

The LHCb Upgrade

Neville Harnew University of Oxford

September 7th 2014

Corfu Summer Institute

14th Hellenic School and Workshops on Elementary Particle Physics and Gravity Corfu, Greece 2014

Outline

Why upgrade LHCb?

- The physics case
- The LHCb detector upgrade
 - Trigger & DAQ
 - The detector components

Summary

Corfu Summer Institute

Reminder of LHCb

- Forward-peaked production → LHCb is a forward spectrometer (operating in LHC collider mode)
- bb cross-section = $284 \pm 53 \mu b$ at $\sqrt{s} = 7 \text{ TeV}$ and around a factor 2 greater at 14 TeV [PLB 694 209]
- \rightarrow ~ 10¹² bb pairs produced per LHC year

Why upgrade ?

Any New Physics model with new heavy particles or flavour breaking interactions must "hide" behind the SM interactions

- We know by now NP contributions are small.
- We have clean Standard Model predictions
- We have precise measurements (high statistics, incl. control channels)

Corfu Summer Institute

7 September 2014

Standard Model withstands challenges

• Theoretical precision not reached \rightarrow higher statistics required!

Corfu Summer Institute 7 September 2014

What can be tested ?

Predictions with small SM theory uncertainty

- "Null tests", no signals expected in SM
- Precision tests of the unitarity of the CKM matrix
 - Only one CP violating phase, look for in consistency of angles
 - Measure sides via ratios of CKM matrix elements (needs theory I/P)
- Precision measurements of BRs and aungular distributions of forbidden, or nearly forbidden decays
- Lepton universality
- Type of decays (beauty and charm)
 - Fully leptonic decays
 - Ratios in semi-leptonic decays
 - CP violation in hadronic decays

Corfu Summer Institute

7 September 2014

Example of a null test: $B^0_s \rightarrow \phi \phi$

- Measure CP violation in $B^0_s \rightarrow \phi \phi$
- The B⁰_s→φφ decay is a unique place to look for NP in loop decays
- In SM the CP violation in the decay and the loop cancel
- This is a null-test of the SM that has high predictive power with small uncertainties

arXiv:1407.2222

• Current status of LHCb's $B_s^0 \rightarrow \phi \phi$ measurement

$B^0_s \rightarrow \phi \phi$ with the upgraded detector

- LHCb upgrade will bring precision on this down to 0.02
- To the same level as the current theoretical uncertainty

7 September 2014

Unitarity of CKM matrix

- The SM requires that many different fits to the unitary triangle all result in the same apex
- If not, there will be additional amplitudes coming from NP
- Largest uncertainties are coming from left side $(|V_{ub}|/|V_{cb}|)$ and the angle γ

Unitarity of CKM matrix

- Current measurements are dominated by loop processes.
- These are still large uncertainties from measurements coming solely from tree processes

Determination of CP angle γ

- Best determined through interference between tree amplitudes
- D or D produced followed by decay to a common final state: K⁺ π⁻, K⁺ π⁻ π⁰, K⁺ K⁻, ... etc
- Theoretical uncertainty on the method is extrmely small (JHEP 01 (2014) 05)

Determination of CP angle γ

- Need large signal yield in the different final states (and to differentiate them cleanly)
- LHCb currently measure (67±12)° with mainly 2011 (1 fb⁻¹) data
- Statistical reach for LHCb upgrade will be 1° (for Belle-II it is ~2°)
- To keep systematic uncertainty below this requires to understand tracking for positive/negative particles exceptionally well

The need to resolve |V_{ub}|

- The measurement of |V_{ub}| has an internal inconsistency between
 - Exclusive measurement: $B^0 \rightarrow \pi^- \mu^+ \nu$
 - Inclusive measurement : $B^0/B^+ \rightarrow X_u \mu^+ \nu$

$$V_{ub}(excl) = (3.42 \pm 0.22) \ 10^{-3}$$

 $V_{ub}(incl) = (4.40 \pm 0.31) \ 10^{-3}$
 $V_{ub} = (3.75 \pm 0.46) \ 10^{-3}$

~1.9 σ discrepancy

D. Derkach UTFIT@ICHEP2014

|V_{ub}| continued ...

- Is internal inconsistency a sign of NP ... maybe not, but need more measurements and theoretical improvements.
- More independent measurements required
 - $\Lambda_b \rightarrow p \ \mu^- \nu$ In progress with LHCb (which rely on new $\Lambda_b \rightarrow p$ form factors from the lattice)

$$\blacksquare B_c^{+} \rightarrow D^0 \mu^+ \nu$$

- Possible at LHCb or LHCb upgrade.
- Also inclusive measurements from Belle-II
- $|V_{ub}|$ at a few percent level will be possible

In 2025 with the LHCb upgrade ...

• Left side $(|V_{ub}|/|V_{cb}|)$ and the angle γ will be precision measurements in the future

Nearly forbidden decays

The $B^0_{s} \rightarrow \mu^+ \mu^-$ and $B^0 \rightarrow \mu^+ \mu^-$ decays

- The two very rare decays $B^0_s \rightarrow \mu^+ \mu^-$ and $B^0 \rightarrow \mu^+ \mu^-$ have attracted much interest
- Predictions of SM branching fractions with good precision
 - $BF(B_{s}^{0} \rightarrow \mu^{+}\mu^{-}) SM = 3.56 \pm 0.18 \times 10^{-9}$
 - BF(B⁰ $\rightarrow \mu^{+}\mu^{-}$) SM = 0.10 ± 0.01 × 10⁻⁹
- Sensitive to the scalar sector of flavour couplings

Observing B⁰→µ⁺µ⁻

- LHCb and CMS combined result $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.9 \pm 0.7) \times 10^{-9}$ (> 5 sigma) $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (3.6 + 1.6 + 1.6) \times 10^{-10}$ PRL 112 (2014) 101801 Eollowing $\mathbb{R}^0 \to 11^+ 11^-$ observation
- Following $B^0_s \rightarrow \mu^+ \mu^-$ observation, challenge now is to observe for $B^0 \rightarrow \mu^+ \mu^-$
- In the SM suppressed by $|V_{ts}|^2/|V_{td}|^2 \sim 25$
- New physics may manifest itself as a higher $B^0 \rightarrow \mu^+ \mu^-$ rate
- LHCb upgrade expects to measure the ratio to a 35% accuracy
- CMS upgrade at full 3 ab⁻¹ expected to improve this to 21%

Corfu Summer Institute

PRL | | | (2013) | 01805

B_s weak mixing phase ϕ_s in **B**_s \rightarrow **J**/ $\psi \phi$

• Measurements by ATLAS, CMS and LHCb: LHCb (50 fb⁻¹): $\delta \phi_s \approx \pm 0.009$ (SM -0.036 ±0.003) (current meas. ± 0.07)

.epton universality test in $B^+ \rightarrow K^+ \iota^+ \iota^-$

Due to lepton universality, the $B^+ \rightarrow K^+ \mu^+ \mu^-$ and $B^+ \rightarrow K^+ e^+ e^-$ decays should have same BF to within a factor 10⁻³

The ratio $\begin{array}{c} BF(B^+ \rightarrow K^+ \mu^+ \mu^-) \\ \hline BF(B^+ \rightarrow K^+ e^+ e^-) \end{array}$

is sensitive to lepton flavour violating NP

The electron mode is a challenge for LHCb

Candidates / (40 MeV/c²)

20

Lepton universality test in $B^+ \rightarrow K^+ l^+ l^-$

Current status of measurements as a function of dilepton mass: $R_{K} = 0.745^{+0.090}_{-0.074} (\text{stat}) \pm 0.036 (\text{syst})$

- Expected precision from both LHCb upgrade (and also Belle-II) at the few % level
- Will resolve the issue with the 2.6 σ tension currently seen

Corfu Summer Institute 7 September 2014

Upgrade sensitivities 50 fb⁻¹

Eur. Phys. J C (2013) 73:2373

Type	Observable	Current	LHCb	Ungrade	Theory
турс	Observable	provision	2018	(50fb^{-1})	uncortainty
D0 · ·		precision	2010		uncertainty
B_s^0 mixing	$2\beta_s \ (B_s^0 \to J/\psi \ \phi)$	0.10 24	0.025	0.008	~ 0.003
	$2\beta_s \ (B^0_s \to J/\psi \ f_0(980))$	0.17 [26]	0.045	0.014	~ 0.01
	$A_{ m fs}(B^0_s)$	6.4×10^{-3} [41]	0.6×10^{-3}	0.2×10^{-3}	0.03×10^{-3}
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$	-	0.17	0.03	0.02
penguin	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$	—	0.13	0.02	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_S)$	0.17 [41]	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\gamma)$	—	0.09	0.02	< 0.01
currents	$ au^{ eff}(B^0_s o \phi \gamma) / au_{B^0_s}$	-	5%	1%	0.2%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.08 [42]	0.025	0.008	0.02
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	25% 42	6%	2%	7%
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6{\rm GeV^2/c^4})$	0.25 9	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25% [43]	8%	2.5%	$\sim 10\%$
Higgs	$\mathcal{B}(B^0_s o \mu^+ \mu^-)$	1.5×10^{-9} [4]	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}
$\operatorname{penguin}$	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	_	$\sim 100 \%$	$\sim 35\%$	$\sim 5\%$
Unitarity	$\gamma \ (B \to D^{(*)} K^{(*)})$	$\sim 10 12^{\circ}$ [28, 29]	4°	0.9°	negligible
$\operatorname{triangle}$	$\gamma \ (B_s^0 \to D_s K)$	_	11°	2.0°	negligible
angles	$\beta \ (B^0 \to J/\psi \ K_S^0)$	0.8° [41]	0.6°	0.2°	negligible
Charm	A_{Γ}	2.3×10^{-3} [41]	0.40×10^{-3}	0.07×10^{-3}	—
$C\!P$ violation	ΔA_{CP}	2.1×10^{-3} 8	0.65×10^{-3}	0.12×10^{-3}	_

Corfu Summer Institute

7 September 2014

Complementarity with Belle-II

LHCb

The LHCb detector upgrade

- Detector overview
- □ The issue with the trigger
- **The major hardware changes**
 - The VELO
 - The tracking detectors

The RICH

Corfu Summer Institute

LHCb subsystems overview

Corfu Summer Institute

7 September 2014

Why upgrade: current LHCb limitations

- No evidence for New Physics in LHC Run I
 - Need more (x10 or more) data, aiming at experimental sensitivities comparable to theoretical uncertainties
- Need to increase levelled luminosity from 0.4×10³³ up to 2×10³³cm⁻²s⁻¹ (pile-up ~8)
- However the current I MHz level-0 trigger output is a severe limitation!
- If we increase the luminosity
 - Need harder cuts on P_t due to the I MHz bandwidth limit
 - The trigger yield of hadronic events saturates
 - there's no real gain in statistics
 Need a radical change in the trigger

strategy to get to 5pb⁻¹ per year

The trigger

- Remove the level-0 hardware trigger
 - Readout an event every bunch crossing (40 MHz)
 - New front-end electronics (on-chip zero suppression)
 - New DAQ system
- Use an efficient fully software trigger accessing complete event information, running at the bunch crossing rate
- The high instantaneous luminosity of 2x10³³ cm⁻²s⁻¹ implies higher occupancies in all subsystems → redesign several detectors to adapt them to new conditions
- Install by LS2 (Long-shutdown 2) in 2018-2019

Corfu Summer Institute

7 September 2014

Upgraded VELO (vertex detector)

- Challenges
 - Very high particle rates
 - Highly non-uniform radiation damage (up to 8x10¹⁵ n_{eq}cm⁻² for 50 fb⁻¹)
- Technical choices
 - Silicon strips replaced by pixels. 256 x 256 pixel matrices, with 55 x 55 µm² pixels
 - Micro-channel CO₂ cooling
 - New FE electronics : Velopix

CO₂ passes through channels etched in a silicon plate **N.Harnew**

28

Corfu Summer Institute

7 September 2014

New VELO Performance

Predicted performance at 2×10^{33} /cm⁻²s⁻¹ is superior in almost every aspect with respect to the current VELO operating at high luminosity

Corfu Summer Institute

7 September 2014

Fiber Tracker (FT) technology

- Current tracker straw tubes will be replaced
- Upgrade will have scintillating fibre planes (5-6 fibres thick)
- 250 µm diameter scintillating fibres
- I2 detection layers in 3 stations
- Readout via 2x64 channel silicon photomultiplier (SiPM) arrays
- Electronics: dedicated 128 channels 40
 MHz PACIFIC ASIC

Corfu Summer Institute

7 September 2014

IN.FIARNEW

Upgraded Tracker Performance

FT : Improved tracking efficiency
UT : Improved background rejection

Corfu Summer Institute

7 September 2014

RICH Upgrade

- New readout: 64 channel multi-anode PMTs
- 40 MHz CLARO front-end ASIC
- In addition, for RICHI:
 - Remove aerogel
 - improve optics to spread out Cherenkov rings on the focal plane

Corfu Summer Institute

7 September 2014

Upgraded RICH performance

Upgraded RICH performance at 2×10³³ close to current one

Corfu Summer Institute

7 September 2014

The timeline ...

Summary

- LHCb is producing world best measurements in the beauty and charm sector and has a rich future ahead
- The Upgraded LHCb trigger scheme allows collection of 5 fb⁻¹ of data per year
- The upgrade will be performed in 2018-19 during LS2; data taking will start in 2020
- All future facilities LHCb upgrade, Belle-II, CMS/ATLAS have their respective strengths and combined information will be a great handle to reveal New Physics

Corfu Summer Institute

7 September 2014

Spare slides from here on

Corfu Summer Institute

7 September 2014

B-physics at the intensity frontier

	LHC	era	High-lumi LHC era			
	2010-2012	2015-2018	2020-2022	2025-2028	2030+	
ATLAS & CMS	25 fb ⁻¹	100 fb ⁻¹	300 fb ⁻¹	\rightarrow	3000 fb ⁻¹	
LHCb	3 fb ⁻¹	8 fb ⁻¹	23 fb ⁻¹	46 fb ⁻¹	100 fb ⁻¹	
Belle II		0.5 ab ⁻¹	25 ab ⁻¹	50 ab ⁻¹	-	

Corfu Summer Institute

7 September 2014

Outlook: LHCb Upgrade

- Main limitation that prevents exploiting higher luminosity is the Level-0 (hardware) trigger
- To keep output rate < I MHz requires raising thresholds → hadronic yields reach plateau
- Proposed upgrade is to *remove* hardware trigger: read out detector at 40 MHz (bunch crossing rate). Trigger fully in software in CPU farm. Requires replacing all front-end electronics
- Will allow to increase luminosity by factor ~ 10 to 1-2 × 10³³ cm⁻² s⁻¹
- Framework TDR submitted to the LHCC: Physics case enthusiastically endorsed, detector R&D underway

Upgrade of LHCb detector planned for 2019 to take at least 10× more data: 50 fb⁻¹

Upgrade scenario

- Data taking conditions
 - Leveled instantaneous luminosity of 2.10³³/cm²/s
 - 30 MHz collisions
 - 20-100 kHz to disk
 - ~5 fb⁻¹ per year
- Challenges
 - High pile-up
 - Large occupancies
 - event reconstruction is more difficult
 - more difficult PID
 - Radiation damage

LHCb requirements

- Separate secondary decay vertices from primary production vertex $\rightarrow 20\mu$ impact parameter resolution for high–p, tracks
- Excellent momentum resolution: as low as 0.35% at 5 GeV/c (and still 0.55% at 100 GeV/c), which provides a mass resolution of $10 - 25 \text{ MeV}/c^2$
- Excellent particle identification capabilities, to unambiguously identify photons, electrons, muons, pions, kaons, protons in the b-meson decay chain, essential to select rare beauty and charm exclusive decays
- Efficient multi-stage trigger for leptonic and hadronic final states

The 40 MHz R/O architecture

Corfu Summer Institute

7 September 2014

TT upgrade: Upstream Tracker (UT)

- Replace current inner silicon planes
- Upgrade: 4 detection planes, stereo
- Silicon strip detector, 250 µm thick
- Segmentation and technology depends on expected dose and occupancy
- 40 MHz R/O via SALT ASIC

Corfu Summer Institute 7

7 September 2014

FT Design

- I2 detection layers in 3 stations
- Each station has XUVX layers (U,V: ±5°)
- Advantages
 - Single technology easy to operate
 - High granularity (250 µm) gives excellent x-position resolution (50-75 µm)
 - Uniform material budget
 - SiPM & R/O outside acceptance
- Challenges
 - Radiation damage to fiber → tested, ok
 - SiPM rad. damage → operate @ -40° C

Calorimeter System Upgrade

Occupancy and radiation issues

- Pre-shower and SPD will be removed (no more L0 calorimeter trigger)
- ECAL expected to be fine up to 20fb⁻¹, inner ECAL cells could be replaced at LS3
- HCAL OK up to 50 fb⁻¹
- Lower PMT gains to guarantee extended operation at HL
- New front-end electronics: ICECAL
- New back-end electronics, calculating ECAL and HCAL 2x2 cell energy for LLT

Corfu Summer Institute

7 September 2014

Muon system Upgrade

R/O and occupancy issues

- Muon detector front-end CARIOCA already operating at 40 MHz
- New off-detector board for efficient readout via PCIe40 common R/O boards
- Remove MI
 - no muon level-0 muon trigger
 - Very high occupancies
- Additional shielding behind HCAL to reduce rate in inner regions of M2
- Possible replacement of M2/M3 inner region detectors under study

Corfu Summer Institute

7 September 2014

Run2 starts in 2015, the aim is to collect 5 fb⁻¹

- LS2: 18 months for full LHCb upgrade
- Then: collect ~5 fb⁻¹/year

Corfu Summer Institute

7 September 2014