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Hydrodynamics as an effective field theory

+ Hydrodynamics describes low-energy, near-equilibrium behaviour
fluctuations of an equilibrium density matrix on scales large compared to the
characteristic mean free path.

+ Organize data into conserved currents:  T#", J#

+ Dynamics: conservation laws for the currents (up to anomalies)

vV, T" =0,  V,J*=0

+ Summarize hydrodynamic data as constitutive relations for the currents in
terms of operators built from the hydrodynamical variables
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Transport coefficients

+ The task of a hydrodynamicist is to determine the constitutive relations
determining the conserved currents in terms of the hydrodynamic variables

" = —pohv — (O P + ...

+ The basic organizing principle is the same as in any effective field theory.
One may imagine that one is working with an effective current algebra.

+ The specific values of the transport coefficients themselves is determined by
microscopic details of the underlying quantum system.

+ It is worth recording a remapping of hydrodynamic variables:
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Constraints on hydrodynamics

+ Constitutive relations obtained in a gradient expansion with transport
coefficients/thermodynamic response parameters determined by
MICrosCopICS.

["" = —npot” —COPHY + - -

+ The transport data are constrained macroscopically by demanding the

second law of thermodynamics hold locally, e.g., n,{ =0

3J5 — VaJ§ >0

+ The main surprise is that not all constraints are inequalities; there are non-

trivial equality constraints:
Son Surowka '09

* anomaly induced transport is completely fixed Jensen Loganayagam Yarom ‘13

* non-trivial relations for neutral fluid at 20 order (5 relations among 15 a-

priori independent transport coefficients) Shattacharyya ‘12



Constraints on hydrodynamics

+ Hydrodynamic transport can be classified into three categories

* Hydrostatic or thermodynamic response: fixed by equilibrium
* Genuine hydrodynamic transport

* Berry transport: undetermined by any form of entropy analysis

+ Hydrostatic data can be understood by time-independent configurations of
the fluid in the presence of non-trivial background sources.

+ Can equivalently be encoded in a generating function, the “equilibrium
partition function” which is a functional of stationary background sources.

K={K" Ax}, guwK'K’'<0 — 6,90 =0,4,=0

Banerjee et. al. ‘12 Jensen et. al. ‘12



An autonomous theory of hydrodynamics?

+ Are the constraints exhaustive?

* gradient expansion is systematic but not derived from usual principles for
effective field theories

+ First principles understanding of entropy current?

+ Would ideally like to have an effective action for deriving the dynamics.
* dissipation introduces some difficulties.
* require dynamics to be equivalent to current conservation.

= There exists a class of non-dissipative actions which seem to capture
interesting aspects of hydrodynamical constraints. Not a-priori guaranteed!

= Benchmarking: anomaly induced transport.



Non-aissipative fluids: Definition

+ Requirements of an effective action for NDF

* Dynamical eom = conservation equations
5Seff=() — VMT“VZO

* Lack of dissipation == conserved entropy current V,Jg =0

+ |deal fluids clearly comprise one such system. The surprise is that there are
non-trivial non-linear examples which seem to suggest some interesting
constraints on hydrodynamic transport.

+ Formalism is quite old: Taub '54, Carter '73
+ Modern presentation: Dubovsky, Hui, Nicolis, Son 11

+ Systematic analysis: Bhattacharyya, Bhattacharya, MR '12 & Haehl, MR ‘13



Lagrangian fields & symmetries

+ The fundamental fields for NDF are taken to be Lagrangian variables which
are labels for the fluid elements: ¢r, I =1,---,d—1

+ NB: view fluid as a space filling D-brane.

+ Field reparameterization invariance: require arbitrary volume preserving
diffeomorphisms in configuration space Sdiff(M4)

o' — &(0), Jacobian(&, ¢) =1

+ The diffeo invariance in configuration space guarantees that Euler-Lagrange
equations are identical to energy momentum conservation.

5¢Seff =0 <«— VMT“V =0



Entropy current

+ Volume preserving symmetry — conserved entropy current

1 d—1
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+ Interpret this current as being the entropy current to all orders by passing to
the entropy frame

Jg = su” 3:\/—ga5J§‘J§
+ Operator dimensions as appropriate for a phase field: [d¢] = 0

+ Intuitively expect that all dissipative transport coefficients will be vanishing in
the theory; borne out by explicit analysis.

+ The effective action should be viewed as the Legendre transform of an oft-
equilibrium Gibbs potential.



Neutral fluids: 00 and 19

+ Zeroth order action reproducing ideal fluid behaviour

SOOC/ddCB\/Tgf(S)

T = (s f'(s) — (5)) g™ + 5 f'(s) ub u”
+ Basically the action is the energy density as a function of entropy density.

+ 19 corrections: No corrections for parity-even fluid dynamics since only
available term is a total derivative

S / iz /g T Vafi(s) = / P2/ =g Ve (f1(s) J)

+ Parity-odd terms are of course interesting and non-vanishing in the presence
of anomalies.



Adiabatic Fluids

Definition: An adiabatic fluid is one where off-shell entropy production is
compensated for by energy-momentum and charge flow.

Vudh + By (VT = J, - B~ THE)

+(Ag+ B Ay) - (DuJ” = J) =0.

* Locally an off-shell version of the Clausius relation hold.

* On-shell such fluids are non-dissipative, but the advantage of going oft-
shell is a certain linearity (adiabatic fluids can be superposed).

* Implementing second law off-shell is equivalent to requiring the |.h.s of AE
to be positive definite using Lagrange multipliers.

* We are just focussing on the marginal situation to maximize control.



Adiabatic Fluids: A classification

+ The off-shell formalism is quite powerful. One can classify the solutions to AE
into various classes & understand the origins of various constraints.
* Class H: Hydrostatic configurations (subclasses Py and Ps)
Obtained by identitying hydro fields with background Killing fields
* Class L: Lagrangian solutions
Local Lagrangians functions of ¥ = {g,,,, 4,,, 8", Ag}
* Class D: Non-dissipative fluids
* Class A: Anomaly induced transport

* Class B: Berry curvature terms



Adiabatic Fluids: A classification

A schematic set of connections between the various classes is as follows:




Class L Adiabatic fluids

+ Consider diffeomorphism and gauge invariant scalar Lagrangian densities
which are functionals of hydrodynamic fields ¥ = {gu, Ay, 8%, Ag}

Shydro — /dalaj vV —g L [\Il]

+ The basic variational principle of this theory defines currents:

1 p
\/—_—95 (V=9 £) = Vu(#6ys)
|

= 5 T Ogyy + J" 64, + T Vo 087 + T ¢ (6A + Ay 5°)

+ Entropy density is defined as in thermodynamics

= (5 [vacw)
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Class L Adiabatic fluids

Now diffeomorphism and gauge symmetries of the Lagrangian imply a set
of Bianchi identities:

1% v g/“/ 1%
v, TW =], - F*" + \/jgag (V=9 TV,) +¢"T¢-6,A,
1
DyJ° = —=6, (/=g T
\/jg B ( 9 C)

e ——

Together with the identity and an off-shell Euler relation

vaJ§=va<Tsﬂ“>=%g% (V=g Ts) Ts+pu-¢+u’V,=0

one ends up with the non-anomalous adiabaticity equation

V.Jh + B (VT — J, - FF) + (Ag + B*A)) - D, J” =0



Dynamics in Class L

+ The dynamics in Class L is supposed to reduce to the conservation of
energy-momentum and charge currents.

+ Naive variation with respect to {8#,A3} does not respect this requirement,
since it would lead to vanishing of the adiabatic heat/charge currents.

+ Constrained variational principle: vary the hydrodynamic fields along a
family related by Lie transport.

5: ©8"=6,.8", OSAg=0,Ag,  Bgu =06A, =0

+ This variation leads to equations of motion which when combined with the
Bianchi identities leads to conservation

1

ﬁ% (V=9TV,)+T¢ 6,4,=0 + Bianch ; V,TH ~ (0
\/%53 (v/=g T¢) ~ 0 D,J" ~ 0

T — S



Reference fields for Class L

(9, ) {e, c}>

B = {ﬂBa, A[B}

M M

The constrained variational principle can be alternately phrased as fixing a
reference configuration and varying along the pull-back maps by diffeos and
gauge transformations.
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Reference fields for Class L

The pull-back maps come with some residual gauge symmetries, which one
can view as diffeos and gauge transformations on the reference space.
" = ()
(Ap, e}~ (/A [ = [ 8701, f) Aple™) = Ael/™(e)

SO )

This allows us to pass over completely to the reference manifold

/\/—_g/:(g,A,K,Aﬁ):/H\A\/—_@E(@,A,@,Am)E/M\/—_@M‘”’]

One advantage of doing so will be clear when we consider Schwinger-
Keldysh functionals for general non-equilibrium situations (also for
anomalous transport in Class L).



Gauge fixing in Class L

Fields on the reference manifold can be gauge fixed to “static gauge”

Ag =0, =1 and B! =0 forlTe{l,...,d—1}

There are still some residual gauge symmetries in this gauge which

Oh’
o' hI(pt),  det (W) 40

P =)+ g(p")
¢ cfleh)

Reminiscent of symmetries described earlier in the context of non-
dissipative fluids. We still have details to fill in to make precise contact.



Embedding Class H (Ps) into Class L

+ The hydrostatic limit of a hydrodynamic system is obtained by subjecting the
fluid to an arbitrary time-independent background sources.

K= {K" Ak}, guK"K"<0 — 8, g =0,4,=0 (8", Ag} = {K" Ag)}

Banerjee et. al. ‘12 Jensen et. al. ‘12
+ The hydrostatic partition function is the Lagrangian evaluated on the

hydrostatic configuration and integrated over a truncation of the physical
manifold to a unit affine interval along the Killing field

Whiydrostatic = / dz —g LHydrostatic + Boundary contributions
EE X IK

+ Makes completely clear that hydrodynamic entropy current is a Noether
charge (cf., lyer-Wald constructions for stationary black hole entropy).

Bhattacharyya ‘14



Embedding Class D into Class L

+ Non-dissipative fluid effective actions use entropy as a fundamental variable.
{/307/\,3} —lp {Sal---ad_17(AS)a1...ad}

1
(d—1)!
1

Ag = T e (Ag)ay.ay =T sAg =5 (p—u Ay)

€SO' —

O Qg1 Sal...ad_l _ TS,@J — su®

+ Legendre transformation of the Lagrangian density gives the desired non-
dissipative effective action

[v=acsiws = [v=g (c@)- 1)

{B:Ag}—{S,As}




Embedding Class D into Class L

Introducing reference entropic fields and going to the “static gauge”

$123...(d=1) = 1 , Bor 1yIig o =0 (As)0123...(d—1) = 0

one ends up finding residual gauge freedom, which coincides with the
volume-preserving diffeomorphisms used in the earlier discussions.

Oh’
volume-preserving spatial diffeos: ¢’ — h7(¢?) , det (&bf) — 1
dg

thermal shift symmetry: o0 g7, Y) | 340 £ 0

chemical shift symmetry: cr cf(o!)

Temporal diffeomorphism field is non-dynamical: implies that component of
energy-momentum conservation is traded for entropy conservation.



Some curiosities

+ Lagrangian constructions for neutral fluids up to 20 and charged parity odd
fluids in 3d to 19 have been explicitly carried out.

+ As expected there are additional constraints on transport than those seen
from the second law.

+ Very curiously, some of these constraints are realized as universal relations
amongst transport data in holography.

y 0
Ty =7 <ua Vaott A ﬁaw> RO g ug

+ )\1 O—<N04 O'aV> 4+ )\2 O(Ma wa’/> 4+ )\3 w(ﬂa wa’/>

B ———
Haack, Yarom ‘08

+ Are these constraints hinting at a geometric origin of Class L fluids?



Class B adiabatic fluids

+ This class of constitutive relations solves adiabaticity trivially. Non-
equilibrium, non-dissipative data!

(T"") B

(ﬁmv)(am _ ﬁ(aﬁ)(w/)) T6, gas + EF) . T, A,

(JY) B =T g, — 698 Ts, Ag

DO | — |

P

+ The entropy current is canonical (given just by projections of energy-
momentum and charge currents)

Hall Transport in 3 dimensions Neutral fluids in arbitrary dimensions

(T"") B
(JY)B

~ o U ro
—Ty p (M 0+ 0y

50 1y | By — T Dy (%)}

(TH)g = —As (B 0™ — 0 PH) — A, (0“0, + w"*at!)



Class A: Anomalies as a litmus test

+ Anomalies provide an interesting window into the structure of quantum field
theories and can be used to understand constraints on admissible dynamics.

+ Since quantum anomalies leave behind indelible signatures in transport
phenomena they can be used to learn some useful constraints on
hydrodynamics.

+ Constraints on anomalous transport have been derived from entropy
analysis, generating functions and fluid/gravity & all of these approaches
agree on the constitutive relations. Jensen, Loganayagam, Yarom '12-13

+ Since we know that anomalous transport is adiabatic we can use it as a
benchmark for hydrodynamic effective actions.

+ Punchline: Anomalous transport can indeed be recovered from a Class L
Lagrangian but with some surprising twists.



Global Anomalies: Anomaly inflow

+ An anomalous theory in d = 2n

dimensions can be coupled to a
higher dimensional topological
theory, so as to render the

combined system anomaly free.

+ The Hall insulator for present
purposes will just be a Chern-

Simons theory:

M : Hall insulator 765  — c,ANF"

2n—+1

OM : physical theory
d=2n



Currents & Ward identities

+ The inflow picture makes clear the various currents in the game.

(n+1) c,

al P a/plp2...p2n_3p2n_2 e o o
JH — on € Fp1p2 Fp2n—1p2n
Sy = omn € Foigy FanB,
5z = no1 € B L6169 02n—302n—2

+ The covariant current:
Joov = Jeons T I,
+ Ward identities:

Vo T% = FPY(Joy) Vo J

a ) cov Yy



Anomalous constitutive relations |

+ Adiabaticity equation for anomalous transport:

(VO& T Cla) qgnom _ Jc?nom Lo =T Vajé)‘, anom T H (Vajgénom N in-)

+ This equation can be solved explicitly to obtain the anomalous currents.

+ For abelian anomalies in four dimensions the currents are determined to be

Jg,anom =0
qgnom:_4cAM3wa_36AMZBa7 Hggomzo7
J* = —6c, p*w* —6¢, uB*,

Loganayagam '11



Anomalous constitutive relations |/

+ We can translate the solution of adiabaticity equation to Landau frame using

ideal fluid eoms to recover more familiar expressions: C' = —6c¢c4
T(Cifmdau) — (5 T P)uauﬁ + PgaB +...,
2 pp 1 pp
o _ o 2 _“ o - o
J(Landau)_pu +C p <1 3€—|—P>w +CU(1 2€—|—P>B T,

oY oY S 2 3 .« 1 2 Do
s (Landau) — S U _08+P(§N W —|—§,LL B )"‘7

Son Surowka '09

+ Similar discussion applies to other dimensions and non-abelian currents.



The anomalous effective action

Solution to the adiabaticity equation for anomalous transport derived from
an effective action:

VplA, A :/ - A (PLF] - PF])

Ma41 2w

Sa,nom = / v —9d+1 »Ca,nom =
Ma41

Mgy
This functional depends on the hydrodynamic shadow gauge fields
A=A+ pu

For the cognoscenti: the effective action is a transgression form which
interpolates between the physical and the shadow connection.

At - tAtzl -+ (1 — t) At:() At:() — A and Atzl — A

To implement the inflow, all fields are taken to live in an auxiliary higher
dimensional spacetime via Y411 = {gmn, Am, 8™, Ag}, gt=0



Anomalous constitutive relations

From the usual variational principle we pick up the anomalous constitutive

relations
Tc?nﬁom — qg u” + 4p u® Jc?nom J% ) Jg‘é, anom = U
1 0*P dA, / / [ ( 0*P ) dAt]
*xJp = /O dat KaFé’F)t dt ] OFOF ), dt
uw (OP 0P -\ 0P
S - = — PP (F-F) 22
2w/\{8F ap} (2w) X ( ) 3F}

These reduce to the currents we described earlier for abelian flavour
anomalies upon explicit evaluation, but the form above completes the story
for arbitrary flavour symmetries.



Mixed anomalies

+ Mixed anomalies (flavour+Lorentz) also work but we need to incorporate a
spin chemical potential, shadow spin connection and deform the entropy

current.
1 ~
O =5T(D,B" — D"By) I'*, =T*, + Q" u
A A u ~ A A
/ \/Td—l—l Lonom = V’P[Aa F? Aa F] — / 2— A (P[F’ R] - ’P[F7 R]>
Mat1 M1 Mgy 2%

+The currents can be derived again by the standard variational principle,
but the entropy current is non-canonical.

1 Q Q Q 1 - Q
Tozﬁ — qguﬁ + qiua T _Dp (E’P[Bp] s Egb[ P] L E';D( 5)) L 52};’( B)

anom 2

JO(

anom

1 & lao
Jg,a,nom — _§IBUEH[ | y

= J%



Anomalous Ward identities

The Ward identities from diffeomorphism and gauge invariance (after using
the bulk Bianchi identities) are

af af
Dﬁ (Tnon—anom + Tanom)
1 Q o g 1 RS o
= (‘]’gon—cmom + ']gnom) ) Faa + §D7 (EIJ;[ - EIJ;[ ﬂ) N (,U . JJﬁ ™ 59 '“EHJ_MV> “

o o 1 7L
DU(‘]non—anom + Janom) = JH o JH .

These are not the correct conservation equations.

The shadow terms on the r.h.s suggest that the inflow has excess
contributions. This is manifest in the transgression language at the level of
the action.



A Schwinger-Keldysh functional for anomalies

+ A convenient way to capture the Ward identities is to think about the

problem in the thermofield doubled theory.
influence functional

Stot = Stot|Pr, g /V

= Seff [\I’R] — Seff [\IIL] + Sc'ross[\IIRv \IIL]

{9, AL} {g0y Ag} o, AL} {9, A}

(8!, A5} (B, Ag) (8L, A%}




Doubled cure for Ward identities

+ The conserved currents in hydrodynamics are defined by variation with
respect to the “difference sources”.

ngdro _ 2 < 5Stot . 5Stot ) ) » o
V=9 \0gpler]  Oggylec] /) o) =i =" @)

cr(2) = cp,(z) = c(2)

J;C;ydm _ 1 < (SStot . 5St0t ) ] » -
\/——@ 5AGR [SOR] 5@‘{2 [¢L] PR (2) = oL(z) = ¢ (2)

cr(x) = cp,(z) = c(x)

+ There is a unique influence functional which respects the symmetries of the
construction and provides the correct currents + Ward identities:

S . = /M Vp|Ag, T A, Ty = Vp (A[@R],f[%];A[@L],f[m])
d+1

Ma+1




A gravitational picture for SK construction

gluing condition

across horizon

Haehl, Loganayagam, MR ‘13



Summary & Open Questions

+ We have now a reasonable theory of adiabatic fluids which encompasses
many known constraints on hydrodynamic transport.

+ The off-shell formulation makes transparent various symmetries in previous
investigations and makes clear the general structure of transport.
+ |deally, we would like to embed Class B and Class Py into Class L have a

unified Lagrangian derivation of all known constraints.

+ There appear to be tantalizing connections to holography which should be
fleshed out.

+ Can one deform adiabatic fluids to incorporate dissipation?



