		□s = 14TeV ~2x10 ³⁴ cm ² s ⁻¹ pile-up ~60 ~300fb ⁻¹		\Box s = 14TeV ~5-7x10 ³⁴ cm ² s ⁻¹ pile-up ~140-200 ~3000fb ⁻¹

- Increasing instantaneous luminosity make detector upgrades or replacements necessary
 - Improve trigger capabilities
 - Cope with higher occupancies (readout bandwidth)
 - Deal with radiation damage

ATLAS upgrades Roadmap

- Increasing instantaneous luminosity make detector upgrades or replacements necessary
 - Improve trigger capabilities
 - Cope with higher occupancies (readout bandwidth)
 - Deal with radiation damage

Run 2 prospects

- Jump from 8TeV to 13TeV gives a huge boost in discovery potential at the multi-TeV energy range
 - Cross section increase by ~5 for $M_X=1$ TeV, ~10 for $M_X=2$ TeV
- Run 1 sensitivity for new physics will be surpassed in some cases after a few fb⁻¹!

Also, big improvements in the Higgs sector (e.g. H→bb, ttH, couplings, width)
 Nikos Konstantinidis
 ATLAS Overview
 36

- New pixel barrel layer at radius ~3.5cm, already successfully installed
- Uses new front-end chip (FE-I4), 2 cm x 2 cm (130 nm CMOS process), which would be the basis for HL-LHC chip design
- b-tagging: x 2 better light-jet rejection

Number of pileup interactionsNikos KonstantinidisA

ATLAS Overview

Upgrades for Runs 2-3

- L1Topo: topological info at L1
 - E.g. invariant masses or angular separation between L1 objects
 - Ready to be installed for the start of Run 2

- FTK: a custom-hardware track reconstruction system
 - Full tracking with near-offline resolution, for all L1-accepted events, for use at the start of HLT

 To be installed and commissioned during Run-2 (2015-16)

ATLAS Overview

\bigotimes

Upgrades for Run 3

- EM calorimeter readout
 - finer granularity for L1Calo
 - shower shapes & E resolution
 - keep Run 1 trigger thresholds for e, γ , τ , missing E_T ...

- New Muon Small Wheels
 - Micromegas and sTGCs
 - Improved tracking resolution

- Much reduced L1 muon rates
- Add Tile-Cal info for L1 muon trigger in $1.0 < |\eta| < 1.3$

- From 300fb⁻¹ to 3000fb⁻¹ you get:
 - A much more extended & thorough exploration of the (multi-)TeV region
 - Much higher energy than any other collider could achieve in these timescales!

- High-precision Higgs physics
 - Higgs couplings down to a few %; Higgs self-coupling
 - Observation of Higgs coupling to 2^{nd} generation fermions (H \rightarrow µµ)
 - More rare decays (e.g. $H \rightarrow Z\gamma$) and details on the Higgs properties (e.g. $ttH(\mu\mu)$)
 - The chance to study thoroughly discoveries made in Run 2 or 3

HL-LHC challenges

- Maintain (if possible, improve) today's performance at 5-10 times higher pile-up and instantaneous luminosity
- Survive 10 years of extreme irradiation!

Many systems need upgrading, but most importantly the Tracker and Trigger

Nikos Konstantinidis

ATLAS Upgrades for HL-LHC: Tracker

- New, all-Si tracker
 - Radiation tolerant up to >3000fb⁻¹
 - Finer granularity (occupancy <1%) $_{\widehat{E}}$
 - Less material
 - Higher bandwidth
 - ~30% better curvature resolution and z_0 resolution for high p_T tracks than current tracker

	Silicon Area	Channels [10 ⁶]
Pixel	8.2m ²	638
Strip	193m ²	74

ATLAS Upgrades for HL-LHC: Tracker

- New, all-Si tracker
 - Radiation tolerant up to >3000fb⁻¹
 - Finer resolution (occupancy <1%) $_{\widehat{E}}$
 - Less material
 - Higher bandwidth
 - ~30% better curvature resolution and z_0 resolution for high p_T tracks than current tracker

	Silicon Area	Channels [10 ⁶]
Pixel	8.2m ²	638
Strip	193m ²	74

ATLAS Upgrades for HL-LHC: Tracker

- New, all-Si tracker
 - Radiation tolerant up to >3000fb⁻¹
 - Finer resolution (occupancy <1%) $_{\widehat{\mathbb{E}}}$
 - Less material
 - Higher bandwidth
 - ~30% better curvature resolution and z_0 resolution for high p_T tracks than current tracker

	Silicon Area	Channels [10 ⁶]
Pixel	8.2m ²	638
Strip	193m ²	74

ATLAS Overview

(\mathfrak{A})

ATLAS Tracker Upgrade R&D

Huge amounts of work! **Good progress!** No show-stoppers!

Nikos Konstantinidis

ATLAS Overview

ATLAS Upgrades for HL-LHC: L1 Trigger LCL

- To get the best physics out of HL-LHC we must maintain our current ability to trigger on electroweak scale objects
 - More true than ever since the discovery of the Higgs at ~125GeV!
- L1 rates shoot up at high lumi and pile-up
 - Bear-impossible to keep L1 trigger thresholds at similar levels to those in Run 1 with L1Calo and L1Muon info only
 - Especially for single-lepton triggers
- Big idea for HL-LHC: use tracking at L1

ATLAS L1 strategy for HL-LHC: "L0/L1" ▲UCL

- Practically impossible to readout entire tracker at 40MHz!
- ATLAS strategy: a two-step hardware trigger
 - L0: the Run-3 L1Calo and L1Muon becomes L0 Trigger at HL-LHC
 - They bring the rate down from 40MHz to ~1MHz and identify Regions of Interest (RoIs) to seed Regional tracker readout and pattern recognition (L1Track)
 - L1: combines L1Track info with more refined Calo/Muon info
 - L1-Accept rate for full detector readout at 200-400kHz

- Run 1 was an amazing success for the LHC and for ATLAS!
- Run 1 was triumph for the Standard Model!
- Run 1 gave us one of the biggest discoveries in fundamental science for decades!

- Run 1 was an amazing success for the LHC and for ATLAS!
- Run 1 was triumph for the Standard Model!
- Run 1 gave us one of the biggest discoveries in fundamental science for decades!
- But...
- Run 1 only "scraped the surface" in the exploration of the TeV energy scale and left the biggest question unanswered:

- Run 1 was an amazing success for the LHC and for ATLAS!
- Run 1 was triumph for the Standard Model!
- Run 1 gave us one of the biggest discoveries in fundamental science for decades!
- But...
- Run 1 only "scraped the surface" in the exploration of the TeV energy scale and left the biggest question unanswered:

What lies beyond the Standard Model? Lets hope that the LHC 14TeV running will shed light to this question!

Tracking system

Barrel track passes:

- **3 Pixel layers** (50μm x 300μm)
- > 4x2 strip layers (80μm x 6cm)
- > 36 TRT straws (4mm x 1m)

Typical tracking resolutions

- ➢ d0 ~ 10µm
- > z0 ~ 65µm
- ▶ p_T x s(1/p_T) ~ 0.02