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Hydrodynamics as an effective field theory

✦ Hydrodynamics describes low-energy, near-equilibrium behaviour  
fluctuations of an equilibrium density matrix on scales large compared to the 
characteristic mean free path.  

✦ Organize data into conserved currents: 

✦ Dynamics: conservation laws for the currents (up to anomalies) 

!

✦ Summarize hydrodynamic data as constitutive relations for the currents in 
terms of operators built from the hydrodynamical variables  

Tµ⌫ , Jµ

rµT
µ⌫ = 0 , rµJ

µ = 0

T↵� = "u↵ u� + P P↵� + 2 q(↵ u�) +⇧↵�

J↵ = q u↵ + ⌫↵



Transport coefficients

✦ The task of a hydrodynamicist is to determine the constitutive relations 
determining the conserved currents in terms of the hydrodynamic variables

⇧µ⌫ = �⌘ �µ⌫ � ⇣ ✓ Pµ⌫ + · · ·

✦ The specific values of the transport coefficients themselves is determined by 
microscopic details of the underlying quantum system.  

✦ It is worth recording a remapping of hydrodynamic variables:

✦ The basic organizing principle is the same as in any effective field theory. 
One may imagine that one is working with an effective current algebra.

will work in d spacetime dimensions and will assume that the hydrodynamic fields {uµ, T, µ}
as well as the background sources {gµ⌫ , Aµ} are slowly varying on this spacetime manifold

throughout our discussion.

While we could choose to work with the hydrodynamic fields defined above it is in fact

convenient to repackage them into an unnormalized vector field and a scalar field. By a simple

redefinition we therefore introduce a the hydrodynamic fields (denoted collectively by B)

B ⌘ {�,⇤�} , �µ ⌘ u

µ

T

, ⇤� ⌘ µ

T

� u

�

T

A� . (2.1)

The fields {�µ
,⇤�} encodes the same hydrodynamic data as the fields {u⌫ , T, µ}. We can

explicitly invert the above relations to get

u

µ =
�µ

p

�g↵��↵��
, T =

1
p

�g↵��↵��
, µ =

⇤� + ��
A�

p

�g↵��↵��
. (2.2)

Thus for the rest of the discussion, the dynamical content of hydrodynamics is d+ 1 degrees

of freedom in the vector field �µ and scalar field ⇤�.

A general hydrodynamic system as reviewed in §1 is characterized by a set of currents: we

have the energy-momentum tensor Tµ⌫ and a charge current Jµ which should be considered

dynamical and an entropy current J

µ
S which enforces the constraint of the second law. In

addition to these currents we can consider the free energy current Gµ which is a particular

linear combination of the above, which we will encounter shortly, cf. (2.15). To simplify nota-

tion, we will collect the various currents we have introduced into a single set by introducing

a collection of tensor fields CH (dropping the indices for brevity)

CH ⌘ {Tµ⌫
, J

µ
, J

µ
S , Gµ} . (2.3)

These currents should all be thought of as given by local covariant functionals of the

background and hydrodynamical fields which we also collectively denote as  

 ⌘ {gµ⌫ , Aµ,�
µ
,⇤�} . (2.4)

Then we can write for our currents CH = CH [ ] or more explicitly for the fundamental

currents we have

T

µ⌫ = T

µ⌫ [ ] = T

µ⌫ [g↵� , A↵,�
↵
,⇤�]

J

µ = J

µ [ ] = J

µ [g↵� , A↵,�
↵
,⇤�]

J

µ
S = J

µ
S [ ] = J

µ
S [g↵� , A↵,�

↵
,⇤�] .

(2.5)

These relations are termed constitutive relations.

The dynamical information of hydrodynamics comprises simply of the statement of con-

servation modulo source terms (which do work on the system) and anomalies. In general

we can write the conservation equations for a microscopic quantum theory with flavour and

Lorentz anomalies in the presence of background sources as:

r⌫T
µ⌫ = J⌫ · Fµ⌫ +Tµ?

H D⌫J
⌫ = J?H (2.6)
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Constraints on hydrodynamics

✦ Constitutive relations obtained in a gradient expansion with transport 
coefficients/thermodynamic response parameters determined by 
microscopics.  

✦ The transport data are constrained macroscopically by demanding the 
second law of thermodynamics hold locally, e.g., 

!

✦ The main surprise is that not all constraints are inequalities; there are non-
trivial equality constraints: 
✴ anomaly induced transport is completely fixed 
✴ non-trivial relations for neutral fluid at 2∂ order (5 relations among 15 a-

priori independent transport coefficients)

⇧µ⌫ = �⌘ �µ⌫ � ⇣ ✓ Pµ⌫ + · · ·

⌘, ⇣ � 0

9 Jµ
S ! r↵J

↵
S � 0

Bhattacharyya ‘12

Son Surowka ’09 !
Jensen Loganayagam Yarom ‘13



Constraints on hydrodynamics

✦ Hydrodynamic transport  can be classified into three categories 

✴ Hydrostatic or thermodynamic response: fixed by equilibrium 
✴ Genuine hydrodynamic transport 
✴ Berry transport: undetermined by any form of entropy analysis 

✦ Hydrostatic data can be understood by time-independent configurations of 
the fluid in the presence of non-trivial background sources. 

✦ Can equivalently be encoded in a generating function, the ``equilibrium 
partition function’’ which is a functional of stationary background sources.

Banerjee et. al. ‘12

Here E

µ = F

µ⌫
u⌫ is the electric field and �

B
represents the Lie derivatives using the di↵eo-

morphism/flavor transformations generated by {�µ
,⇤�}

�

B
gµ⌫ ⌘ £�gµ⌫ = rµ�⌫ +r⌫�µ

�

B
Aµ ⌘ £�Aµ + @µ⇤� + [Aµ,⇤�] = Dµ(⇤� + �⌫

A⌫) + �⌫
F⌫µ (2.19)

In this expression, we used £� to denotes the Lie derivative along the vector field �.

An alternate form of (2.18) can be given by introducing the fluid acceleration aµ ⌘
u

µrµu
↵ eliminating the thermal gradients:

�
h

(r� + a�)G� � G?
H

i

= J

�
S (r� + a�)T + T

µ⌫(r⌫ + a⌫)uµ + J

� · [D�µ+ a�µ� E�] .

(2.20)

This form of the equation is quite useful in making comparisons with traditional hydrodynamic

analysis; typically one chooses to eliminate thermal gradients in favour of velocity derivatives.

3 Class H: Hydrostatics from Adiabaticity

We have defined adiabatic fluids to be the set of hydrodynamic currents that satisfy (2.9).

While in the previous section we have argued that this set comprises of the obvious example of

ideal fluids, we would like to ascertain (and perhaps classify) other solutions to the adiabaticity

equation. We will proceed to establish the existence of various classes of solutions to (2.9) in

the reminder of the paper. To keep the logical flow of the arguments simple we will start with

statements that hold in great generality and subsequently specialize to more special cases.

Our first case of interest is what we called Class H in §1: we specialize to time-independent

configurations in hydrodynamics (i.e., we limit ourselves to hydrostatics). In order to ascertain

non-trivial constraints on fluids from this hydrostatic restriction we need to turn on external

sources, e.g., background metric and gauge fields, which themselves are time-independent

to begin with. Therefore let us assume that there exists a Killing vector and Killing gauge

transformation collectively denoted by K ⌘ {Kµ
,⇤K} such that �

K
gµ⌫ = 0 and �

K
Aµ = 0.

We will further assume that Kµ is timelike everywhere on the manifold the fluid propagates

on.10 To wit, a stationary background source configuration is encoded as

K ⌘ {Kµ
,⇤K} , gµ⌫ K

µ
K

⌫  0 �! �

K
gµ⌫ = �

K
Aµ = 0 (3.1)

There is a natural hydrostatic configuration associated with this background given by

{�µ
,⇤�} = {Kµ

,⇤K}. This configuration is time-independent since �

K
�µ = �

K
K

µ = 0 and

�

K
⇤� = �

K
⇤K = 0. It therefore follows that for any functional Z [ ] of the fluid dynamical

variables we have

�

B
Z [g↵� , A↵,�

↵
,⇤�] = �

K
Z [g↵� , A↵,K

µ
,⇤K ] = 0 (3.2)

10 In particular, we demand by virtue of K being globally timelike on M that the background the fluid

propagates on is free of ergosurfaces. This is necessary in order for the fluid configuration to have a stationary

solution aligned with the Killing field.
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An autonomous theory of hydrodynamics?

✦ Are the constraints exhaustive? 

✴ gradient expansion is systematic but not derived from usual principles for 
effective field theories 

✦ First principles understanding of entropy current? 

✦ Would ideally like to have an effective action for deriving the dynamics. 

✴ dissipation introduces some difficulties. 

✴  require dynamics to be equivalent to current conservation. 

➡ There exists a class of non-dissipative actions which seem to capture 
interesting aspects of hydrodynamical constraints. Not a-priori guaranteed! 

➡ Benchmarking: anomaly induced transport.



Non-dissipative fluids: Definition

✦ Requirements of an effective action for NDF 

✴ Dynamical eom = conservation equations 

✴ Lack of dissipation          conserved entropy current
�Seff = 0 =) rµT

µ⌫ = 0

r↵J
↵
S = 0

✦ Ideal fluids clearly comprise one such system. The surprise is that there are 
non-trivial non-linear examples which seem to suggest some interesting 
constraints on hydrodynamic transport. 

✦ Formalism is quite old: Taub ’54, Carter ’73 

✦ Modern presentation: Dubovsky, Hui, Nicolis, Son ’11 

✦ Systematic analysis: Bhattacharyya, Bhattacharya, MR ’12 & Haehl, MR ‘13

=)



Lagrangian fields & symmetries

✦ The fundamental fields for NDF are taken to be Lagrangian variables which 
are labels for the fluid elements:  

✦  NB: view fluid as a space filling D-brane. 

✦ Field reparameterization invariance: require arbitrary volume preserving 
diffeomorphisms in configuration space 

!

✦ The diffeo invariance in configuration space guarantees that Euler-Lagrange 
equations are identical to energy momentum conservation.

The requirement of equations of motion having no more dynamical content than

stress tensor conservation is a strong one. Usually while it is true that equations of

motion imply r
µ

T

µ⌫ = 0 the converse often fails to hold.

The key point is identifying the correct degrees of freedom which achieves this;

such a construction has been known for a long time based on what we might call,

Lagangian fluid variables. Intuitively we want some symmetry in the field space

that mimics the di↵eomorphism invariance of the background spacetime. This can

trivially be achieved by demanding that that configuration space of our classical

action be parameterized by canonical field variables which respect field redefinition

invariance (which is the analog of di↵eomorphism in field space). Then by passing to

some gauge fixed version a la,, static gauge we can argue that field variations which

lead to Euler-Lagrange equations can be conflated with background di↵eomorphisms

thereby ensuring that energy-momentum conservation being the dynamical equations

of the theory; cf., [18] for observations relating to this point.

The fields of interest are labels for individual fluid elements viewed as a function

of background spacetime coordinates. Such formulations have been described for

perfect fluids (both relativistic and non-relativistic) for a very long time as mentioned

in the introduction. We will use the recent analysis of [16] who were able to use these

variables to motivate an e↵ective action for non-dissipative hydrodynamics. While

[16] discuss both neutral and charged fluids we will focus exclusively on neutral fluids

in our discussion below.

2.1 The fundamental fields of hydrodynamics

Let us quickly review the ingredients in the construction of [16] starting with un-

charged fluids. As mentioned earlier we want to work with local fluid elements, and

use fields �I describe the position of the local fluid element in space at an instant of

time. We will work with d-dimensional fluids, so i = 1, 2, · · · , d � 1. We further fix

the geometry of the spacetime in which the fluid propagates and take coordinates xµ

to be an appropriate chart on this spacetime manifold, with metric g

µ⌫

.

Since we are trying to tag local fluid elements, we expect that the description

of the low energy e↵ective dynamics enjoys translational and rotational invariance

of these co-moving coordinates. This tells us that the e↵ective action should be

constructed out of the derivatives of the fields �I and be suitably rotationally invari-

ant. In addition, a local version of Liouville theorem in this configuration space of

the �

I demands invariance under arbitrary reparameterizations of the �

I , i.e., the

Lagrangian should be invariant under

�

I ! ⇠

I(�) , Jacobian(⇠,�) = 1 (2.1)

with the condition of the Jacobian being forced on us by the fact the volume of

configuration space be unchanged. Clearly, such a symmetry is generated by the

– 5 –
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Sdi↵(M�)

��Seff = 0 () rµT
µ⌫ = 0



Entropy current 

✦ Volume preserving symmetry          conserved entropy current 

!

✦ Interpret this current as being the entropy current to all orders by passing to 
the entropy frame 

!

✦ Operator dimensions as appropriate for a phase field: 

✦ Intuitively expect that all dissipative transport coefficients will be vanishing in 
the theory; borne out by explicit analysis. 

✦ The effective action should be viewed as the Legendre  transform of an off-
equilibrium Gibbs potential.

d

d� 1 {�I}
x↵

M
�

M
�

�I ! ⇠I(�) , (⇠,�) = 1

(M
�

)

(M
�

)

•

• �I

⇥

d�I

⇤

= 0

�I

• (M
�

)

J� =
1

(d� 1)!
✏�↵1...↵

d�1 ✏
I1...I

d�1

d�1
Y

j=1

@
↵

j

�I

j .

r
↵

J↵ = 0

J↵

J↵

s u↵

J↵ = s u↵ s =
q

� g
↵�

J↵ J�

(M
�

)

r↵J
↵
S = 0

d

d� 1 {�I}
x↵

M
�

M
�

�I ! ⇠I(�) , (⇠,�) = 1

(M
�

)

(M
�

)

•

• �I

⇥

d�I

⇤

= 0

�I

• (M
�

)

J� =
1

(d� 1)!
✏�↵1...↵

d�1 ✏
I1...I

d�1

d�1
Y

j=1

@
↵

j

�I

j .

r
↵

J↵ = 0

J↵

J↵

s u↵

J↵ = s u↵ s =
q

� g
↵�

J↵ J�

(M
�

)
[d�] = 0

=)



Neutral fluids: 0∂ and 1∂

✦ Zeroth order action reproducing ideal fluid behaviour

Tµ⌫ = (s f 0(s)� f(s)) gµ⌫ + s f 0(s)uµ u⌫

S0 /
Z

d

d
x

p
�g f(s)

✦ Basically the action is the energy density as a function of entropy density.

✦ 1∂ corrections: No corrections for parity-even fluid dynamics since only 
available term is a total derivative

S1 /
Z

d

d
x

p
�g J

↵
s r↵f1(s) =

Z
d

d
x

p
�gr↵ (f1(s) J

↵
s )

✦ Parity-odd terms are of course interesting and non-vanishing in the presence 
of anomalies.



Adiabatic Fluids

Definition: An adiabatic fluid is one where off-shell entropy production is 
compensated for by energy-momentum and charge flow.

Here, Fµ⌫ and Dµ denote the field-strength and gauge-covariant derivative associated with

Aµ while {Tµ?
H , J?H} are the covariant Lorentz and flavor anomalies respectively.7 The gauge-

covariant derivative acts on tensors Xµ···⌫
⇢···� as

D↵X
µ···⌫

⇢···� = r↵X
µ···⌫

⇢···� + [A↵, X
µ···⌫

⇢···�] . (2.8)

The center-dot “·” is reserved for gauge index contraction which we will never write explicitly.

These equations which we term as the hydrodynamic Ward identities together with rµJ
µ
S � 0

capturing the essence of the second law, complete the specification of the hydrodynamic

e↵ective field theory in the current algebra language.

The task of a hydrodynamicist is to provide these constitutive relations order by order

in gradients of these fields subject to symmetry and second law requirements, cf. [2] for the

classic treatment. We will refer the reader to the vast literature on hydrodynamic constitutive

relations which have been computed in certain cases up to the second order in the gradient

expansion (see [28, 29] for a summary of certain results in the past few years).

We will proceed di↵erently in what follows and demand that the currents satisfy the

adiabaticity equation (cf. [9]):

rµJ
µ
S + �µ

⇣

r⌫T
µ⌫ � J⌫ · Fµ⌫ � Tµ?

H

⌘

+ (⇤� + ��
A�) ·

⇣

D⌫J
⌫ � J?H

⌘

= 0 .
(2.9)

The constitutive relations which satisfy the adiabaticity equation are called adiabatic consti-

tutive relations.8 Note that this relation is being imposed o↵-shell on the hydrodynamical

system of interest, a fact that will be of crucial import in our discussion.

It is worthwhile recording here a version of the adiabaticity equation that holds when we

consider non-anomalous fluids. Since the quantum anomaly manifests itself through the Hall

current terms Tµ?
H and J

?
H setting them to zero allows us to capture the desired equation for

non-anomalous adiabatic fluids, viz.,

rµJ
µ
S + �µ (r⌫T

µ⌫ � J⌫ · Fµ⌫) + (⇤� + ��
A�) ·D⌫J

⌫ = 0 . (2.10)

At various stages in our discussion we will find it convenient to work with the non-anomalous

case first and then build up to include the presence of anomalies.

In fact, there is a useful alternate perspective that helps segregate the anomalous con-

tribution from the rest. Note that apart from anomalies appearing via the Hall currents,

7If P[F ,R] is the anomaly polynomial, then the covariant anomalies are determined using the following

equations:

J?H
?1 ⌘

@P
@F

, ⌃?⌫
H µ

?1 ⌘ 2
@P

@Rµ
⌫
, Tµ?

H ⌘

1
2
r⌫⌃

?µ⌫
H . (2.7)

Here ⌃?µ⌫
H is the torque on the system due to Lorentz anomaly. We adopt a bold-face notation for di↵erential

forms. In general our notation follows that of [13, 14, 23] where the reader will find further details on the

conventions used herein. We will be more explicit when we solve the anomalous adiabaticity equation in §8.
8 We provide a translation of the adiabaticity equation in terms of the consistent currents which are

sometimes more natural in Appendix B.
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✴  Locally an off-shell version of the Clausius relation hold. 

✴  On-shell such fluids are non-dissipative, but the advantage of going off-
shell is a certain linearity (adiabatic fluids can be superposed). 

✴  Implementing second law off-shell is equivalent to requiring the l.h.s of AE  
to be positive definite using Lagrange multipliers. 

✴  We are just focussing on the marginal situation to maximize control.

will work in d spacetime dimensions and will assume that the hydrodynamic fields {uµ, T, µ}
as well as the background sources {gµ⌫ , Aµ} are slowly varying on this spacetime manifold

throughout our discussion.

While we could choose to work with the hydrodynamic fields defined above it is in fact

convenient to repackage them into an unnormalized vector field and a scalar field. By a simple

redefinition we therefore introduce a the hydrodynamic fields (denoted collectively by B)

B ⌘ {�,⇤�} , �µ ⌘ u

µ

T

, ⇤� ⌘ µ

T

� u

�

T

A� . (2.1)

The fields {�µ
,⇤�} encodes the same hydrodynamic data as the fields {u⌫ , T, µ}. We can

explicitly invert the above relations to get

u

µ =
�µ

p

�g↵��↵��
, T =

1
p

�g↵��↵��
, µ =

⇤� + ��
A�

p

�g↵��↵��
. (2.2)

Thus for the rest of the discussion, the dynamical content of hydrodynamics is d+ 1 degrees

of freedom in the vector field �µ and scalar field ⇤�.

A general hydrodynamic system as reviewed in §1 is characterized by a set of currents: we

have the energy-momentum tensor Tµ⌫ and a charge current Jµ which should be considered

dynamical and an entropy current J

µ
S which enforces the constraint of the second law. In

addition to these currents we can consider the free energy current Gµ which is a particular

linear combination of the above, which we will encounter shortly, cf. (2.15). To simplify nota-

tion, we will collect the various currents we have introduced into a single set by introducing

a collection of tensor fields CH (dropping the indices for brevity)

CH ⌘ {Tµ⌫
, J

µ
, J

µ
S , Gµ} . (2.3)

These currents should all be thought of as given by local covariant functionals of the

background and hydrodynamical fields which we also collectively denote as  

 ⌘ {gµ⌫ , Aµ,�
µ
,⇤�} . (2.4)

Then we can write for our currents CH = CH [ ] or more explicitly for the fundamental

currents we have

T

µ⌫ = T

µ⌫ [ ] = T

µ⌫ [g↵� , A↵,�
↵
,⇤�]

J

µ = J

µ [ ] = J

µ [g↵� , A↵,�
↵
,⇤�]

J

µ
S = J

µ
S [ ] = J

µ
S [g↵� , A↵,�

↵
,⇤�] .

(2.5)

These relations are termed constitutive relations.

The dynamical information of hydrodynamics comprises simply of the statement of con-

servation modulo source terms (which do work on the system) and anomalies. In general

we can write the conservation equations for a microscopic quantum theory with flavour and

Lorentz anomalies in the presence of background sources as:

r⌫T
µ⌫ = J⌫ · Fµ⌫ +Tµ?

H D⌫J
⌫ = J?H (2.6)
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Adiabatic Fluids: A classification

✦ The off-shell formalism is quite powerful. One can classify the solutions to AE 
into various classes & understand the origins of various constraints.

✴  Class H: Hydrostatic configurations (subclasses PV and PS) 

  Obtained by identifying hydro fields with background Killing fields 

✴  Class L: Lagrangian solutions 

  Local Lagrangians functions of  

✴  Class D: Non-dissipative fluids 

✴  Class A: Anomaly induced transport 

✴  Class B: Berry curvature terms

will work in d spacetime dimensions and will assume that the hydrodynamic fields {uµ, T, µ}
as well as the background sources {gµ⌫ , Aµ} are slowly varying on this spacetime manifold

throughout our discussion.

While we could choose to work with the hydrodynamic fields defined above it is in fact

convenient to repackage them into an unnormalized vector field and a scalar field. By a simple

redefinition we therefore introduce a the hydrodynamic fields (denoted collectively by B)

B ⌘ {�,⇤�} , �µ ⌘ u

µ

T

, ⇤� ⌘ µ

T

� u

�

T

A� . (2.1)

The fields {�µ
,⇤�} encodes the same hydrodynamic data as the fields {u⌫ , T, µ}. We can

explicitly invert the above relations to get

u

µ =
�µ

p

�g↵��↵��
, T =

1
p

�g↵��↵��
, µ =

⇤� + ��
A�

p

�g↵��↵��
. (2.2)

Thus for the rest of the discussion, the dynamical content of hydrodynamics is d+ 1 degrees

of freedom in the vector field �µ and scalar field ⇤�.

A general hydrodynamic system as reviewed in §1 is characterized by a set of currents: we

have the energy-momentum tensor Tµ⌫ and a charge current Jµ which should be considered

dynamical and an entropy current J

µ
S which enforces the constraint of the second law. In

addition to these currents we can consider the free energy current Gµ which is a particular

linear combination of the above, which we will encounter shortly, cf. (2.15). To simplify nota-

tion, we will collect the various currents we have introduced into a single set by introducing

a collection of tensor fields CH (dropping the indices for brevity)

CH ⌘ {Tµ⌫
, J

µ
, J

µ
S , Gµ} . (2.3)

These currents should all be thought of as given by local covariant functionals of the

background and hydrodynamical fields which we also collectively denote as  

 ⌘ {gµ⌫ , Aµ,�
µ
,⇤�} . (2.4)

Then we can write for our currents CH = CH [ ] or more explicitly for the fundamental

currents we have

T

µ⌫ = T

µ⌫ [ ] = T

µ⌫ [g↵� , A↵,�
↵
,⇤�]

J

µ = J

µ [ ] = J

µ [g↵� , A↵,�
↵
,⇤�]

J

µ
S = J

µ
S [ ] = J

µ
S [g↵� , A↵,�

↵
,⇤�] .

(2.5)

These relations are termed constitutive relations.

The dynamical information of hydrodynamics comprises simply of the statement of con-

servation modulo source terms (which do work on the system) and anomalies. In general

we can write the conservation equations for a microscopic quantum theory with flavour and

Lorentz anomalies in the presence of background sources as:

r⌫T
µ⌫ = J⌫ · Fµ⌫ +Tµ?

H D⌫J
⌫ = J?H (2.6)
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Adiabatic Fluids: A classification

A schematic set of connections between the various classes is as follows:

Class A

Class L

Class B

Class H

Class PSClass PV

Class D



Class L Adiabatic fluids

✦ Consider diffeomorphism and gauge invariant scalar Lagrangian densities 
which are functionals of hydrodynamic fields

will work in d spacetime dimensions and will assume that the hydrodynamic fields {uµ, T, µ}
as well as the background sources {gµ⌫ , Aµ} are slowly varying on this spacetime manifold

throughout our discussion.

While we could choose to work with the hydrodynamic fields defined above it is in fact

convenient to repackage them into an unnormalized vector field and a scalar field. By a simple

redefinition we therefore introduce a the hydrodynamic fields (denoted collectively by B)
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p
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Constitutive relations in Class L are parametrized by a Lagrangian density L [gµ⌫ , Aµ,�µ
,⇤�]

which we will assume to be a local scalar functional of its arguments, i.e., under gauge trans-

formations and di↵eomorphisms L transforms like a scalar field. Intuitively, L can be thought

of as some sort of a generalized pressure functional for the adiabatic fluid.14 We may write

Shydro =

ˆ
d

d
x

p�g L [ ] . (4.1)

Consider now a variation of this Lagrangian functional which, after su�cient number of

integration by parts, can be brought to the form

1p�g

�

�p�g L��rµ(/�⇥PS)
µ

=
1

2
T

µ⌫
�gµ⌫ + J

µ · �Aµ + T V� ��� + T ⇣ · (�⇤� +A� ��
�)

(4.2)

Here (/�⇥PS)
µ denotes the surface terms generated due to integration by parts and is related

to the pre-symplectic potential. The symbol /� denotes that it is linear in variations of fields.

The variation of the Lagrangian makes it easy to obtain the currents CH. For instance

we read o↵ {Tµ⌫
, J

µ} from the above variation and take J

µ
S = s u

µ with

s ⌘
✓

1p�g

�

�T

ˆ p�g L [ ]

◆

�

�

�

�

{u� , µ, g↵� , A↵}=fixed
(4.3)

Here �
�T is the variational (i.e., Euler-Lagrange) derivative. The free energy current can be

obtained using (2.15).

So far V� and ⇣ which multiply variations of the hydrodynamic fields are simply defined

by the above variational principle; they will have a role to play in the sequel. Sometimes it

is convenient to rewrite this expression in terms of {V�, ⇣}. Note that
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� + T ⇣ · (�⇤� +A���

�) = (V� + ⇣ ·A�) �u
� + ⇣ · � (µ� u

�
A�)

� [V� �
� + ⇣ · (⇤� +A��

�)] �T

(4.4)

which in turn implies that

s = � [V� �
� + ⇣ · (⇤� +A��

�)] = � 1

T

[V�u
� + ⇣ · µ]

=) T s+ µ · ⇣ + u

�
V� = 0 .

(4.5)

In the above and in what follows, we will often want to convert general variations of hydro-

dynamic fields {u�, T, µ} in terms of variations of {�µ
,⇤�} and vice versa. This can readily

be done by using the defining equation (2.1) and explicit expressions can be found in (C.1)

for convenience.
14We will later see that upon restricting to hydrostatic configurations, L reduces to the hydrostatic partition

function WHydrostatic which suggests this intuition.
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Class L Adiabatic fluids

Now diffeomorphism and gauge symmetries of the Lagrangian imply a set 
of Bianchi identities:

Since L is a scalar under the background di↵eomorphism and gauge transformation, the

integral on the l.h.s. has to vanish, �
X

´ p�g L = 0, up to boundary terms. This immediately

implies for arbitrary {⇠µ,⇤} one has the di↵eomorphism and gauge Bianchi identities:

r⌫T
µ⌫ = J⌫ · Fµ⌫ +

g

µ⌫

p�g

�

B

�p�g TV⌫

�

+ g

µ⌫
T ⇣ · �

B
A⌫

D�J
� =

1p�g

�

B

�p�g T ⇣

�

(4.10)

These are the Bianchi identities we are after and per se they hold o↵-shell. If we think of

{Tµ⌫ , Jµ, Vµ, ⇣} as functionals of  , then these identities hold identically for arbitrary choice

of the latter fields.

We can supplement (4.10) with another identity which follows from our definition of the

entropy current (4.3)

r�J
�
S = r�(T s��) =

1p�g

�

B

�p�g Ts

�

, (4.11)

which is again valid o↵-shell.

We can now easily check that (4.10) and (4.11) together imply the adiabaticity equation

(2.10) in the absence of anomalies, for

rµJ
µ
S + �µ (r⌫T

µ⌫ � J⌫ · Fµ⌫) + (⇤� + ��
A�) ·D⌫J

⌫

=
1p�g

h

�

B

�p�g Ts

�

+ ��
�

B

�p�g T V�

�

+ (⇤� + ��
A�) · �B

�p�g T ⇣

�

+
p�g T ��

⇣ · �
B
A�

i

=
1p�g

�

B

⇣p�g

h

T s+ T ��
V� +

⇣

⇤� + ��
A�

⌘

· ⇣
i⌘

=
1p�g

�

B

�p�g [T s+ u

�
V� + µ · ⇣]�

= 0 (4.12)

where we have used the basic definitions (2.1) and the relation (4.5) derived earlier. We should

emphasize that by virtue of the Bianchi identities (4.10) holding o↵-shell we have demon-

strated that the Lagrangian system defined by L [ ] satisfies the non-anomalous adiabaticity

equation (2.10) o↵-shell. We will postpone a more detailed discussion of the anomalous situ-

ation until §8; su�ce it to say for now that there is a Lagrangian construction that gives a

particular solution to (2.9).

Sometimes it is convenient to write the combinations that occur above in a conventional

hydrodynamic expansion. Upon explicit evaluation one finds

1p�g

�

B

�p�g TV�

�

+ T ⇣ · �
B
A�

= r�(V� u
�) + V� (r� + a�)u

� + s(r� + a�)T � ⇣ · [E� �D�µ� a�µ]

(4.13)
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one ends up with the non-anomalous adiabaticity equation
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ation until §8; su�ce it to say for now that there is a Lagrangian construction that gives a

particular solution to (2.9).

Sometimes it is convenient to write the combinations that occur above in a conventional

hydrodynamic expansion. Upon explicit evaluation one finds

1p�g

�

B

�p�g TV�

�

+ T ⇣ · �
B
A�

= r�(V� u
�) + V� (r� + a�)u

� + s(r� + a�)T � ⇣ · [E� �D�µ� a�µ]

(4.13)
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Constitutive relations in Class L are parametrized by a Lagrangian density L [gµ⌫ , Aµ,�µ
,⇤�]

which we will assume to be a local scalar functional of its arguments, i.e., under gauge trans-

formations and di↵eomorphisms L transforms like a scalar field. Intuitively, L can be thought

of as some sort of a generalized pressure functional for the adiabatic fluid.14 We may write

Shydro =

ˆ
d

d
x

p�g L [ ] . (4.1)

Consider now a variation of this Lagrangian functional which, after su�cient number of

integration by parts, can be brought to the form

1p�g

�

�p�g L��rµ(/�⇥PS)
µ

=
1

2
T

µ⌫
�gµ⌫ + J

µ · �Aµ + T V� ��� + T ⇣ · (�⇤� +A� ��
�)

(4.2)

Here (/�⇥PS)
µ denotes the surface terms generated due to integration by parts and is related

to the pre-symplectic potential. The symbol /� denotes that it is linear in variations of fields.

The variation of the Lagrangian makes it easy to obtain the currents CH. For instance

we read o↵ {Tµ⌫
, J

µ} from the above variation and take J

µ
S = s u

µ with

s ⌘
✓

1p�g

�

�T

ˆ p�g L [ ]

◆

�

�

�

�

{u� , µ, g↵� , A↵}=fixed
(4.3)

Here �
�T is the variational (i.e., Euler-Lagrange) derivative. The free energy current can be

obtained using (2.15).

So far V� and ⇣ which multiply variations of the hydrodynamic fields are simply defined

by the above variational principle; they will have a role to play in the sequel. Sometimes it

is convenient to rewrite this expression in terms of {V�, ⇣}. Note that

T V� ��
� + T ⇣ · (�⇤� +A���

�) = (V� + ⇣ ·A�) �u
� + ⇣ · � (µ� u

�
A�)

� [V� �
� + ⇣ · (⇤� +A��

�)] �T

(4.4)

which in turn implies that

s = � [V� �
� + ⇣ · (⇤� +A��

�)] = � 1

T

[V�u
� + ⇣ · µ]

=) T s+ µ · ⇣ + u

�
V� = 0 .

(4.5)

In the above and in what follows, we will often want to convert general variations of hydro-

dynamic fields {u�, T, µ} in terms of variations of {�µ
,⇤�} and vice versa. This can readily

be done by using the defining equation (2.1) and explicit expressions can be found in (C.1)

for convenience.
14We will later see that upon restricting to hydrostatic configurations, L reduces to the hydrostatic partition

function WHydrostatic which suggests this intuition.
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Dynamics in Class L

✦ The dynamics in Class L is supposed to reduce to the conservation of 
energy-momentum and charge currents. 

✦  Naive variation with respect to               does not respect this requirement, 
since it would lead to vanishing of the adiabatic heat/charge currents. 

✦ Constrained variational principle: vary the hydrodynamic fields along a 
family related by Lie transport.

and

1p�g

�

B

�p�g T ⇣

�

= D�(⇣ u
�) + [⇣, µ] (4.14)

In the above expressions we encounter the fluid acceleration vector a� and the rest frame

electric field E� = F��u
� introduced earlier.

4.2 Noether Current in Class L

Having seen that Lagrangian systems of hydrodynamics as formulated above satisfy adia-

baticity equation o↵-shell, we now proceed to extract some more basic lessons. Most of these

follow from the basic variational principle and are encoded in the Noether current for the

class L constitutive relations which is related to the free energy current of the system.

We proceed by first deriving the Noether theorem for our Lagrangian system. By substi-

tuting (4.10) into (4.7), we get

rµN
µ[X] =

1

2
T

µ⌫
�

X
gµ⌫ + J

µ · �
X
Aµ + T Vµ �X�

µ + T ⇣ · (�
X
⇤� +Aµ �X�

µ) (4.15)

with Nµ[X] as given in (4.8). The primary content of Noether theorem is that a current Nµ[X]

satisfying the above equation exists.

It is easy to see that every Noether current satisfying (4.15) gives a free energy current

satisfying the adiabaticity equation (2.18) with G?
H

= 0 (for non-anomalous fluids). In par-

ticular, we see that we solve (2.18) by identifying {⇠µ,⇤} = {�µ
,⇤�} (but we will still keep

{gµ⌫ , Aµ} general) and take

G� = �T N�[B] = �T

⇣

�⌫ T
�⌫ + (⇤� + ��

A�) · J� � T ��
h

�⌫
V⌫ + (⇤� + ��

A�) · ⇣
i⌘

G?
H
= 0 . (4.16)

Thus we see that the free energy current coincides (up to a factor of T ) with the Noether

current (or the non-canonical part of the entropy current) N�[B], cf. (2.15).

The corresponding entropy current is also easily constructed: we remind the reader that

the non-canonical part of the entropy current is �G�
/T = N�[B] so that the total entropy

current is given by

J

�
S = N�[B]� �� T

�� � (⇤� + ��
A�) · J�

= N�[B]� u�

T

T

�� � µ

T

· J�
(4.17)

Thus, the choice of free energy/entropy currents is in one to one correspondence with the

choice of the Noether current.

Let us now try to get an alternate expression for Nµ[X] which will be useful later on. We

have from (4.2) and (4.15) the simple identity

rµN
µ[X] =

1p�g

�

X

�p�g L��rµ(/�X⇥PS)
µ

= rµ

⇥

⇠

µL� (/�X⇥PS)
µ
⇤

(4.18)
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✦ This variation leads to equations of motion which when combined with the 
Bianchi identities leads to conservation

turn led to the adiabaticity equation. In particular, we have been treating the hydrodynamic

fields {�µ
,⇤�} as non-dynamical fields thus working o↵-shell as far as the hydrodynamic

fields are concerned. The only exception is the hydrostatic limit studied in §4.3, where we

went on-shell by simply setting {�µ
,⇤�} = {Kµ

,⇤K} and invoking the hydrostatic principle.

This is clearly unsatisfactory; the utility of a Lagrangian is that it not only allows us to

construct on o↵-shell action, but that it also comes equipped with a variational principle that

captures the on-shell dynamics by giving us the equations of motion. We will now proceed to

address this lacunae and give a variational procedure to go on-shell. Our goal is to simply to

give the hydrodynamic fields {�µ
,⇤�} appropriate dynamics which enforces the conservation

equations in (2.6) (with T

µ?
H = J

?
H = 0 in the absence of anomalies).

5.1 A constrained variational principle for hydrodynamics

Let us go back to the derivation of the Bianchi type identities in §4.1. Inspection of (4.10)

which is obeyed by all class L constitutive relations suggests that on-shell equations of hy-

drodynamics (2.6) would be satisfied (with anomaly terms set to zero) if the fields {�µ
,⇤�}

obeyed the following dynamical on-shell equations:

1p�g

�

B

�p�g T Vµ

�

+ T ⇣ · �
B
Aµ ' 0

1p�g

�

B

�p�g T ⇣

� ' 0
(5.1)

These equations have to arise for consistency of our formalism as the dynamical equations

of motion obtained by varying the fields {�µ
,⇤�}. It is clear a-priori that this is not going

to happen naturally; the basic variational equation (4.2) if interpreted naively would lead to

V� + ⇣ · A� = 0 and ⇣ = 0 (assuming T 6= 0), which is certainly not what we would like to

have. The key point we have to understand is the following: given that the dynamical degrees

of freedom comprise of a vector �µ and a scalar ⇤�, we have to decide what variations of

these fields to admit as being physical. Our argument above shows that an unconstrained

variation of these fields is inconsistent with the dynamics we seek, so the question is whether

a suitable constrained variational principle exists.

We would like to claim now that such a constrained variation of {�µ
,⇤�} exists and it

naturally leads to the correct hydrodynamic Ward identities upon using the Bianchi identities

(4.10). To see how the desired equations can be obtained from a variational principle, consider

the following: Fix the metric and gauge field and extremize
´ p�g L among a family of

B = {�µ
,⇤�} which are related to each other via Lie transport. We will denote this class of

variations by to distinguish it from the variation we have considered hitherto without the

Lie transport constraint. To wit, given an arbitrary X = {⇠µ,⇤} we define this constrained

variation as:

: �µ = �

X
�µ

, ⇤� = �

X
⇤� , gµ⌫ = Aµ = 0 . (5.2)
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the adiabaticity equation is linear in the constitutive relations and relates terms of the same

derivative order in the constitutive relations. This means that we can treat anomalous terms

in (2.9) as “inhomogeneous source terms”. These can be removed by picking a suitable partic-

ular solution of adiabaticity equation. As a result we will assume that such anomalous terms

have been appropriately dealt with and focus on the non-anomalous adiabaticity equation by

setting them to zero, i.e., work with the homogeneous equation (2.10) up until §8.

2.2 Physical interpretation of adiabatic fluids

Let us physically understand the nature of the fluid systems that satisfy (2.9). The adjec-

tive ‘adiabatic’ refers to the following fact: say we restrict ourselves to fluid configurations

{�↵
,⇤�} which satisfy the hydrodynamic equations of motion (2.6) which we re-characterize

for the present discussion as

r⌫T
µ⌫ ' J⌫ · Fµ⌫ +Tµ?

H

D⌫J
⌫ ' J?H

(2.11)

with the symbol ' refers to the fact that these equations hold only in this restricted class (i.e.,

on-shell). We can then assign a conserved entropy current to this restricted class of fluid con-

figurations, i.e., rµJ
µ
S ' 0. Thus, the constitutive relations which solve adiabaticity equation

describe entropy-conserving (i.e., adiabatic) transport once hydrodynamic equations are im-

posed. In this sense the adiabatic fluids are on-shell equivalent to the class of non-dissipative

fluids as defined in [19]. One way to interpret the adiabaticity equation is that we have taken

entropy conservation o↵-shell using the hydrodynamic fields as Lagrange multipliers to supply

suitable combination of equations of motion along the lines espoused in [26].

However, the adiabaticity equation is actually a stronger assertion than just entropy

conservation. Say, instead of taking hydrodynamics on-shell via (2.11), we impose

r⌫T
µ⌫ ' J⌫ · Fµ⌫ +Tµ?

H + f

µ
ext

D⌫J
⌫ ' J?H +Qext

(2.12)

where f

µ
ext is the force per unit volume due to an external system and Qext is the charge

injected per unit time per unit volume by the external system. Let assume that this injection

of energy-momentum and charge happens adiabatically and the entropy injected into the

fluid is r.JS ' Sext. The adiabaticity equation is the statement that all these cannot be

together true for arbitrary {fµ
ext, Qext, Sext}. In fact this transfer can be adiabatic if and

only if TSext + u⌫f
⌫
ext + µ · Qext ' 0, i.e., if and only external system satisfies adiabaticity

equation. Thus, any two systems which satisfy adiabaticity equation can be combined to a

bigger system which satisfies adiabaticity equation.

Thus the adiabaticity hypothesis brings in a sense of linearity into hydrodynamics, much

like the superposition principle of quantum mechanics. This allows us to focus the discussion

on isolated systems, with the potential downside that we do not have access to the dissipative

part of hydrodynamics.
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The main motivation for considering adiabatic hydrodynamics is the observation that

non-dissipative parts of many actual hydrodynamic theories coincide with what one finds in

adiabatic hydrodynamics. Not all solutions of adiabaticity equation are physically admissible,

e.g., one might want to impose additional constraints (like Euclidean consistency) and identify

on-shell equivalent or fluid frame-equivalent expressions to eliminate unphysical solutions.

Thus, we generally expect the solutions of adiabaticity equation to furnish a super-set of

physically admissible non-dissipative constitutive relations up to field redefinitions. It is an

open problem in adiabatic hydrodynamics to give a general proof of this super-set property,

but it does seem to hold in various known examples. We will take this as a su�cient motivation

to study adiabatic hydrodynamics.

2.3 Ideal fluids are adiabatic

Having presented the basic equation of interest, we now turn to asking how one might char-

acterize the solutions to the adiabaticity equation. After all we are interested in using these

as the first step in understanding more realistic fluid systems (including dissipation). To this

end we need to show that we have a non-empty solution set to (2.9).

It is now natural to study the non-anomalous adiabatic constitutive relations order by

order in derivative expansion. Let us illustrate how this works in zeroth order in derivative

expansion. The most general constitutive relation with zero derivatives of the hydrodynamic

data is

J

µ
S = s u

µ
, T

µ⌫ = ✏u

µ
u

⌫ + pP

µ⌫
, J

µ = ⇢u

µ
.

(2.13)

where the entropy density s, energy density ✏, pressure p and charge density ⇢ are scalar

functions of T and µ. The tensor Pµ⌫ = gµ⌫+uµ u⌫ is the projector transverse to the velocity.

We have reverted to {uµ, T, µ} so as to write the constitutive relations in their familiar form.

The adiabaticity condition (2.10) can then be written quite simply as

(T u

↵
D↵s+ µ · u↵D↵⇢� u

↵
D↵✏) + (T s+ µ · ⇢� ✏� p)⇥ = 0 (2.14)

where ⇥ ⌘ rµu
µ is the fluid expansion. If we insist that this hold for an arbitrary fluid

configuration, then the combination in each of the parentheses should individually vanish.

This then implies that the fluid should satisfy the first law

�✏ = T �s+ µ · �⇢
and the Gibbs-Duhem relation

✏+ p = T s+ µ · ⇢.
Thus, we recover standard constitutive relations describing thermodynamics from the formal-

ism of adiabatic hydrodynamics.

We will soon see that the family of adiabatic fluids is far richer as evidenced by our classi-

fication described in §1. We will introduce the various classes in due course, and concentrate

for the present on structural aspects of the construction. The reader impatient to see some

more examples is invited to consult §6.
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turn led to the adiabaticity equation. In particular, we have been treating the hydrodynamic

fields {�µ
,⇤�} as non-dynamical fields thus working o↵-shell as far as the hydrodynamic

fields are concerned. The only exception is the hydrostatic limit studied in §4.3, where we

went on-shell by simply setting {�µ
,⇤�} = {Kµ

,⇤K} and invoking the hydrostatic principle.

This is clearly unsatisfactory; the utility of a Lagrangian is that it not only allows us to

construct on o↵-shell action, but that it also comes equipped with a variational principle that

captures the on-shell dynamics by giving us the equations of motion. We will now proceed to

address this lacunae and give a variational procedure to go on-shell. Our goal is to simply to

give the hydrodynamic fields {�µ
,⇤�} appropriate dynamics which enforces the conservation

equations in (2.6) (with T

µ?
H = J

?
H = 0 in the absence of anomalies).

5.1 A constrained variational principle for hydrodynamics

Let us go back to the derivation of the Bianchi type identities in §4.1. Inspection of (4.10)

which is obeyed by all class L constitutive relations suggests that on-shell equations of hy-

drodynamics (2.6) would be satisfied (with anomaly terms set to zero) if the fields {�µ
,⇤�}

obeyed the following dynamical on-shell equations:

1p�g

�

B

�p�g T Vµ

�

+ T ⇣ · �
B
Aµ ' 0

1p�g

�

B

�p�g T ⇣

� ' 0
(5.1)

These equations have to arise for consistency of our formalism as the dynamical equations

of motion obtained by varying the fields {�µ
,⇤�}. It is clear a-priori that this is not going

to happen naturally; the basic variational equation (4.2) if interpreted naively would lead to

V� + ⇣ · A� = 0 and ⇣ = 0 (assuming T 6= 0), which is certainly not what we would like to

have. The key point we have to understand is the following: given that the dynamical degrees

of freedom comprise of a vector �µ and a scalar ⇤�, we have to decide what variations of

these fields to admit as being physical. Our argument above shows that an unconstrained

variation of these fields is inconsistent with the dynamics we seek, so the question is whether

a suitable constrained variational principle exists.

We would like to claim now that such a constrained variation of {�µ
,⇤�} exists and it

naturally leads to the correct hydrodynamic Ward identities upon using the Bianchi identities

(4.10). To see how the desired equations can be obtained from a variational principle, consider

the following: Fix the metric and gauge field and extremize
´ p�g L among a family of

B = {�µ
,⇤�} which are related to each other via Lie transport. We will denote this class of

variations by to distinguish it from the variation we have considered hitherto without the

Lie transport constraint. To wit, given an arbitrary X = {⇠µ,⇤} we define this constrained

variation as:

: �µ = �

X
�µ

, ⇤� = �

X
⇤� , gµ⌫ = Aµ = 0 . (5.2)
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Reference fields for Class L

M

{gµ⌫ , Aµ}{ ab, a}
{', c}

⌘ { a
,⇤ } B ⌘ {�µ

,⇤�}

Figure 1. Illustration of the way various objects are defined. The fields on the physical spacetime
manifold M are related to those on the reference manifold by a pull-back using the dynamical fields
{', c}.

Let us begin by systematically first establishing a reference configuration. It is convenient

to imagine that these reference configurations live on some another spacetime which is

gauge equivalent and di↵eomorphic to the original spacetime. We will use lowercase Latin

alphabets to denote the spacetime indices on to distinguish it from lowercase Greek indices

used for the original spacetime M.

Let ⌘ { a
,⇤ } be the reference hydrodynamic fields living on . The actual {�µ

,⇤�}
are obtained by introducing a di↵eomorphism field '

a(x) and a gauge transformation field

c(x) from physical spacetime M to and then using them to pull-back { a
,⇤ }. In order

to do this, let us introduce the matrices @µ'
a ⌘ @'a

@xµ and its inverse e

µ
a ⌘ @xµ

@'a that can be

used to pull-back tensor indices. For definiteness, let us think of these matrices as functions

of x, viz., living on the actual spacetime M. They satisfy

e

µ
a @⌫'

a = �

µ
⌫ , e

µ
a @µ'

b = �

a
b . (5.5)

With this definition the pull-back of the reference configuration is given by

�µ = e

µ
a(x)

a['(x)]

⇤� = c(x) ⇤ ['(x)] c�1(x) + ��(x) @�c(x) c
�1(x)

(5.6)

Note that ⇤� transforms with the correct inhomogeneous piece so that ⇤� + A� �� trans-

forms covariantly. More precisely, consider a flavor transformation A� 7! g

�1
A� g + g

�1
@�g

and (⇤� +A� ��) 7! g

�1 (⇤� +A���) g. It follows from the above expressions that this

corresponds to a left transformation of c given by c 7! g

�1
c with ⇤ kept fixed.

The decomposition given in (5.6) means that changing {'a
, c} takes {�µ

,⇤�} along a

Lie orbit whereas changing the functional form of { a
,⇤ } takes {�µ

,⇤�} from one Lie orbit

to another Lie orbit. So, in order to get the hydrodynamic equations, we should extremize´ p�g L [ ] with respect to variations of the {'a
, c} fields keeping the functional form of

{ a
,⇤ } fixed. See Fig. 1 for an illustration of the situation.
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The constrained variational principle can be alternately phrased as fixing a 
reference configuration and varying along the pull-back maps by diffeos and 
gauge transformations.
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manifold M are related to those on the reference manifold by a pull-back using the dynamical fields
{', c}.
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,⇤ } be the reference hydrodynamic fields living on . The actual {�µ

,⇤�}
are obtained by introducing a di↵eomorphism field '

a(x) and a gauge transformation field

c(x) from physical spacetime M to and then using them to pull-back { a
,⇤ }. In order

to do this, let us introduce the matrices @µ'
a ⌘ @'a

@xµ and its inverse e

µ
a ⌘ @xµ

@'a that can be

used to pull-back tensor indices. For definiteness, let us think of these matrices as functions

of x, viz., living on the actual spacetime M. They satisfy

e

µ
a @⌫'

a = �

µ
⌫ , e

µ
a @µ'

b = �

a
b . (5.5)

With this definition the pull-back of the reference configuration is given by

�µ = e

µ
a(x)

a['(x)]

⇤� = c(x) ⇤ ['(x)] c�1(x) + ��(x) @�c(x) c
�1(x)

(5.6)

Note that ⇤� transforms with the correct inhomogeneous piece so that ⇤� + A� �� trans-

forms covariantly. More precisely, consider a flavor transformation A� 7! g

�1
A� g + g

�1
@�g

and (⇤� +A� ��) 7! g

�1 (⇤� +A���) g. It follows from the above expressions that this

corresponds to a left transformation of c given by c 7! g

�1
c with ⇤ kept fixed.

The decomposition given in (5.6) means that changing {'a
, c} takes {�µ

,⇤�} along a

Lie orbit whereas changing the functional form of { a
,⇤ } takes {�µ

,⇤�} from one Lie orbit

to another Lie orbit. So, in order to get the hydrodynamic equations, we should extremize´ p�g L [ ] with respect to variations of the {'a
, c} fields keeping the functional form of

{ a
,⇤ } fixed. See Fig. 1 for an illustration of the situation.
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Reference fields for Class L

The pull-back maps come with some residual gauge symmetries, which one 
can view as diffeos and gauge transformations on the reference space.

For example, consider the following gauge transformation for the charged fields:

⇤ 7! f

�1 ⇤ f � f

�1 ��
@�f

c 7! c f

(5.9)

where f is any flavor gauge transformation on . It is then simple to see that this trans-

formation leaves ⇤� una↵ected. Hence, these transformations should be thought of as a new

gauge redundancy in our new description which forces us to identify

{⇤ , c} ⇠ {f�1 ⇤ f � f

�1 ��
@�f, c f}. (5.10)

as they give the same hydrodynamic field ⇤�.

There is a similar redundancy in di↵eomorphisms on the reference manifold given by

'

a 7! f

a(')

⇤ ['a] 7! ⇤ [fa(')]

a['b] 7! @f

a

@'

c
c[f b(')]

(5.11)

Hence, any two configurations which di↵er by such '-di↵eomorphisms should also be thought

of as the same fluid configurations as they lead to the same hydrodynamic field {�µ
,⇤�}.

It is convenient to use a formalism which is covariant with respect to this set of transfor-

mations. Since the redundancy is the gauge and di↵eomorphism properties of our fields, we

introduce a metric and flavor gauge fields on to properly account for it. These structures

on would allow us to covariantize all the transformations. We will do this by first pushing

forward the metric and flavor gauge fields on the actual spacetime M to using {'a
, c} i.e.,

we define

ab['] ⌘ e

µ
a e

⌫
b gµ⌫

a['] ⌘ e

µ
a

⇥

c

�1
Aµc+ c

�1
@µc

⇤

(5.12)

Given the push-forward relation for the metric, the Christo↵el connection transforms in a

related fashion:

a
bc['] ⌘ e

�
c @µ'

a
⇥

�µ
⌫� e

⌫
b + @�e

µ
b

⇤

(5.13)

We can use the connections , to define covariant derivatives on which can then be used

to construct invariants of '-di↵eomorphisms and c gauge transformations.

We can now reformulate the variational principle that gives rise to the hydrodynamic

equations in terms of { ab, a}. We begin by observing that invariance of
´ p�g L [ ]

means that ˆ p�g L(g,A,K,⇤�) =

ˆ p� L ( , , ,⇤ ) ⌘
ˆ p� [ ] (5.14)
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This allows us to pass over completely to the reference manifold

One advantage of doing so will be clear when we consider Schwinger-
Keldysh functionals for general non-equilibrium situations (also for 
anomalous transport in Class L).



Gauge fixing in Class L

Fields on the reference manifold can be gauge fixed to ``static gauge”

There are still some residual gauge symmetries in this gauge which 

Reminiscent of symmetries described earlier in the context of non-
dissipative fluids. We still have details to fill in to make precise contact.

where we use the condensed notation to denote the collection of “hydrodynamic” fields on

the reference manifold.

It follows then that we can get hydrodynamic equations by extremising
´ p� [ ]

by varying {'a
, c} inside { , } keeping { ,⇤ } fixed. To see how this works, we will begin

by decomposing the variations of { , } into variation of sources versus variation of the

dynamical fields {'a
, c}. Using (5.12), we obtain

� ab['] = �( ab['])� �'

c @

@'

c ab['] = e

µ
a e

⌫
b �gµ⌫ � �' ab

� a['] = �( a['])� �'

c @

@'

c a['] = e

µ
a c

�1(�Aµ) c� �' a

(5.15)

where �' is the Lie drag on along {�'a
,�c

�1
�c}.viz.,

�' ab ⌘ ra�'b +rb�'a

�' a ⌘ a

⇣

�c

�1
�c+ b �'

b
⌘

+ �'

b
ba

(5.16)

In the above expressions we have introduced various covariant derivatives r, and field

strengths which are defined with the reference connections , respectively in the usual

fashion. reference derivative - change rto ?

With these definitions in place, it is clear how the variational calculus on the reference

manifold works. First, when we vary
´ p� [ ] with respect to say we get the energy

momentum tensor. When we further extremize
´ p� with respect to '-part of , we are

led to conservation equations for that energy-momentum tensor. The reader can verify that

the statements above are equivalent to to the explicit expressions given in §5.2.

5.4 Static gauge on the reference manifold & hydrodynamic fields

Given a covariant form of an action with some redundancies it is sometimes convenient to

pass to a gauge fixed version and focus on the physical degrees of freedom. To this end we can

partially fix the gauge symmetries in the reference fields. Ignoring any possible Gribov type

topological ambiguities, let us use the gauge transformation and di↵eomorphism freedom on

to set

⇤ = 0, a=0 = 1 and a=I = 0 for I 2 {1, . . . , d� 1}. (5.17)

In what follows, we will refer to this as static gauge. As is clear from above, we will henceforth

use uppercase Latin alphabets to denote spatial indices on .

Let us now examine the residual gauge redundancy that is left unfixed in the static gauge.

The following set of '-di↵eomorphisms and c gauge transformations survive the static gauge

fixing of (5.17)

'

J 7! h

J ('I ) , det

✓

@h

J

@'

I

◆

6= 0

'

0 7! '

0 + g('I )

c 7! c f('I )

(5.18)
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Embedding Class H (PS) into Class L

✦ The hydrostatic limit of a hydrodynamic system is obtained by subjecting the 
fluid to an arbitrary time-independent background sources.

Here E

µ = F

µ⌫
u⌫ is the electric field and �

B
represents the Lie derivatives using the di↵eo-

morphism/flavor transformations generated by {�µ
,⇤�}

�

B
gµ⌫ ⌘ £�gµ⌫ = rµ�⌫ +r⌫�µ

�

B
Aµ ⌘ £�Aµ + @µ⇤� + [Aµ,⇤�] = Dµ(⇤� + �⌫

A⌫) + �⌫
F⌫µ (2.19)

In this expression, we used £� to denotes the Lie derivative along the vector field �.

An alternate form of (2.18) can be given by introducing the fluid acceleration aµ ⌘
u

µrµu
↵ eliminating the thermal gradients:

�
h

(r� + a�)G� � G?
H

i

= J

�
S (r� + a�)T + T

µ⌫(r⌫ + a⌫)uµ + J

� · [D�µ+ a�µ� E�] .

(2.20)

This form of the equation is quite useful in making comparisons with traditional hydrodynamic

analysis; typically one chooses to eliminate thermal gradients in favour of velocity derivatives.

3 Class H: Hydrostatics from Adiabaticity

We have defined adiabatic fluids to be the set of hydrodynamic currents that satisfy (2.9).

While in the previous section we have argued that this set comprises of the obvious example of

ideal fluids, we would like to ascertain (and perhaps classify) other solutions to the adiabaticity

equation. We will proceed to establish the existence of various classes of solutions to (2.9) in

the reminder of the paper. To keep the logical flow of the arguments simple we will start with

statements that hold in great generality and subsequently specialize to more special cases.

Our first case of interest is what we called Class H in §1: we specialize to time-independent

configurations in hydrodynamics (i.e., we limit ourselves to hydrostatics). In order to ascertain

non-trivial constraints on fluids from this hydrostatic restriction we need to turn on external

sources, e.g., background metric and gauge fields, which themselves are time-independent

to begin with. Therefore let us assume that there exists a Killing vector and Killing gauge

transformation collectively denoted by K ⌘ {Kµ
,⇤K} such that �

K
gµ⌫ = 0 and �

K
Aµ = 0.

We will further assume that Kµ is timelike everywhere on the manifold the fluid propagates

on.10 To wit, a stationary background source configuration is encoded as

K ⌘ {Kµ
,⇤K} , gµ⌫ K

µ
K

⌫  0 �! �

K
gµ⌫ = �

K
Aµ = 0 (3.1)

There is a natural hydrostatic configuration associated with this background given by

{�µ
,⇤�} = {Kµ

,⇤K}. This configuration is time-independent since �

K
�µ = �

K
K

µ = 0 and

�

K
⇤� = �

K
⇤K = 0. It therefore follows that for any functional Z [ ] of the fluid dynamical

variables we have

�

B
Z [g↵� , A↵,�

↵
,⇤�] = �

K
Z [g↵� , A↵,K

µ
,⇤K ] = 0 (3.2)

10 In particular, we demand by virtue of K being globally timelike on M that the background the fluid

propagates on is free of ergosurfaces. This is necessary in order for the fluid configuration to have a stationary

solution aligned with the Killing field.
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The Hydrostatic Principle: We now formulate an important non-trivial statement about

the configurations we have just described. A-priori by aligning the fluid velocity and the gauge

parameter to the background Killing structure only results in an o↵-shell configuration of the

system. The hydrostatic principle asserts that these o↵-shell hydrostatic configurations con-

structed above are also automatically on-shell, i.e., they automatically solve the hydrodynamic

equations (2.6). We will see that this holds true for all adiabatic constitutive relations that

we will consider in the sequel. In fact, it strongly suggests that any solution of adiabaticity

equation will satisfy the hydrostatic principle, and we will indeed prove it within large classes

of adiabatic constitutive relations. We do not know of a general proof though, so the reader

can take it as an additional assumption in what follows.

Let us now define the hydrostatic limit of various currents we have defined in the previous

sections by just substituting {�µ
,⇤�} = {Kµ

,⇤K}. The hydrodstatic currents are then

simply obtained as

(CH)Hydrostatic = CH
�

�

{�µ,⇤�}={Kµ,⇤K} (3.3)

The utility of these currents is that they allow us to write down an expression for the hydro-

static partition function, the generating function for correlators of the currents CH.

Hydrostatic partition functions: Consider a fluid on a background manifold M with

metric gµ⌫ and gauge field Aµ. If the background sources further satisfy (3.1) we can then

construct a Wick-rotated manifold over which a partition function could be defined. We begin

by identifying every point p with the point p0 in its future separated from it by a unit a�ne

distance along the vector K

µ. More precisely, we identify the points p and p

0 if there is a

curve x

µ(⌧) such that

x

µ(⌧ = 0) = x

µ(p) , x

µ(⌧ = 1) = x

µ(p0) ,
dx

µ

d⌧

= K

µ (3.4)

We will also assume that {gµ⌫ , Aµ} are su�ciently slowly varying (spatially) so that there

are no caustics within a unit a�ne distance. This identification then converts the original

spacetime M into a fibre bundle with a timelike circle fibred over a spacelike base space

⌃M.11 For definiteness, we will also choose an embedding of the base space into the original

spacetime as a spatial hypersurface (this is equivalent to fixing a gauge for the Kaluza-Klein

(KK) gauge field which arises when we reduce along the timelike circle). For consistency, we

will require that our final results should not depend on this arbitrary choice of embedding.

Since Kµ is Killing, we can Wick rotate the background M 7! ME by a suitable analytic

continuation along the orbits of the Killing vector field. Likewise we also Wick-rotate all the

hydrostatic currents to obtain suitable Euclidean currents12

(CH)Hydrostatic 7! (CH)E (3.5)

11In order to do this without any ambiguity, one needs to prescribe how the flavor fibres at p and p0 should

be identified - we will identify these flavor fibres with a flavor transformation given by ⇤K , i.e., we take the

local gauge choice at p and p0 to be related by the gauge transformation generated by ⇤K . This then gives

fibre bundles charged under the flavor group over the spatial base space.
12In this section we will use the subscript E uniformly to denote the Wick rotated fields of interest.
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where we have used the fact that �

B
annihilates functions in hydrostatics (3.2) to drop the

(/��⇥PS)
� contribution. Here, LHydrostatic denotes L [ ] with {�µ

,⇤�} replaced by {Kµ
,⇤K}.

We finally obtain

WHydrostatic =

ˆ
⌃E⇥IK

d

d
x

p�g LHydrostatic + Boundary contributions (4.23)

where the integral is performed over the manifold ⌃E ⇥ IK where IK is an interval of unit

a�ne length along K

µ. So in the end we get the simple result that the hydrostatic partition

function is just the integral over the Lagrangian after taking the hydrostatic limit of L [ ].

It is useful to make a precise connection between the Noether current construction out-

lined in §4.2 and the entropy current constrained by hydrostatics that has been studied in

some detail in [1, 32].

As we now understand varying (4.23) with respect to the metric and gauge field (we do

not vary {�µ
,⇤�} since they are fixed to {Kµ

,⇤K} in the hydrostatic limit) we obtain

�WHydrostatic =

ˆ
d

d
x

p�g



1

2
T

µ⌫
�gµ⌫ + J

� · �A�

�

Hydrostatic

+ Boundary contributions

(4.24)

which agrees with the rule given in [4]. Further if we just keep the first order deviations

from hydrostatics in the equation for the non-canonical part of the entropy current N�[B] =

��L� (/��⇥PS)
� +r⌫(K�⌫)�, we get the prescription given in [1] as indicated in §3.

Loga: entropy current discussion. We should avoid too much overlap with the earlier

discussion in §3.
Lest the reader be misled into thinking that we recover the complete set of hydrostatic

partition functions (Class H) from the Class L family of adiabatic fluids we hasten to add

an important caveat. It should be clear from (4.23) that we obtain from L [ ] only those

hydrostatic partition functions that can be written as spacetime scalars, since we have an

integral over the entire manifold M = ⌃E ⇥ IK . This is what we called PS in our discussion

in §3. From the categorization explained there there are two other classes of terms in the

partition function which do not obviously arise from Class L Lagrangians: the Class PV

terms involving integrals over transverse vectors and the Class A terms which play a role in

anomalous hydrodynamic transport.16 Thus, apart from these terms (which seem to be a

finite set of terms in any spacetime dimension) we recover most of the theory of partition

functions and the adiabatic constitutive relations that they lead to. We will encounter Class

A terms when we turn to a detailed discussion of anomalies in §8.

5 Hydrodynamic Ward Identities in Class L

Up to this point our discussion of Class L has been quite abstract and in particular has only

exploited the di↵eomorphism and gauge symmetry to extract the Bianchi identities which in
16Since we have focused on Lagrangian solutions to non-anomalous adiabaticity equation (2.10) it is not

surprising that we have not yet encountered Class A.
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✦ The hydrostatic partition function is the Lagrangian evaluated on the 
hydrostatic configuration and integrated over a truncation of the physical 
manifold to a unit affine interval along the Killing field

✦ Makes completely clear that hydrodynamic entropy current is a Noether 
charge (cf., Iyer-Wald constructions for stationary black hole entropy).

Banerjee et. al. ‘12

Bhattacharyya ‘14

Jensen et. al. ‘12



Embedding Class D into Class L

✦ Non-dissipative fluid effective actions use entropy as a fundamental variable.

7 Class D: From Adiabatic to Non-Dissipative Fluids

As presaged at the end of §5, there is a striking similarity between the Class L Lagrangian

solutions to the adiabaticity equation and the e↵ective action formalism for non-dissipative

fluids which was developed earlier in [18] and explored in [19, 21].27 Intuitively, it is clear that

the family of non-dissipative fluids where every on-shell solution to the dynamical equations

of motion is constrained to not produce entropy, should be a special case of adiabatic fluids,

which are engineered to uplift the statement of entropy conservation o↵-shell in a suitable

manner. The similarities are also striking in the explicit examples discussed in §6.
However, at a basic level there is a crucial distinction between the framework of non-

dissipative fluids and the story we have developed thus far for adiabatic fluids. To wit,

the physical fields in the adiabatic fluid formalism are the fluid velocity and the intensive

(local) thermodynamic parameters characterizing the fluctuating Gibbs density matrix. On

the other hand the non-dissipative fluids use entropy density as a primary variable instead of

the temperature. One can nevertheless pass between the two constructions by realizing that

temperature and entropy being conjugate variables one can exchange the two by the simple

expedient of a Legendre transform.

Aided by this observation, we now consider the Legendre transform of L [ ] trading the

temperature T for its conjugate variable s. Part of our basic motivation is of course to make

contact with the existing literature on e↵ective actions for hydrodynamics. We will argue

upon carrying out this Legendre transform and thence passing to a suitable gauge, we recover

the e↵ective action formalism. In e↵ect we will establish that the family of non-dissipative

fluids which we call Class D are encapsulated within Class L family of adiabatic fluids as

presaged in the Introduction. This map will in particular make transparent the physical

origin of the symmetries employed in the e↵ective action formalism.
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V↵1↵2...↵p , we define

"V�1�2...�d�p ⌘ 1

p!
"

�1�2...�d�p↵1↵2...↵pV↵1↵2...↵p (7.2)

Let us first attempt to make contact with the variational principle for Lagrangian theories

(4.2) by re-expressing them in term of our new variables. To do so we begin with the following

identities obtained by varying (7.1):

T ��� =
1

s

"
�S� � ��

s

p�g

�

�p�g T s

�

,

T �⇤� =
1

s

"
�⇤S � ⇤�

s

p�g

�

�p�g T s

�

. (7.3)

From these expressions one can easily check that

T V� ��
� + T ⇣ · (�⇤� +A���

�)� 1p�g

�

�p�g T s

�

=
V�

s

"S� +
⇣

s

·
✓

"⇤S +A�
"S�

◆

.

(7.4)

In deriving the above we have used the identity s+ V� �� + ⇣ · (⇤� +A� ��) = 0 from (4.5).

We can then rewrite (4.2) as

1p�g

�

✓p�g (L� Ts)

◆

=
1

2
T

µ⌫
�gµ⌫ + J

µ · �Aµ +rµ(/�⇥PS)
µ

+
V�

s

"S� +
⇣

s

·
✓

"⇤S +A�
"S�

◆ (7.5)

The rewritten variational equation can be interpreted as follows. We think of L� T s as

a functional of the variables {gµ⌫ , Aµ,S↵1...↵d�1
,⇤S↵1...↵d

} which we can collectively call  S

with the subscript denoting passing to the entropic description. To wit, we simply write

ˆ p�g LS [ S ] ⌘
ˆ p�g (L [ ]� T s)

�

�

�

�

{�,⇤�} 7!{S,⇤S}
(7.6)

Then (7.5) is the defining variational formula for us and gives us the functionals {V�, ⇣}
in this Legendre transformed description. Since entropy density s has taken a primary role, it

follows that the temperature T is then a derived quantity which can then be computed from

T = � �

�s

ˆ p�g LS [ S ] = � 1

s

2

✓

V�
"S�+⇣ ·( "⇤S +A�

"S�)

◆

= �1

s

(µ · ⇣ + u

�
V�) (7.7)

There is no loss of information in the translation between the two descriptions as far

as our current description of non-anomalous fluids is concerned. More specifically, much of
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✦ Legendre transformation of the Lagrangian density gives the desired non-
dissipative effective action



Embedding Class D into Class L

Introducing reference entropic fields and going to the ``static gauge”

The redundancies to start with, are same as before – we have the di↵eomorphisms and

gauge transformations on . Let us gauge fix these by picking a particular frame for the

tensor fields { ,⇤ }. A convenient choice happens to be

123···(d�1) = 1 , 0I1I2···I(d�2)
= 0 , (⇤ )0123...(d�1) = 0 . (7.16)

where as before Ik 2 {1, 2, . . . , (d�1)}. Let us now enumerate the residual gauge redundancies

which are left unfixed by the conditions above:

�

J 7! h

J (�I ) , det

✓

@h

J

@�

I

◆

= 1

�

0 7! g(�I
,�

0) ,
@g

@�

0
6= 0

c 7! c f(�I )

(7.17)

Thus, the spatial �-di↵eomorphisms get reduced to the subset of volume preserving di↵eomor-

phisms whereas the analogue of thermal shift gets enhanced to a �

0-dependent shift. In fact,

�

0 completely drops out of all hydrodynamic fields altogether in this gauge.29 The chem-

ical shift remains unchanged. The first and the third expressions which transform {�I
, c}

have been described in [21, 23] as gSdi↵M�,c , the extended volume preserving di↵eomorphism

symmetry.

Much of the structure we had in static gauge before Legendre transform survives with

small modifications. Since the hydrodynamic fields u

� and µ are una↵ected by Legendre

transform, they retain their definitions given in (5.25) with the simple replacement {', c} 7!
{�, c}. We have (d�1) spatial fields �I such that u�@��I = 0 and a flavor field c. Using these

we define in analogy with the discussion of §5.4 a distance measure on the spatial geometry of

the reference manifold in terms of the matrix ¯IJ ⌘ g

µ⌫
@µ�

I
@⌫�

J . Its inverse then defines a

spatial metric ¯IJ as in §5.4. We can then derive the expressions for the hydrodynamic fields

as

s =
1p
¯

u

� =
1

(d� 1)!
"

�↵1···↵d�1
"

(¯)
I1

...Id�1

d�1
Y

i=1

@↵i�
I i

µ = u

�
⇥

(@�c)c
�1 +A�

⇤

(7.18)

where, as before, "(¯)
I1

...Id�1
is the spatial volume form associated with ¯IJ and ¯ denotes the

determinant of ¯IJ .

29 The reader might worry at this point that our gauge fixing has lost us an equation of motion. This

is indeed true and in this sense static gauge is a bit like temporal gauge in electromagnetism where Gauss

constraint is lost after gauge fixing. But as we will see in a moment, unlike electromagnetism, adiabaticity

equation comes to our rescue and restores the equation that is lost.
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volume-preserving spatial diffeos:

thermal shift symmetry:

chemical shift symmetry:

Temporal diffeomorphism field is non-dynamical: implies that component of 
energy-momentum conservation is traded for entropy conservation.



Some curiosities

✦ Lagrangian constructions for neutral fluids up to 2∂ and charged parity odd 
fluids in 3d to 1∂ have been explicitly carried out. 

✦ As expected there are additional constraints on transport than those seen 
from the second law. 

✦ Very curiously, some of these constraints are realized as universal relations 
amongst transport data in holography.

The Weyl covariant stress tensor for conformal fluid is expressed in a succinct manner in

the following basis of five independent tensors [31] (see also [28]) as:23

T

µ⌫
(2),W = ⌧

✓

u

↵r↵�
µ⌫ +

⇥

d� 1
�

µ⌫

◆

+ C

µ↵⌫�
u↵ u�

+ �1 �
hµ↵

�↵
⌫i + �2 �

hµ↵
!↵

⌫i + �3 !
hµ↵

!↵
⌫i (6.22)

This expression is written in the so called Landau gauge where the corrections to the ideal

fluid stress tensor are demanded to be perpendicular to the velocity field, i.e., Tµ⌫ = T

µ⌫
(0) +

P

k�1 T

µ⌫
(k) with uµT

µ⌫
(k) = 0.

The raw expressions obtained from the variation in Appendix D are somewhat unillu-

minating written as they are in a non-standard basis of tensors. As before we have to use

the on-shell equations of motion for the ideal fluid (6.9) to eliminate the thermal gradient

terms. A somewhat more tricky proposition is the fact that the stress tensor which solves

the adiabaticity equation is not necessarily in the Landau frame. Since the solution to the

adiabaticity equation (2.10) in Class L for non-anomalous fluids has Jµ
S = s u

µ one may in fact

view the result as naturally being cast in the entropy frame (see also [19, 21]). To compare

the results with the Landau frame presentation, we first switch o↵ the first order terms (since

they carry no physical information). We then project the stress tensor computed by the vari-

ational principle onto the frame invariant tensor and scalar parts. This is a relatively trivial

exercise and one can then read o↵ the coe�cients of the independent tensors used in (D.11).

The projectors in question are given explicitly in (6.14). Carrying out the aforementioned

computation we find the following set of transport coe�cients for a Weyl invariant neutral

fluid

⌘ = ⇣ = 0 ,

⌧ = � (2 (d� 2) kR + 2 k�) T
d�2

,  = �2 (d� 2) kR T

d�2
,

�1 = �2 (d� 2) kR T

d�2
, �2 = 4 k�T

d�2
, �3 = �2 ((d� 2) kR � 2 k!)T

d�2
.

(6.23)

The scaling with temperature can of course be determined on dimensional grounds.

What is interesting about the result (6.23) is the following: given that there are a-priori

three parameters allowed in our Lagrangian {k�, k!, kR} after exploiting field redefinition free-

dom, we expect two relations between the five transport coe�cients. These can be ascertained

by inspection to be the simple linear relations:

⌧ = �1 � 1

2
�2 , �1 =  . (6.24)

These relations are actually quite fascinating; we have an infinite class of hydrodynamic con-

stitutive relations for which they hold thanks to the holographic fluid/gravity correspondence,

cf. [29].

23 When comparing with the expressions in these papers we warn the reader that there are some convention

di↵erences (mostly involving factors of two and the sign in the definition of !µ⌫).
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three parameters allowed in our Lagrangian {k�, k!, kR} after exploiting field redefinition free-

dom, we expect two relations between the five transport coe�cients. These can be ascertained

by inspection to be the simple linear relations:
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These relations are actually quite fascinating; we have an infinite class of hydrodynamic con-
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Haack, Yarom ‘08

✦  Are these constraints hinting at a geometric origin of Class L fluids?



Class B adiabatic fluids

✦ This class of constitutive relations solves adiabaticity trivially. Non-
equilibrium, non-dissipative data!

As expected, the stress tensor and charge current derived from Sanom are non-equilibrium

generalizations of the anomalous currents found in [9, 13]. Interestingly, in the presence

of gravitational anomalies the entropy current is modified by an anomalous contribution

from its canonical form J

µ
S = s u

µ. The extra piece turns out to vanish in hydrostatic

equilibrium, indicating why earlier analyses were insensitive to its presence. Since o↵-

shell adiabaticity fails to hold without this term, it is one of the reasons why passing

on to the adiabatic fluid formalism is more e�cacious in delineating constraints on

hydrodynamics than the non-dissipative formalism employed in [23, 24].

• Secondly, we need to make sure that the correct Ward identities (i.e., the familiar hy-

drodynamic equations of motion) are implied by our variational approach. We argue

that the action (1.3) can never achieve this in the presence of anomalies. This issue was

already encountered and explained earlier in [23] in the context of flavour anomalies.

We expect no di↵erence whilst embedding general mixed anomalies into Class L. In

general one may be tempted to argue that since we are dealing with non-equilibrium

physics, an honest treatment should involve a Schwinger-Keldysh doubling of fields.

We carry out such a construction in §9. A rather pleasant consequence of our param-

eterization of viewing hydrodynamic fields {'a
, c} as maps from a fiducial reference

spacetime to a physical configuration is that one has a clear picture of the doubled

gauge symmetries (especially di↵eomorphisms) encountered in the Schwinger-Keldysh

constructions. While there are indeed to sets of gravitational sources, they are both

obtained by pushing-forward data from the reference manifold d+1. We demonstrate

that a Schwinger-Keldysh action that gives the correct anomalous constitutive relations

and Ward identities is the combination of the two copies (R and L) of the transgression

form (1.3) along with a third transgression form that acts as an influence functional

connecting the two copies,

Stot,anom =

ˆ
d+1

⇣

VP [AR,�R, ÂR, �̂R]� VP [AL,�L, ÂL, �̂L] + VP [ÂR, �̂R, ÂL, �̂L]
⌘

,

(1.4)

thus generalizing the discussion of [23].

Class B (Berry curvature type terms): These comprise of the class of solutions to the

adiabaticity equation which are non-hydrostatic but explicitly non-dissipative. They turn

out to satisfy the adiabaticity equation trivially (see §10) and as a result such transport

coe�cients are completely unconstrained in the current algebra approach. The nomenclature

owes its origin to the fact that these can be viewed as Berry curvature type terms obtained

by adiabatically moving around in a closed loop in the fluid configuration space [30]. To wit,

consider the following constitutive relations:

(Tµ⌫)B ⌘ �1

4

⇣

⌘̃

(µ⌫)(↵�) � ⌘̃

(↵�)(µ⌫)
⌘

T �

B
g↵� + ⌅̃(µ⌫)↵ · T �

B
A↵

(J↵)B ⌘ �1

2
⌅̃(µ⌫)↵

T �

B
gµ⌫ � �̃

[↵�] · T �
B
A�

(1.5)
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Hall Transport in 3 dimensions Neutral fluids in arbitrary dimensions

Thus, equations (10.2) and (10.4) give a large set of adiabatic constitutive relations. The set

of constitutive relations parameterized by (2.2) is what we term to be Class B.

All the class B constitutive relations trivially satisfy hydrostatic principle because they

vanish in hydrostatic equilibrium. They thus drop out of the hydrodynamic equations in the

hydrostatic limit. These are thus examples of non-hydrostatic but non-dissipative constitutive

relations. In fact, some aspects of these as we shall see have been encountered in previous

analysis but were not identified to belong to this general class. For instance in the analysis of

[39] it was noticed that the Hall transport coe�cients are unconstrained by any form of the

second law, while [19] noticed a similar feature for a particular combination of second order

transport coe�cients for a neutral fluid. We will now show how these arise within the general

construction above.

10.1.1 Examples of Class B transport

Let us therefore consider some examples. By construction, class B constitutive relations have

at least one derivative (since �

B
gµ⌫ and �

B
Aµ is linear in the gradients of {�µ

,⇤�}. Thus,

there are no examples in zero derivative order.

Hall Transport in 3 dimensions: At one derivative order, in (3) dimensional parity

violating fluids, there is an adiabatic constitutive relation that can be obtained by setting

⌘̃

µ⌫↵� = 2 ⌘̃H u⇢ "
⇢µ↵

P

⌫� along with ⌅̃µ⌫↵ = 0 and �̃

↵� = �̃H u⇢ "
⇢↵� . We obtain then for the

currents

(Tµ⌫)B = �⌘̃H u⇢ ("⇢µ↵ �⌫
↵ + "

⇢⌫↵
�

µ
↵)

(J↵)B = �̃H · u⇢ "⇢↵�
h

E� � T D�

⇣

µ

T

⌘i

(J↵
S )B = �µ

T

· �̃H · u⇢ "⇢↵�
h

E� � T D�

⇣

µ

T

⌘i

(10.5)

We recognize the transport coe�cients �̃H and ⌘̃H as the Hall conductivity and Hall viscosity

respectively, from our discussion in §6.2. As mentioned earlier the fact the Hall transport

terms on-shell lead to an exactly conserved entropy current (from the adibaticity equation)

was the reason that [39] found in the current algebra approach no constraint on them from

the second law. Since the tensor structures vanish in hydrostatics, we have no information

on these terms from the equilibrium partition function either.

Berry terms in neutral fluids: Our second example for Class B constitutive relations is

perhaps in the simplest hydrodynamic system imaginable, a neutral fluid! While there is no

adiabatic transport at first order, we have seen that there are adiabatic parts to each of the

15 transport coe�cients of a neutral fluid, cf. Appendix D. Amongst these lurks a term of the

form (10.2). Since �

B
gµµ = 2r(µ�⌫) can be written using (6.11) in terms of the shear etc.,

and is clearly a first order term, we pick for the tensor ⌘̃µ⌫↵� another first order contribution.

The symmetries we require fix this tensor uniquely to be

⌘̃

µ⌫↵� = 2�� �
µ⌫

P

↵� + 2�! !

µ↵
P

⌫� (10.6)

– 77 –

Using the decomposition of the gradient of �µ we can express the stress tensor in a simple

form:

(Tµ⌫)B = ���

�

⇥�

µ⌫ � �

2
P

µ⌫
�� �! (!µ↵

�

⌫
↵ + !

⌫↵
�

µ
↵) (10.7)

Let us compare this with the parametrization of the second order Landau frame stress tensor

given in (D.11). Using two simple identities

�0⇥�µ⌫ + ⇠2 Pµ⌫ �
2 =

�0 + ⇠2

2

�

⇥�µ⌫ + Pµ⌫ �
2
�

+
�0 � ⇠2

2

�

⇥�µ⌫ � Pµ⌫ �
2
�

�hµ↵!↵⌫i = �1

2
(!µ↵

�

⌫
↵ + !

⌫↵
�

µ
↵) (10.8)

we identify the two coe�cients �� and �! as determining linear combinations of the transport

coe�cients, viz.,

�� =
⇠2 � �0

2
, �2 = 2�! (10.9)

The fact that the two tensor structures appearing in (10.7) are non-dissipative was in fact

was noticed in the analysis of [19], but again it was not appreciated then that these were part

of a larger set of adiabatic transport data in hydrodynamics.

10.1.2 Embedding Class B in Class L?

Given a couple of examples at our disposal let us take stock of whether we can identify a

way to embed Class B into Class L. Each of our two examples has been explored in the

non-dissipative e↵ective action framework, so we can make some informed statements about

whether or not this is possible. Since the details seem to be a-priori distinct in the two cases

we will address them in turn.

Hall transport: The analysis of [21] building on earlier work of [20] and [19] argued that

there is no local e↵ective action that captures Hall viscosity. Furthermore, it was found in

that construction that the Hall conductivity was not an independent transport coe�cient,

but rather a linear combination of it and the coe�cient �̃E introduced in [39] was fixed by

the e↵ective action. More specifically, the tensor structures involved are the ones displayed

in (10.5) and a parity odd contribution to the current of the form �̃E "

µ⇢⌫
u⇢E

⌫ . We find a

very similar relation in the Class L construction outlined in §6.2.
A-priori, given that the Hall conductivity term is adiabatic, any value of its coe�cient

is acceptable. As we have discussed it is also undetermined by hydrostatic equilibrium since

it fails to survive the limit. So it is in fact somewhat curious that the Class L theory fixes

its value in terms of of a transport coe�cient which is constrained to be hydrostatic; �̃E is a

thermodynamic response parameter [21, 39].

Returning to Hall viscosity [21] showed that with local e↵ective actions there is no way to

capture such transport; and we have verified this to be case in Class L. However, more recently

[22] have argued that a suitable non-local term allows one to at least obtain non-vanishing

Hall viscosity. The construction involved...
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✦ The entropy current is canonical (given just by projections of energy-
momentum and charge currents)



Class A: Anomalies as a litmus test

✦ Anomalies provide an interesting window into the structure of quantum field 
theories and can be used to understand constraints on admissible dynamics. 

✦ Since quantum anomalies leave behind indelible signatures in transport 
phenomena they can be used to learn some useful constraints on 
hydrodynamics.  

✦ Constraints on anomalous transport have been derived from entropy 
analysis, generating functions and fluid/gravity & all of these approaches 
agree on the constitutive relations. 

✦ Since we know that anomalous transport is adiabatic we can use it as a 
benchmark for hydrodynamic effective actions. 

✦ Punchline: Anomalous transport can indeed be recovered from a Class L 
Lagrangian but with some surprising twists.

Jensen, Loganayagam, Yarom ’12-‘13



Global Anomalies: Anomaly inflow

JH

JBZ J
cons

@M : physical theory

M : Hall insulator

Figure 2. Illustration of the anomaly inflow mechanism. The bulk theory in M2n+1 is the Hall
insulator theory, and on the boundary we have the physical theory with the anomaly. The Hall
current J

H
propagates in the bulk and its inflow shows up as anomaly in the boundary theory.

Coupling to the Hall insulator corrects the physical current J
cons

by a Bardeen-Zumino contribution
J

BZ
. The consistent boundary current J

cons

together with the Bardeen-Zumino term J
BZ

gives the
total current J

cov

which transforms covariantly.

characterized by a Chern-Simons (2n + 1)-form ICS
2n+1[A] in one dimension higher. In

turn, this Chern-Simons form defines an anomaly polynomial P [F ] = dICS
2n+1[A] which is a

(2n+2)-form defined in two dimensions higher than the original field theory. As the notation
signifies, the anomaly polynomial P is a gauge-invariant functional of the background field
strength F .

To clarify the physical interpretation of these forms, we adopt an inflow picture of
anomalies whereby one imagines placing the field theory under question at the boundary of
an appropriate Hall insulator in one dimension higher.9 The anomaly in the QFT is then
simply understood as a flow of a conserved charge from the Hall bulk to the boundary, see
Fig. 2. These charge currents in the Hall insulator are captured by a generating function
ICS
2n+1[A] which is the Chern-Simons (2n + 1)-form introduced above. More explicitly, let

the variation of this Chern-Simons term be characterized by

�ICS
2n+1 = �A ^ ?2n+1JH + d [�A ^ ?JBZ ] , (2.3)

9We refer the reader to the appendices of [30] for a recent review of anomaly inflow along with the
explicit form of anomalies that follows from this picture.
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✦  An anomalous theory in d = 2n 
dimensions can be coupled to a 
higher dimensional topological 
theory, so as to render the 
combined system anomaly free. 

✦ The Hall insulator for present 
purposes will just be a Chern-
Simons theory: 

!

or equivalently10

�

Z

M2n+1

ICS
2n+1 =

Z

M2n+1

p�g2n+1 Ja
H
�Aa +

Z

@M2n+1

p�g2n Jµ
BZ

�Aµ , (2.4)

where we will call the bulk part of the charge current Ja
H

as the Hall current and we will
call the current Jµ

BZ
induced along the boundary of a Hall insulator as the Bardeen-Zumino

current. The explicit form of these currents is given by11

P ⌘ dICS
2n+1 , ?2n+1JH ⌘ @P

@F
, ?JBZ ⌘ @ICS

2n+1

@F
. (2.5)

Thus, the total boundary current in this picture is then the sum of two contributions:

• the usual charge current of the boundary QFT obtained from varying the QFT path-
integral as in (2.23). This current is neither gauge covariant, nor is conserved [58].
It however satisfies the Wess-Zumino consistency condition obtained by demanding
commutativity of an explicit gauge transformation against variation of the background
gauge potential. For this reason, this current is often called the consistent current.

• Bardeen-Zumino current that arises from the bulk Chern-Simons term.

This total charge current in the boundary transforms covariantly and is hence called the
covariant current of the field theory under question. The divergence of this covariant current
is non-zero in an anomalous field theory: in fact, using the inflow picture, the amount of
boundary covariant charge that is produced is equal to the charge injected by the bulk Hall
currents, viz.,

r↵J
↵
cov

= J?
H
. (2.6)

where ? denotes the direction of the outward normal to the boundary.
As an example, let us begin by considering an abelian flavour symmetry that is anoma-

lous in d = 2n spacetime dimensions. The most general Chern-Simons (2n+ 1)-form made
of a single abelian field is given by ICS

2n+1 = cAA ^ F n where cA is the anomaly coefficient
of interest. Then we define the anomaly polynomial (2n+ 2)-form P ⌘ dICS

2n+1 = cAF
n+1.

The Hodge dual of the Hall current Ja
H

in (2n + 1) dimensional bulk and the Hodge dual
of Bardeen-Zumino current Jµ

BZ
in the 2n dimensional boundary are given by

?2n+1JH ⌘ @P
@F

= (n+ 1) cAF
n ,

?JBZ ⌘ @ICS
2n+1

@F
= n cAA ^ F n .

(2.7)

10We use lower case Greek indices for the QFT (boundary) directions and lower case Latin indices for
the bulk Hall insulator theory. The direction normal to the boundary will often be denoted by ?.

11See [30]. We give a short derivation of this and related results in Appendix D.
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Currents & Ward identities 

✦ The inflow picture makes clear the various currents in the game. In components, we have

Ja
H
=

(n+ 1) cA
2

n
✏ap1p2···p2n�3p2n�2 Fp1p2 · · ·Fp2n�1p2n ,

J?
H

=

(n+ 1) cA
2

n
✏↵1�1···↵n�n F↵1�1 · · ·F↵n�n ,

J↵
BZ

=

n cA
2

n�1
✏↵��1�2···�2n�3�2n�2 A� F�1�2 · · ·F�2n�3�2n�2 .

(2.8)

The covariant currents of the field theory under question are then obtained by first comput-
ing the consistent current via (2.23) and then shifting it by the Bardeen-Zumino contribution
above:

J�
cov

= J�
cons

+ J�
BZ

= J�
cons

+

n cA
2

n�1
✏���1�2...�2n�3�2n�2 A� F�1�2 · · ·F�2n�3�2n�2 .

(2.9)

The anomalous current and energy-momentum conservation equations relevant for hydro-
dynamics are then given by the behaviour of the covariant current, viz.,

r↵T
↵�

= F �↵
(J

cov

)↵ , r↵J
↵
cov

= J?
H

=

(n+ 1) cA
2

n
✏↵1�1···↵n�n F↵1�1 · · ·F↵n�n . (2.10)

While the covariant current is what appears in hydrodynamics, it is the consistent current
that is natural from an effective action viewpoint. As a result we will keep track of both
of these and also derive the relevant Bardeen-Zumino term to translate between the two
currents via an explicit (2n+ 1) dimensional Chern-Simons action.

The statement that anomalies influence hydrodynamical transport entails that there
are contributions to {q↵, ⌫↵,⇧↵�} which are determined explicitly by the quantum anomaly.
In particular, it is convenient to view the contributions to these currents as:

q↵ = q↵anom + q↵diss , ⌫↵ = J↵
anom + ⌫↵diss , ⇧

↵�
= ⇧

↵�
anom +⇧

↵�
diss . (2.11)

where we use the subscripts to denote the contribution to the hydrodynamical transport
to indicate their origins from the anomaly (anom) and the conventional dissipative contri-
butions (diss).12 The anomalous transport terms come in two varieties: (i) contributions
to the current which are functionals of background sources and (ii) contributions involving
intrinsic fluid dynamical data (e.g., gradients of velocity field). An example of the former is
a term in the charge current proportional to the magnetic field (called the chiral magnetic
effect in four dimensions), while contributions involving the fluid vorticity (chiral vorticial
effect) exemplify the latter. The key point to note is that terms involving intrinsic fluid
variables remain non-vanishing even in the absence of external sources, which means that
in hydrodynamics one can infer the presence of an anomaly without explicitly turning on
background electromagnetic (or gravitational) fields.

While the conserved currents form the basic content of hydrodynamics, there is another
object of interest, viz., the entropy current J↵

S

. Following the earlier decomposition we can
write:

J↵
S

= s u↵ + J↵
S, anom + J↵

S, diss (2.12)
12It is typically possible to set q↵diss = 0 without loss of generality and this is indeed exploited in various

constructions.
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✦ The covariant current:
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✦ Ward identities:
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12It is typically possible to set q↵diss = 0 without loss of generality and this is indeed exploited in various
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Anomalous constitutive relations I

✦ Adiabaticity equation for anomalous transport:

Loganayagam ’11

explicitly demarcating the contributions of the perfect fluid, the anomaly and the dissipative
effects. The entropy current is required to satisfy a local form of the second law, r↵J↵

S

� 0;
as has been discussed extensively in the literature this constrains transport in a non-trivial
manner.

The analysis of [13] (generalizing the original argument of [9]) shows that by invok-
ing adiabaticity of the anomalous contributions, one can reduce the requirement of the
second law of thermodynamics of local entropy increase to only involve the dissipative con-
tributions. This leads to an equation that should be satisfied by the covariant anomalous
currents:

(r↵ + a↵) q
↵
anom � J↵anomE↵ = T r↵J↵

S, anom + µ
⇣

r↵J
↵
anom � J?

H

⌘

(2.13)

with J?
H

being the covariant anomaly given in (2.6), while the electric field and fluid accel-
eration defined as E↵ = F↵� u� and a↵ = u� r�u↵ respectively (see Table 1). It was shown
that this equation has a consistent solution, which furthermore could be obtained from a
Gibbs potential constructed from the anomaly polynomial. It was later demonstrated that
this solution is also obtained from a free energy by considering equilibrium configurations
on backgrounds with arbitrary spatial dependence (with slow variations as appropriate to
hydrodynamics) [24, 30]. For the moment we refrain from writing down the particularities
of the solution; the reader will find all the relevant details in §3 and §4.

2.2 An effective field theory for non-dissipative fluids

We now quickly review the essential ingredients of the effective action approach. Following
[40] (see also [41, 44] for further comments) the basic degrees of freedom for a fluid in d

dimensions are d� 1 fundamental fields {�I} which give the position of local fluid elements
in physical space (coordinates x↵). Additional fields characterize the charge label of a single
fluid element; for a global U(1) charge we can take a phase field  to capture this degree
of freedom (the non-abelian generalization is discussed later). The U(1) particle number
symmetry is implemented as a translation in field space

 �!  + c . (2.14)

We assume that this configuration space has a manifold structure and denote it by M�, .
Noting that the labels of individual fluid elements is an arbitrary choice, we demand

reparametetrization invariance under arbitrary diffeomorphisms of M� ⇢ M�, subject to
the condition that the total volume of the fluid remains fixed, i.e.,

�I ! ⇠I(�) , Jacobian(⇠,�) = 1 , (2.15)

leaves the effective action invariant. This leads us to considering a theory with volume-
preserving diffeomorphisms in configuration space. Furthermore, the phase field itself can
be made to depend on the co-moving position within the fluid because charge conservation
holds locally (at least for the non-dissipative fluids that we are dealing with). Therefore,
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✦ This equation can be solved explicitly to obtain the anomalous currents. 

✦  For abelian anomalies in four dimensions the currents are determined to be

Jµ

S,anom = 0

The main claim then which we justify in the rest of the section is that the action

Sanom = � cA

Z

(D ^A ^ F � D̂ ^ Â ^ F̂ ) + cA

Z

M5

(A ^ F ^ F � Â ^ F̂ ^ F̂ )

� cA

Z p�g D↵ 
�

µ2
(2!↵

) + 2µB↵
�

= � cA

Z

(D ^A ^ F � D̂ ^ Â ^ F̂ )� cA

Z

D ^ u

2!
^
⇣

ˆB2 �B2
⌘

+ cA

Z

M5

(A ^ F ^ F � Â ^ F̂ ^ F̂ )

(3.9)

satisfies all the requirements listed above and reproduces precisely the anomalous transport
currents derived earlier using the entropy considerations (see Appendix G for some conven-
tions concerning integration of differential forms and Hodge duals).14 In particular, from
the action Sanom in (3.9) we argue that one obtains the currents

q↵anom = �4 cA µ3 !↵ � 3 cA µ2B↵ , ⇧

↵�
anom = 0 , (3.10)

J↵
anom = �6 cA µ2 !↵ � 6 cA µB↵ , (3.11)

which are precisely those derived by solving (2.13) in [13] .
In the action (3.9) we use the gauge invariant one-form (D ) = d + A and hatted

quantities are constructed from the transverse gauge field introduced in (3.4).
Note that the anomalous pieces of q↵anom, ⇧↵�

anom, and J↵
anom provide an off-shell solution

to anomalous transport for similar reasons as in [13]. These terms by themselves don’t
satisfy traditional hydrodynamic equations of motion and furthermore are derived without
ever referring to the lower order equations of motion. Indeed, we never need to invoke the
dynamics of fluid transport equations to derive these contributions. We will return to on-
shell data once we justify the construction above and describe some interesting conundrums
from our ignorance of their presence.

3.3 Derivation of the anomalous action

We will now derive the action (3.9) in a constructive way, exploiting as remarked above,
the fact that the anomalous current derived from the adiabaticity argument is known from
[13].15 The anomalous current (in the entropy frame) J↵

anom is required to satisfy (3.8); this
provides a valuable clue. A natural way to start, is to ignore the symmetries of the system
momentarily and ask if we can write down an action which reproduces the anomalous
variation to give the r.h.s. of (3.8).

This is rather easy to do. Consider, the parity-odd topological term

SwzI = @
Z

M4

h

D ^A ^ F � D̂ ^ Â ^ F̂
i

(3.12)

14To retain compact expressions we perform some formal manipulations with differential forms as in
[13, 29, 30]. Divisions by a differential form implicitly indicates that the numerator when expanded out
always has a factor which cancels the form we divide by; see the first step in the manipulation of (5.14) for
an illustration.

15Even in the absence of this result we could have taken the known Landau frame result derived in [9] and
rotated it to the entropy frame. We describe the connection between various frame choices in Appendix B.1.
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Anomalous constitutive relations II

✦ We can translate the solution of adiabaticity equation to Landau frame using 
ideal fluid eoms to recover more familiar expressions:

The result (4.11, 4.12) is the first order realization of the anomalous part of the con-
stitutive relations in entropy frame. In order to rotate this result to Landau frame, we
need to make the anomalous heat current contribution in T↵� vanish. This is achieved by
performing the field redefinition u↵ ! u↵ � 1

2
q

↵

anom

"+P

which yields (see also [14])

T↵�

(Landau)

= ("+ P )u↵u� + Pg↵� + . . . , (4.30)

J↵

(Landau)

= ⇢u↵ + C µ2

✓

1� 2

3

⇢µ

"+ P

◆

!↵ + Cµ

✓

1� 1

2

⇢µ

"+ P

◆

B↵ + . . . , (4.31)

J↵

s (Landau)

= s u↵ � C
s

"+ P

✓

2

3
µ3 !↵ +

1

2
µ2B↵

◆

+ . . . , (4.32) ssresult

where ellipses represent first and higher order corrections in gradients.
The hydrodynamical constitutive relations (4.32) is just the answer for anomalous trans-

port derived in [4] using the entropy current analysis. In deriving this expression use was
made of the zeroth order fluid equations of motion, rendering the construction dependent
on on-shell data. In particular, determining the contribution of the anomalous transport
to higher orders, requires knowledge of q↵

anom

and equations of motion beyond the leading
order in gradients. Our construction is absolved of such complications since the entropy
frame analysis as noted already in [14] side-steps the issue by being explicitly off-shell.

4.4.2 Recovering the equilibrium partition function

sec:equip
In [21, 22] it has been shown how the hydrodynamic constitutive relations are constrained
by the requirement of the existence of a stationary flow on arbitrary spatially (slowly)
varying backgrounds. Furthermore, the physics of such time-independent flows can be
encapsulated in an equilibrium partition function of the sources. If we restrict the action
which we proposed in §4 to the such stationary flows, one would expect to recover the
anomalous part of the equilibrium partition function of [21].14 We now demonstrate this
explicitly for our action S

anom

, providing yet another consistency check.
In order to write down the equilibrium solution, we pick an arbitrary background

geometry and gauge field configuration which is time-independent. Essentially we write
down the most general set of background sources with a timelike Killing vector @

t

. The
metric and gauge field can be brought into a canonical form (choosing spatial coordinates
xi (i = 1, 2, 3))

ds2 = �e2�(~x)(dt2 + a
i

(~x)dxi)2 + g
ij

(~x)dxidxj , (4.33)
A↵ = (A0(~x), Ai(~x)) , (4.34)

with Kaluza-Klein gauge field a
i

(~x). Written in terms of the above parametrization, there
exists a stationary (equilibrium) solution to the prefect fluid equations of motion:

u↵
eq

(~x) = e��(~x)�↵
t

, T
eq

(~x) = T0 e
��(~x) , µ

eq

(~x) = A0 e
��(~x) . (4.35) EquilConfig

14
See also [23, 24] for related discussions of anomalous transport from the equilibrium partition function

perspective.
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✦ Similar discussion applies to other dimensions and non-abelian currents.
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The anomalous effective action 

Solution to the adiabaticity equation for anomalous transport derived from 
an effective action:

firmly established a simple Legendre transformation relation between our framework of Class

L and that of Class D in §7. So it would seem that by suitably reverse engineering the

construction of [23] and implementing the Legendre transformation we should be able to solve

for anomalous contributions to the adiabatic hydrodynamics. Indeed this is all that needs to

be done in the case of flavour anomalies; the mixed flavour and gravitational anomaly story

however turns out to be a bit more intricate and provides us with a strong rationale to switch

from the formalism of non-dissipative fluid e↵ective actions to the framework proposed herein.

In this section we will show that a specific class of anomalous terms is a subset of class

L, i.e., they can be formulated in terms of a Lagrangian. For the case of flavor anomalies,

this is a simple modification of [23] which we will use as a guiding template. We will extend

that analysis to the case of general mixed anomalies in what follows. However, our analysis

will not be a complete solution to anomalous hydrodynamics, for we will not be considering

transcendental terms (which fall under Class PV ) as described in ref. [14]. The reasons for

this will become clear once we describe the circumstance where we have a positive result, so

we postpone a critical analysis of this issue till later.

8.1 Flavour anomalies

Let us begin our discussion by recalling some salient facts from the analysis of [23] in the

context of e↵ective actions for flavour anomalies. For the moment, we will focus on finding

solutions to the o↵-shell adiabaticity equation and only subsequently in §9 will we worry

about the on-shell conditions and the anomalous Ward identities.

In the framework of Class D e↵ective actions [23] showed that an e↵ective action given

as a transgression form provides a solution to (2.9) with Tµ?
H = 0. More specifically, it was

shown that for a hydrodynamic system in d = 2n dimensions living on a spacetime manifold

M one has a local e↵ective action in one higher dimension.30 We have an e↵ective action

that can be succinctly written on an extended spacetime Md+1 with @Md+1 = M being the

physical spacetime where the fluid propagates. The e↵ective action takes the beguilingly

simple form

Sanom =

ˆ
Md+1

p�gd+1 Lanom =

ˆ
Md+1

VP [A, Â] =

ˆ
Md+1

u

2!
^
⇣

P [F ]� bP [F̂ ]
⌘

. (8.1)

In the equation above, we have also provided an explicit expression for the transgression form

VP [A, Â] in terms of in terms of the hydrodynamic velocity 1-form u, the vorticity 2-form

! and the anomaly polynomial P [F ] which is a d + 2 = 2n + 2 form built from the gauge

invariant field strengths.31

30 This follows from the fact that we can use the anomaly inflow mechanism to construct a local e↵ective

action by coupling our anomalous quantum system to a topological theory in the higher dimension.
31 We will follow the notational conventions of [9, 12–14, 23] using bold-face letters to indicate di↵erential

forms etc.. Furthermore, to retain compact expressions we perform some formal manipulations with di↵eren-

tial forms as in the aforementioned references. Divisions by a di↵erential form implicitly indicates that the

numerator when expanded out always has a factor which cancels the form we divide by; the expression in (8.1)
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The transgression form denoted herein as VP [A, Â] is a functional of two gauge connec-

tions A and Â. The former is simply the background gauge field source in di↵erential form

notation, while the latter is what was called in [23] as the “hydrodynamical shadow gauge

field”. It is a linear combination of the background source and the hydrodynamic velocity

field defined as

Â = A+ µu , (8.2)

or more directly in terms of the hydrodynamic fields B we have for its components

Âµ = Aµ + T

2 �µ (⇤� + ��
A�) . (8.3)

The symbol bP denotes the anomaly polynomial evaluated over the shadow gauge field. This

shadow field appears pretty much universally in all attempts to understand anomalous trans-

port in hydrodynamics; it was first encountered during an attempt to solve the anomalous

adiabaticity equation in [9] and plays a significant role in the anomalous hydrostatic partition

function (for reasons that will be transparent soon) [11–14].

As written the anomalous e↵ective action is simply a functional of the background sources

{gµ⌫ , Aµ} and the hydrodynamic fields B = {�µ
,⇤�}. The gauge field dependence is manifest,

while the velocity field u

µ can be expressed in terms of B using (2.1). What is perhaps less

clear is the dependence on the background metric, but owing to the presence of the shadow

field in the transgression form, one has a non-trivial metric dependence. To be sure we

are extending our sources and hydrodynamic fields to live on Md+1. We will use the same

symbols to denote the bulk hydrodynamic fields only di↵erentiating the components by the

indices when necessary. Lowercase Latin indices from the later half of the alphabet will denote

bulk indices, with ? being used to denote the direction normal to the physical spacetime M.

To wit,

 d+1 = {gmn, Am,�m
,⇤�} , �? = 0 . (8.4)

Thus, despite its origins within the framework of non-dissipative e↵ective actions in [23],

(8.1) should be viewed as a particular element of Class L for our purposes with L = VP [A, Â].

Strictly speaking we are now extending our definition of Class L to include local Lagrangians

in one higher dimension, as we must, if we insist on dealing with anomalous symmetries.

Generically transgressions are defined on a space of interpolating connections. For in-

stance, given two connections say A1 and A2 respectively, the transgression form denoted

more generally as T [A1,A2] can be viewed as a functional of a continuous set of connections

At with t 2 [0, 1] interpolating between At=0 = A1 and At=1 = A2. One can write this quite

succinctly for gauge connections as

T [A1,A2] =

ˆ 1

0
dt



dAt

dt

·
✓

@P
@F

◆

t

�

(8.5)

is a 2n+ 1 form written as if it were a ratio of a 2n+ 3 form and a 2 form. We refer the reader to the above

references where these concepts are explained in greater detail.
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This functional depends on the hydrodynamic shadow gauge fields

For the cognoscenti: the effective action is a transgression form which 
interpolates between the physical and the shadow connection.
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A�) . (8.3)

The symbol bP denotes the anomaly polynomial evaluated over the shadow gauge field. This

shadow field appears pretty much universally in all attempts to understand anomalous trans-

port in hydrodynamics; it was first encountered during an attempt to solve the anomalous

adiabaticity equation in [9] and plays a significant role in the anomalous hydrostatic partition

function (for reasons that will be transparent soon) [11–14].

As written the anomalous e↵ective action is simply a functional of the background sources

{gµ⌫ , Aµ} and the hydrodynamic fields B = {�µ
,⇤�}. The gauge field dependence is manifest,

while the velocity field u

µ can be expressed in terms of B using (2.1). What is perhaps less

clear is the dependence on the background metric, but owing to the presence of the shadow

field in the transgression form, one has a non-trivial metric dependence. To be sure we

are extending our sources and hydrodynamic fields to live on Md+1. We will use the same

symbols to denote the bulk hydrodynamic fields only di↵erentiating the components by the

indices when necessary. Lowercase Latin indices from the later half of the alphabet will denote

bulk indices, with ? being used to denote the direction normal to the physical spacetime M.

To wit,

 d+1 = {gmn, Am,�m
,⇤�} , �? = 0 . (8.4)

Thus, despite its origins within the framework of non-dissipative e↵ective actions in [23],

(8.1) should be viewed as a particular element of Class L for our purposes with L = VP [A, Â].

Strictly speaking we are now extending our definition of Class L to include local Lagrangians

in one higher dimension, as we must, if we insist on dealing with anomalous symmetries.

Generically transgressions are defined on a space of interpolating connections. For in-

stance, given two connections say A1 and A2 respectively, the transgression form denoted

more generally as T [A1,A2] can be viewed as a functional of a continuous set of connections

At with t 2 [0, 1] interpolating between At=0 = A1 and At=1 = A2. One can write this quite

succinctly for gauge connections as

T [A1,A2] =

ˆ 1

0
dt



dAt

dt

·
✓

@P
@F

◆

t

�

(8.5)

is a 2n+ 1 form written as if it were a ratio of a 2n+ 3 form and a 2 form. We refer the reader to the above

references where these concepts are explained in greater detail.
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To implement the inflow, all fields are taken to live in an auxiliary higher 
dimensional spacetime via

with

At = tAt=1 + (1� t)At=0 (8.6)

Having this explicit expression is useful for carrying out the variational calculus we need

to do to check that the functional Sanom does indeed provide a solution to the anomalous

adiabaticity equation (2.9) with Tµ?
H = 0.

For the particular choice of connections At=0 = Â and At=1 = A we define an inter-

polation from the hydrodynamic shadow field to the physical gauge field source via At =

A+ (1� t)µu. The corresponding field-strengths are given by

F = dA+A2 = B + u ^E

F̂ = dÂ+ Â2 = B̂ + u ^ Ê = B + 2!µ+ u ^ (E �Dµ� aµ)
(8.7)

where a is the acceleration 1-form and ! is the vorticity 2-form of the fluid. B and E are the

rest frame magnetic 2-form and electric 1-form respectively. The interpolating field-strength

is Ft = tF + (1� t)F̂ since (�A)2 = 0 . One can, of course, check explicitly that

VP [A, Â] ⌘
ˆ 1

0
dt



dAt

dt

·
✓

@P
@F

◆

t

�

=
u

2!
^
ˆ 1

0
dt



dFt

dt

·
✓

@P
@F

◆

t

�

=
u

2!
^
⇣

P � bP
⌘

,

(8.8)

as indicated above.

To compute the variation of these transgression forms , we need to evaluate �VP [A, Â].

The explicit computation is described in Appendix D of [23] and we quote the final result:

�VP [A, Â] = �A · ?2n+1JH � �Â · ?2n+1ĴH + d

n

�A · ?JP + �u ^ ?qP

o

. (8.9)

Here JH is the Hall current defined directly in terms of the variation of the anomaly polyno-

mial:

?2n+1 JH =
@P
@F

, (8.10)

with a similar expression for the shadow Hall current ĴH . The two other currents appearing

in (8.9) are defined in terms of the boundary terms arising from the variation

ˆ 1

0
dt



�At ·
✓

@

2P
@F @F

◆

t

· dAt

dt

�

= �A · ?JP + �u ^ ?qP (8.11)

where we have used u ^ dAt
dt = 0 and parameterized the terms involved in the variation in

terms of gauge potential variation and the velocity field variation. These quantities JP and

qP are determined directly from the variational calculus to be

?JP ⌘
ˆ 1

0
dt

✓

@

2P
@F @F

◆

t

· dAt

dt

�

=
u

2!
^
n

@P
@F

� @

bP
@F̂

o

(8.12)
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with

At = tAt=1 + (1� t)At=0 (8.6)

Having this explicit expression is useful for carrying out the variational calculus we need

to do to check that the functional Sanom does indeed provide a solution to the anomalous
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as indicated above.

To compute the variation of these transgression forms , we need to evaluate �VP [A, Â].

The explicit computation is described in Appendix D of [23] and we quote the final result:

�VP [A, Â] = �A · ?2n+1JH � �Â · ?2n+1ĴH + d

n

�A · ?JP + �u ^ ?qP
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. (8.9)

Here JH is the Hall current defined directly in terms of the variation of the anomaly polyno-

mial:

?2n+1 JH =
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, (8.10)

with a similar expression for the shadow Hall current ĴH . The two other currents appearing

in (8.9) are defined in terms of the boundary terms arising from the variation
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= �A · ?JP + �u ^ ?qP (8.11)

where we have used u ^ dAt
dt = 0 and parameterized the terms involved in the variation in

terms of gauge potential variation and the velocity field variation. These quantities JP and

qP are determined directly from the variational calculus to be
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Anomalous constitutive relations

From the usual variational principle we pick up the anomalous constitutive 
relations

More interesting for us are the boundary terms in the last line of (8.14) – these are

the contributions that arise from the inflow mechanism. In particular, they capture the

constitutive relations for anomalous hydrodynamics. Since we have the terms explicitly in

terms of the source variations we can directly read o↵ from here using (4.2) the anomalous

currents to be

T

↵�
anom = q

↵
Pu

� + q

�
Pu

↵
, J

↵
anom = J

↵
P , J

↵
S, anom = 0 . (8.17)

These currents satisfy the anomalous adiabaticity equation (2.9) on the boundary mani-

fold M. This was first established in [9] and follows immediately from the previous analysis

of [23].33 As described there, by isolating the anomalous contributions and solving the adia-

baticity equation to give the above particular solution (8.17), one has accounted for all flavour

anomalies. One can then couple the anomalous Lagrangian Lanom any non-anomalous adia-

batic fluid Lagrangian system and continue to satisfy adiabaticity.

Finally, let us make a remark on the construction above which will be useful for gener-

alizations. The anomalous Lagrangian density
p
gd+1 Lanom is a scalar density on the bulk

spacetime manifold. Per se in keeping with our general philosophy this is an o↵-shell quantity,

since we have nowhere insisted in our construction above that the fields be on-shell. How-

ever, restricting to hydrostatics by enforcing B = K one ends up with an on-shell construction

which as we now appreciate is related to the hydrostatic partition function WHydrostatic (4.23).

As we have remarked in §7 in general the relation between the hydrostatic partition

function and the non-dissipative fluid formalism is somewhat complicated because of the

Legendre transformation. However, for the flavour anomalies the fact that Lanom (8.1) is

independent of the entropy density and thus the Legendre transformation is trivial.34 This

also to some extent underscores the rationale for introduction of the shadow gauge field Â;

the shadow field plays a crucial role in ensuring the correct properties of the hydrostatic

partition function as has been described in earlier works.

8.2 Mixed anomalies

We would now like to generalize anomalous adiabatic fluids to the case where we have gravi-

tational or mixed anomalies. One of the motivations for reviewing in some detail the flavour

case in the previous subsection was that it provides a hint of how one should generalize the

construction to incorporate gravitational e↵ects. To a large extent a specific solution to the

anomalous adiabticity equation in the presence of mixed anomalies can be obtained by treat-

ing the gravitational field as a non-abelian flavour field. This is roughly the correct intuition,

though as we will see in the course of a more through analysis below there are some subtleties

we need to deal with. In particular, we will see that the entropy current is modified in the

presence of gravitational e↵ects, no longer vanishing as in (8.17).

33We will give a more detailed derivation for the mixed anomalies in §8.2. Setting the gravitational terms

in that analysis to zero will demonstrate the claim quite clearly.
34 This was the reason why the direct comparison of the non-dissipative e↵ective action with the hydrostatic

partition function worked quite seamlessly in the consistency checks carried out in [23].
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These reduce to the currents we described earlier for abelian flavour 
anomalies upon explicit evaluation, but the form above completes the story 
for arbitrary flavour symmetries.

with
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as indicated above.
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and

?qP =

ˆ 1

0
ds

ˆ s

0
dt



µ ·
✓

@

2P
@F @F

◆

t

· dAt

dt

�

= � u

(2!)2
^
n

P � bP �
⇣

F � F̂
⌘

· @
bP

@F̂

o

.

(8.13)

The signs in the eq below are correct, but that means that we have some typos in (D,.28)

of our anomaly paper. Please check that all hatted terms there should have an extra minus

sign in front.

So far the variational calculus did not call for any details of how we are parameterizing

the hydrodynamic fields. While we have indeed written the final expression in terms of �u, the

variation of the velocity field, it is easy to convert this to the hydrodynamic field variations

using (C.1). Explicitly one can evaluate variation of the action in terms of the sources and

the hydrodynamic fields32 to obtain an explicit answer for the variation as
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(8.14)

In deriving the above we have used (C.9) to write the variation of Â in terms of the physical

fields and their variations. For notational simplicity we have also abbreviated
 
M

⌘
ˆ
Md+1

p�gd+1 (8.15)

so as to avoid cluttering up the equations.

As we see there are two types of contributions to the variation of our Lagrangian VP [A, Â].

On the one hand, we have some bulk variations (the first two lines in the r.h.s of (8.14)) which

define the bulk currents living on Md+1. To wit,

T

mn
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�
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n + P

n
q u

m
�

, J
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m = �µ · ĴqH (Pqm + uq um)T , ⇣

(d+1)
= T uq Ĵ

q
H (8.16)

These have to to satisfy the analog of the bulk adiabaticity equation; we can show directly by

running our argument for the Bianchi identity in the bulk theory; cf. the discussion around

(8.33) for an explicit proof of this statement.

32One can also convert this variation to one involving the reference fields introduced in §5.2 . These should

also be viewed as living on the reference bulk spacetime since the hydrodynamic fields which they are a proxy

for are defined in terms of maps from there to the physical spacetime.
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Mixed anomalies

✦  Mixed anomalies (flavour+Lorentz) also work but we need to incorporate a 
spin chemical potential, shadow spin connection and deform the entropy 
current.

with T0 being the equilibrium temperature. We could take this expression o↵-equilibrium and

o↵-shell by simply replacing K

µ 7! �µ. However, we need to be careful with the symmetries:

for a Killing vector field D(µK⌫) = 0 by virtue of Killing’s equation. Hence only the antis-

symmetric part of the tensor DµK
⌫ is non-zero. Away from equilibrium when we consider

Dµ�⌫ we are likely to encounter both the symmetric and anti-symmetric contributions, but

we claim that the correct o↵-shell extension of (8.20) should only keep the anti-symmetric

part.36 With this motivation we define:
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⌫� D↵�
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, (8.21)

where we have introduced the antisymmetrizer Qµ↵
⌫� = 1

2(�
µ
� �

↵
⌫ � g

µ↵
g⌫�) for future con-

venience. By construction we ensure that in hydrostatic equilibrium we recover the spin

chemical potential of [13].

The main claim we wish to make is that the Lagrangian density VP [A,�, Â, �̂] provides

a solution to the adiabaticity equation (2.9). Furthermore, the currents derived from this

Lagrangian are consistent with those derived earlier in [13] in hydrostatic equilibrium. We

will establish this by a straightforward computation.

8.3 Variational calculus for mixed anomalies

The anomalous Lagrangian density VP [A,�, Â, �̂] (8.18) is once again a transgression form.

Let us therefore focus on the transgression formula between the pairs of gauge and spin
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tational connection � behaves exactly like a non-abelian gauge connection, the calculation is

a straightforward generalization of what we had to in the case of the flavour anomaly.

We begin by considering the first variation of the transgression form, which is given

directly by the analog of (8.14), except that now we have terms coming from the spin con-

nection. This can be written in a reasonably compact form by introducing bulk Hall currents
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(8.22)

The bulk Hall currents are themselves given in terms of the derivatives of the anomaly

polynomial with respect to the field strengths and are given by

?2n+1JH =
@P
@F

,

?2n+1⌃H
b
a = 2

@P
@Ra

b
,

(8.23)

36 We do not have an a-priori reason to motivate this particular choice; what we can see is a post-facto

argument. Choosing the spin chemical potential to contain the symmetric part of the gradient o↵-equilibrium

results in a tension with the adiabaticity equation; see the discussion around (8.37) for what goes wrong.
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We are going to start our discussion for the mixed anomaly by mimicking the discus-

sion for the flavour case. Specifically, since there is a close connection between the o↵-shell

Lagrangian and the on-shell hydrostatic partition function we are going to take inspiration

from the latter which is by now well understood for mixed anomalies [13]. Once again we

imagine that the set of anomalies of our underlying quantum system is encoded in an anomaly

polynomial P [A,�] with A being the gauge connection and � the spin connection for the

background geometry.35 We are also unabashedly going to work in the bulk geometry Md+1

with the physical spacetime M = @Md+1 as before. The general set of conditions we impose

on the geometry is similar to that encountered in §8.1, though we will have to add some new

ingredients as we proceed.

In analogy with the flavour story, let us consider modifying Class L by adding to the

Lagrangian a higher dimensional term of the form
ˆ
Md+1

p�gd+1 Lanom =

ˆ
Md+1

VP [A,�, Â, �̂] =

ˆ
Md+1

u

2!
^
⇣

P [F ,R]� bP [F̂ , R̂]
⌘

(8.18)

The specific choice of the Lagrangian is motivated by the fact that VP [A,�, Â, �̂] is the

canonical form for the scalar part of the hydrostatic anomalous partition function (Class PS).

The key di↵erence from (8.1) is the dependence on the background geometry; the anomaly

polynomial now is a functional both of the background field strength and the background

curvature R.

Lets us examine the dependence of the potential anomalous Lagrangian introduced above:

apart from the backgound sources {gmn, Am} we have also the shadow fields appearing in

Lanom. The shadow flavour gauge connection Â is the same as before being given by (8.2).

The shadow spin connection however is new and requires to be defined. A natural course of

action is to follow the partition function analysis of [13] and demand that this be given in

terms of the background spin connection, the velocity field and a spin chemical potential ⌦µ
⌫

as

�̂µ
⌫ = �µ

⌫ + ⌦µ
⌫ u . (8.19)

Modulo defining the spin chemical potential we are now equipped with a putative anomalous

Lagrangian.

The spin chemical potential should couple to the background metric structure since its

origins are in the Lorentzian structure of the local tangent space geometry on M (and hence

by inflow on Md+1). In hydrostatic equilibrium the analysis of [13], shows that it is related

to the gradient of the Killing vector Kµ which we extend trivially to a Killing field on Md+1.

The relation in the hydrodynamic variables living on the physical spacetime M is just

(⌦µ
⌫)Hydrostatic = T0D⌫K

µ (8.20)

35 We will mostly work with the one-form spin connection since it is most conducive for the purposes of carry-

ing out the formal manipulations. Translating this to the Christo↵el connection is reasonably straightforward

and we will have need to do so when we write out some explicit components.
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✦The currents can be derived again by the standard variational principle, 
but the entropy current is non-canonical.

gauge transformation fields X and performing yet another integration by parts we finally

convert (8.32) into

�

X

ˆ
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=
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(8.33)

We are now in a position to read o↵ the boundary Bianchi identities which are obeyed

by our anomalous fluid. We find that these take the form (picking out coe�cients of the

arbitrary ⇠↵ and (�+ ⇠

↵
A↵) from the above expression)

D�T
↵�
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�
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�
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◆
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(8.34)

and

D↵J
↵
anom = J?H � Ĵ?H . (8.35)

The terms on the r.h.s. of the expressions of (8.34) and (8.35) with the one ? component of

the Hall currents are due to bulk inflow.

We now want convert these Bianchi identities into an adiabaticity equation and check

that (2.9) is satisfied with an appropriate choice of currents. Since the energy-momentum

and charge currents are defined by varying the Lagrangian with respect to the sources, these

currents are already manifest in the above expressions. Plugging these in and demanding

that the following adiabaticity equation be upheld

D↵J
↵
S, anom + �↵
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⌘

= 0

(8.36)

results in a non-trivial solution for J↵
S,anom! More precisely, we find that the following set of

currents satisfy (8.36) (the first two lines are just (8.31) which we reproduce for convenience):
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(8.37)
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Anomalous Ward identities

The Ward identities from diffeomorphism and gauge invariance (after using 
the bulk Bianchi identities) are

from Lnon�anom by the subscript ‘non-anom’ so as to keep track of them explicitly. These

terms then are required to satisfy the non-anomalous Bianchi identities from (4.10):

D⌫T
µ⌫
non�anom = (J⌫)non�anom · Fµ⌫ +

g

µ⌫

p�g

�

B

�p�g T (V⌫)non�anom

�

+ g

µ⌫
T ⇣non�anom · �

B
A⌫ ,

D�J
�
non�anom =

1p�g

�

B

�p�g T ⇣non�anom

�

. (8.39)

We note that we are not adding any bulk non-anomalous terms since the presumption is

that the physical fluid lives on M with the bulk fields on Md+1 simply providing us with an

e�cient way to keep track of the inflow and Hall currents.

Since we are interested in the on-shell dynamics, let us introduce the reference fields

{ a
,⇤ } and their related pullback fields {'a

, c}.39 The dynamical information of the the-

ory is obtained by extremizing the e↵ective action Seff with respect to the pullback fields.

Performing the required manipulations we find firstly that the bulk the currents satisfy the

on-shell conditions

g

mn
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' 0 . (8.40)

On the other hand for the boundary degrees of freedom we find that the extremization in the

Lie orbit of the reference sources { ab, A} leads to

g
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p�g
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�p�g T [(V⌫)non�anom + (qP )⌫ ]
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�p�g T ⇣non�anom

� ' 0 . (8.41)

Note that the anomalous part of the action only contributes a single term proportional (qP )µ.

This can be seen from (8.30) where all the boundary terms except the very last one give

vanishing contribution when we restricted to the constrained variation in the Lie orbit of the

reference sources.

Using then the Bianchi identities together with the on-shell dynamical equations (8.40)

and (8.41) we find that while the bulk theory satisfies a sensible set of equations, the on-shell

fluid configurations on the boundary M obey
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39For the discussion of anomalous fluids the reference fields and the reference manifold are taken to be

d+1 dimensional. However, we will refrain from introducing a new notation for the bulk reference quantities;

hopefully it will be clear from the context whether we are discussing the bulk or the boundary reference data.
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These are not the correct conservation equations. 

The shadow terms on the r.h.s suggest that the inflow has excess 
contributions. This is manifest in the transgression language at the level of 
the action.



A Schwinger-Keldysh functional for anomalies

✦ A convenient way to capture the Ward identities is to think about the 
problem in the thermofield doubled  theory.
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Figure 2. Illustration of the Schwinger-Keldysh setup. The physical spacetime manifold M has been
doubled. However, the two copies are not entirely independent as they are both related to the same
reference configuration on via pull-backs using the dynamical fields {', c}L,R. Despite the presence
of two copies of source fields on there is only one di↵eomorphism and gauge redundancy involved;
invariance under this symmetry implies Schwinger-Keldysh Bianchi identities.

reference manifold and thence push forward to the physical spacetime. We believe this is

the correct way to understand the symmetries of the Schwinger-Keldysh formalism and hope

to provide further insight into the non-equilibrium applications of this reformulation in due

course.

9.2 Anomalous Ward identities in the Schwinger-Keldysh formalism

Having dispensed with the basic formalism for enlarging the Class L hydrodynamics in terms

of a Schwinger-Keldysh doubled theory, we now turn to our stated goal of using this framework

to derive the anomalous Ward identities (8.43).

We hark back to the discussion of §8.4 where we took our anomalous e↵ective action in

the single copy theory to be Seff [ ], cf. (8.38). From that discussion, it is clear that we need

to add to the total action Seff another term which fixes the dynamics by ensuring that we

have the correct amount of inflow. In the double-field context, we are thus looking for a total

action of the form

Stot ⌘ Stot[ L, R]

= Seff [ R]� Seff [ L] + Scross[ R, L] ,
(9.3)

with Seff [ ] being given in (8.38) and Scross is a cross-contour term that involves fields

from both copies of the theory. It proves convenient for reasons mentioned above to write

the action Stot in terms of heavy reference fields. This can always be achieved using (9.1).

The resulting action will depend on R = { R
ab['R], R

a ['R], a['R],⇤ ['R]} and similarly for

L, i.e., we e↵ectively view it as an e↵ective action for two sets of hydrodynamic degrees of
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Doubled cure for Ward identities

✦ The conserved currents in hydrodynamics are defined by variation with 
respect to the ``difference sources”.

freedom { R, L}. We thus write

Stot ⌘ Stot['R, cR,'L, cL] =

 

Snon�anom[ R] +

ˆ
Md+1

VP [ R]

!

�
 

Snon�anom[ L] +

ˆ
Md+1

VP [ L]

!

+ Scross[ R, L]

(9.4)

As remarked earlier by working in terms of the reference manifold (and its bulk extension

which we continue to denote as Md+1), we circumvent potential confusions about the presence

of two copies of the spacetime manifold with two metrics and two gauge and di↵eomorphism

symmetries. Despite the fact there are still two copies of source fields living on , there

is only one physical gauge and di↵eomorphism invariance involved in (9.4). As we will see

momentarily, invariance under this symmetry on imposes Bianchi identities.

From the action (9.4) one obtains the hydrodynamic constitutive relations by varying

with respect to the reference sources { , }R,L and taking the hydrodynamic limit:
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cR(x) = cL(x) ⌘ c(x)

(9.5)

where '

a = 1
2('

a
R + '

a
L) is the common part of 'R and 'L which coincides with 'R, 'L in

the hydrodynamic limit. The equations of motion, on the other hand, will be obtained by

extremizing Stot with respect to {'a
, c}R,L inside { ab['], a[']}R,L.

Since the contributions from Seff [ ] have already been computed in §8.4, we now turn to

an explicit description of the contributions that come from Scross. Using the same arguments

as [23], we can infer what the form of Scross [ R, L] ought to be. Its form is pretty much

dictated by ensuring that we have the correct amount of inflow: it needs to be a transgression

form between the two sets of shadow fields. We therefore claim that the precise term to

add as our anomalous influence functional is the transgression from hatted fields on the right

towards hatted fields on the left contour, i.e.,

SIF =

ˆ
Md+1

VP [ÂR, �̂R; ÂL, �̂L] ⌘
ˆ
Md+1

VP
⇣

Â[ R], �̂[ R]; Â[ L], �̂[ L]
⌘

, (9.6)

The main thing we need to check is that the above cross-term influence functional provides

the right correction terms necessary to fix the anomalous hydrodynamic Ward identities (8.42)

without influencing the physical currents (8.37). We can use the same kind of manipulations

as in §8.3 to verify this. Let us start by computing the variation of the influence functional
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✦ There is a unique influence functional which respects the symmetries of the 
construction and provides the correct currents + Ward identities:
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symmetries. Despite the fact there are still two copies of source fields living on , there

is only one physical gauge and di↵eomorphism invariance involved in (9.4). As we will see

momentarily, invariance under this symmetry on imposes Bianchi identities.

From the action (9.4) one obtains the hydrodynamic constitutive relations by varying

with respect to the reference sources { , }R,L and taking the hydrodynamic limit:

T

ab
hydro =

2p�
✓

�Stot

�

R
ab['R]

� �Stot

�

L
ab['L]

◆

�

�

�

�'
a
R(x) = '

a
L(x) ⌘ '

a
(x)

cR(x) = cL(x) ⌘ c(x)

J

a
hydro =

1p�
✓

�Stot

�

R
a ['R]

� �Stot

�

L
a[�L]

◆

�

�

�

�'
a
R(x) = '

a
L(x) ⌘ '

a
(x)

cR(x) = cL(x) ⌘ c(x)

(9.5)

where '

a = 1
2('

a
R + '

a
L) is the common part of 'R and 'L which coincides with 'R, 'L in

the hydrodynamic limit. The equations of motion, on the other hand, will be obtained by

extremizing Stot with respect to {'a
, c}R,L inside { ab['], a[']}R,L.

Since the contributions from Seff [ ] have already been computed in §8.4, we now turn to

an explicit description of the contributions that come from Scross. Using the same arguments

as [23], we can infer what the form of Scross [ R, L] ought to be. Its form is pretty much

dictated by ensuring that we have the correct amount of inflow: it needs to be a transgression

form between the two sets of shadow fields. We therefore claim that the precise term to

add as our anomalous influence functional is the transgression from hatted fields on the right

towards hatted fields on the left contour, i.e.,

SIF =

ˆ
Md+1

VP [ÂR, �̂R; ÂL, �̂L] ⌘
ˆ
Md+1

VP
⇣

Â[ R], �̂[ R]; Â[ L], �̂[ L]
⌘

, (9.6)

The main thing we need to check is that the above cross-term influence functional provides

the right correction terms necessary to fix the anomalous hydrodynamic Ward identities (8.42)

without influencing the physical currents (8.37). We can use the same kind of manipulations

as in §8.3 to verify this. Let us start by computing the variation of the influence functional
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Summary & Open Questions

✦  We have now a reasonable theory of adiabatic fluids which encompasses 
many known constraints on hydrodynamic transport. 

✦ The off-shell formulation makes transparent various symmetries in previous 
investigations and makes clear the general structure of transport.

✦ Ideally, we would like to embed Class B and Class PV into Class L have a 
unified Lagrangian derivation of all known constraints. 

✦ There appear to be tantalizing connections to holography which should be 
fleshed out. 

✦ Can one deform adiabatic fluids to incorporate dissipation?


