Phenomenology of a light singlet-like scalar in NMSSM

Marcin Badziak

Institute of Theoretical Physics, University of Warsaw

Corfu Summer Institute, 12 September 2014

based on:

MB, M. Olechowski and S. Pokorski, JHEP 1306 (2013) 043 [arXiv:1304.5437]

NATIONAL SCIENCE CENTRE

Motivation

- ullet Higgs boson mass in NMSSM with moderate or large aneta
 - contribution from mixing with the singlet scalar
 - constraints on Δm_h from the LEP data
 - mixing with the heavy doublet scalar
- Production and decays of the 125 GeV Higgs
- Signatures of the light singlet-like scalar at the LHC
 - strongly enhanced decays to $\gamma\gamma$
- Conclusions

Higgs-like particle with the mass of about 125 GeV has been discovered by LHC experiments

Good news for SUSY:

such Higgs mass is below the upper bound predicted in simple SUSY models

Not so good news for SUSY:

such Higgs mass is rather big for MSSM

Motivation

Higgs boson mass in MSSM and its extensions
$$\begin{split} m_h^2 &= M_Z^2 \cos^2 2\beta + (\delta m_h^2)^{\rm rad} + (\delta m_h^2)^{\rm non-MSSM} \\ &(\delta m_h^2)^{\rm rad} \approx \frac{3g^2 m_t^4}{8\pi^2 m_W^2} \left[\ln \left(\frac{M_{\rm SUSY}^2}{m_t^2} \right) + \frac{X_t^2}{M_{\rm SUSY}^2} - \frac{1}{12} \frac{X_t^4}{M_{\rm SUSY}^4} \right] \end{split}$$

• $M_{SUSY} \gtrsim 5$ TeV – for vanishing stop mixing $X_t^2 = 0$ • $M_{SUSY} \gtrsim 700$ GeV – for optimal stop mixing $X_t^2 \approx 6M_{SUSY}^2$

Motivation

Higgs boson mass in MSSM and its extensions
$$\begin{split} m_h^2 &= M_Z^2 \cos^2 2\beta + (\delta m_h^2)^{\rm rad} + (\delta m_h^2)^{\rm non-MSSM} \\ &(\delta m_h^2)^{\rm rad} \approx \frac{3g^2 m_t^4}{8\pi^2 m_W^2} \left[\ln \left(\frac{M_{\rm SUSY}^2}{m_t^2} \right) + \frac{X_t^2}{M_{\rm SUSY}^2} - \frac{1}{12} \frac{X_t^4}{M_{\rm SUSY}^4} \right] \end{split}$$

• $M_{SUSY} \gtrsim 5$ TeV – for vanishing stop mixing $X_t^2 = 0$ • $M_{SUSY} \gtrsim 700$ GeV – for optimal stop mixing $X_t^2 \approx 6M_{SUSY}^2$

If non-MSSM contribution accounts for 10 (5) GeV of the Higgs mass:

- $M_{
 m SUSY}\gtrsim$ 2 (3) TeV for vanishing stop mixing $X_t^2=0$
- $M_{
 m SUSY}\gtrsim 300$ (400) GeV for optimal stop mixing $X_t^2pprox 6M_{
 m SUSY}^2$

 $5 \div 10$ GeV non-MSSM contribution to the Higgs mass may allow for substantially lighter stops (less fine tuning)

LHC constraints on the stop mass

For typical SUSY spectra the stop masses below about 600 - 700 GeV are ruled out by the LHC

One can try to:

● hide light stops in some corners of SUSY parameter space ⇒ EW fine-tuning may be small but different kind of fine-tuning (required to get SUSY spectrum avoiding the constraints) my pop up

LHC constraints on the stop mass

For typical SUSY spectra the stop masses below about 600-700 GeV are ruled out by the LHC

One can try to:

- hide light stops in some corners of SUSY parameter space ⇒ EW fine-tuning may be small but different kind of fine-tuning (required to get SUSY spectrum avoiding the constraints) my pop up
- accept some EW fine-tuning and hope that stop masses are just below 1 TeV

Taking the second approach:

- $\mathcal{O}(5)$ GeV correction to the MSSM Higgs mass could be satisfactory
 - at least for moderate and large values of $\tan\beta$ for which the tree level MSSM term is close to its maximal value

Higgs sector in NMSSM

NMSSM is MSSM extended by a singlet superfield S that couples to H_u and H_d generating effective μ -term:

 $W_{\text{NMSSM}} = \lambda S H_u H_d + f(S)$

Soft terms are usually assumed to be some subset of:

$$\begin{split} -\mathcal{L}_{\text{soft}} \supset m_{H_u}^2 |H_u|^2 + m_{H_d}^2 |H_d|^2 + m_S^2 |S|^2 + \\ &+ (A_\lambda \lambda H_u H_d S + \frac{1}{3} \kappa A_\kappa S^3 + m_3^2 H_u H_d + \frac{1}{2} m_S'^2 S^2 + \xi_S S + \text{h.c.}) \end{split}$$

Various versions of NMSSM have different assumptions about which soft terms are present and what is the form of f(S) e.g.:

The "scale-invariant" NMSSM:

•
$$f(S) = \kappa S^3/3$$

• $m_3^2 = m_S'^2 = \xi_S = 0$

Higgs sector in NMSSM

$$\hat{M}^{2} = \begin{pmatrix} \hat{M}_{hh}^{2} & \frac{1}{2}(m_{Z}^{2} - \lambda^{2}v^{2})\sin 4\beta & \lambda v(2\mu - \Lambda\sin 2\beta) \\ \frac{1}{2}(m_{Z}^{2} - \lambda^{2}v^{2})\sin 4\beta & \hat{M}_{HH}^{2} & \lambda v\Lambda\cos 2\beta \\ \lambda v(2\mu - \Lambda\sin 2\beta) & \lambda v\Lambda\cos 2\beta & \hat{M}_{ss}^{2} \\ \Lambda = A_{\lambda} + \langle \partial_{S}^{2}f(S) \rangle \end{pmatrix}$$

The mass of the SM-like Higgs h:

$$m_h^2 = M_Z^2 \cos^2 2\beta + (\delta m_h^2)^{\text{rad}} + \lambda^2 v^2 \sin^2 2\beta + (\delta m_h^2)^{\text{mix}}$$

NMSSM contributions:

- tree-level contribution due to λSH_uH_d interaction
- ullet contribution due to mixing among \hat{h} , \hat{s} and \hat{H} states mainly $\hat{h} extsf{-}\hat{s}$

$$m_h^2 = M_Z^2 \cos^2 2\beta + (\delta m_h^2)^{\text{rad}} + \lambda^2 v^2 \sin^2 2\beta + (\delta m_h^2)^{\text{mix}}$$

The most popular strategy to get big enough Higgs boson mass is to use the NMSSM tree-level contribution

- $\sin 2\beta$ can not be small $\Rightarrow \tan \beta$ close to 1 (usually < 3)
- λ must be big (may become non-perturbative below GUT scale) in order to overcompensate the decrease of the tree-level MSSM term $M_Z^2 \cos^2 2\beta$

$$m_h^2 = M_Z^2 \cos^2 2\beta + (\delta m_h^2)^{\text{rad}} + \lambda^2 v^2 \sin^2 2\beta + (\delta m_h^2)^{\text{mix}}$$

The most popular strategy to get big enough Higgs boson mass is to use the NMSSM tree-level contribution

- $\sin 2\beta$ can not be small $\Rightarrow \tan \beta$ close to 1 (usually < 3)
- λ must be big (may become non-perturbative below GUT scale) in order to overcompensate the decrease of the tree-level MSSM term $M_Z^2 \cos^2 2\beta$

Our proposal:

increase m_h by the mixing contribution

- moderate and large values of $\tan \beta$ especially interesting because they give big tree-level MSSM term $M_Z^2 \cos^2 2\beta$
- for moderate and large values of $\tan\beta$ we need the mixing contribution because the tree-level NMSSM one is very small

The mixing always "pushes away" the eigenvalues

- \hat{h} - \hat{H} mixing decreases m_h
- \hat{h} - \hat{s} mixing increases m_h only when $m_s < m_h$
- \Rightarrow we prefer
 - $m_s < m_h$
 - substantial \hat{h} - \hat{s} mixing
 - small \hat{h} - \hat{H} mixing

The mixing always "pushes away" the eigenvalues

- \hat{h} - \hat{H} mixing decreases m_h
- \hat{h} - \hat{s} mixing increases m_h only when $m_s < m_h$
- \Rightarrow we prefer
 - $m_s < m_h$
 - substantial \hat{h} - \hat{s} mixing
 - small \hat{h} - \hat{H} mixing

We concentrate on models with $\frac{1}{2}m_h < m_s < m_h \ll m_H$

First approximation: ignore mixing with \hat{H}

$$\hat{M}^{2} = \begin{pmatrix} \hat{M}_{hh}^{2} & \hat{M}_{hs}^{2} \\ \hat{M}_{hs}^{2} & \hat{M}_{ss}^{2} \end{pmatrix}$$

where \hat{M}^2_{hh} is the SM-like Higgs mass squared without mixing taken into account $\hat{M}^2_{hh} = M_Z^2 \cos^2 2\beta + (\delta m_h^2)^{\rm rad}$

With the mixing
$$m_h = \hat{M}_{hh} + \Delta_{
m mix}$$

$$\Delta_{\min} = m_h - \sqrt{m_h^2 - \overline{g}_s^2 \left(m_h^2 - m_s^2\right)} \approx \frac{\overline{g}_s^2}{2} \left(m_h - \frac{m_s^2}{m_h}\right) + \mathcal{O}(\overline{g}_s^4)$$

 \overline{g}_s is a coupling of s to Z bosons (normalized to the SM value) In order to obtain big positive Δ_{mix} one prefers

- ullet large singlet-doublet mixing i.e. large \overline{g}_s
- $m_s \ll m_h$

It is not possible to have simultaneously big mixing and light singlet

Light scalar with a substantial mixing with the SM-like Higgs would have been discovered by the LEP experiments

$$\overline{BR}(s \to b\bar{b}) \equiv \frac{BR(s \to b\bar{b})}{BR(h^{SM} \to b\bar{b})}$$

$$\xi_{b\bar{b}}^2 \equiv \overline{g}_s^2 \times \overline{BR}(s \to b\bar{b})$$
For $\hat{h} - \hat{s}$ mixing only: $\xi_{b\bar{b}}^2 = \overline{g}_s^2$
stronger LEP constraints on \overline{g}_s^2 for lighter singlet-dominated scalars
$$I_s = \frac{1}{20} + \frac{1}{20} +$$

0

_

Mixing with the singlet only

For a given m_s^2 we have upper bound on $\overline{g}_s^2 \Rightarrow$ upper bound on Δ_{\min}

- $\Delta_{
 m mix}$ up to 6 GeV in a few-GeV interval for m_s around 95 GeV
- $\Delta_{
 m mix}^{
 m max}$ drops down very rapidly for $m_s \lesssim 90$ GeV

Mixing with (very) heavy doublet has little impact on the masses of two other scalars

However, even small admixture of the heavy doublet may change substantially the couplings of s to b and τ if $\tan\beta$ is **not** small

$$C_{b_s} = C_{\tau_s} = \overline{g}_s + \beta_s^{(H)} \tan \beta$$

where $s = \overline{g}_s \hat{h} + \beta_s^{(H)} \hat{H} + \beta_s^{(s)} \hat{s}$ is the light scalar eigenvector

For large an eta and $\overline{g}_s eta_s^{(H)} < 0$, $\overline{BR}(s o b ar{b})$ can be strongly suppressed

 $\xi_{b\bar{b}}^2 \ll \overline{g}_s^2$ can be obtained relaxing the constraints from the *b*-tagged LEP searches!

LEP constraints on $s \rightarrow jj$

If $\overline{BR}(s \to b\bar{b})$ is suppressed the $s \to c\bar{c}$ and $s \to gg$ decays dominate Flavour-independent LEP searches for $s \to jj$ provide the main constraint

Constraints on ξ_{jj}^2 are typically much weaker than on $\xi_{b\bar{b}}^2$, in particular for smaller m_s , so larger values of \overline{g}_s^2 are allowed

Marcin Badziak

Phenomenology of a light singlet-like scalar in NMSSM

Upper bound on Δ_{mix}

For suppressed $\overline{BR}(s\to b\bar{b})$ larger corrections to the Higgs mass from mixing are consistent with the LEP data

• $\Delta_{
m mix}\gtrsim 5~{
m GeV}$ for m_s between 60 and 110 GeV

• $\Delta_{
m mix}\gtrsim 8~{
m GeV}$ for m_s around 100 GeV

When does the $sb\bar{b}$ coupling suppression occur?

 $\overline{BR}(s\to b\bar{b})$ of the light singlet-dominated scalar is a complicated function of $\tan\beta$

 $\overline{BR}(s
ightarrow b ar{b})$ is suppressed when:

 $\Lambda(\mu \tan \beta - \Lambda) \gtrsim 0 \qquad \Rightarrow \qquad \mu \Lambda > 0$

- One of the regions with strongly suppressed $\xi_{b\bar{b}}^2$ occurs close to $\tan\beta_1\sim \mathcal{O}(\Lambda/\mu)$
- The other region with strongly suppressed $\xi_{b\bar{b}}^2$ occurs close to $\tan \beta_2 \sim \mathcal{O}\left((\mu/\Lambda)(m_H^2/m_h^2)\right)$
- $aneta_1$ increases while $aneta_2$ decreases with increasing ratio Λ/μ
- When Λ/μ is big enough two regions of strongly suppressed $\xi_{b\bar{b}}^2$ may merge to produce one large region in $\tan\beta$ compatible with the LEP results

Numerical example: $m_s = 75$ GeV

- \bullet the LEP bounds satisfied for $30 \lesssim \tan\beta \lesssim 40 \Rightarrow$ no new fine-tuning needed
- $\bullet\,$ Correction to the SM-like Higgs mass is $\Delta_{\rm mix}\sim 6\,$ GeV
 - It would be below 2 GeV if mixing with H was neglected

Numerical example: $m_s = 100 \text{ GeV}$

• the LEP bounds satisfied for $an \beta \lesssim 25$

• $\Delta_{
m mix}$ up to about 8 GeV

• $aneta\lesssim 18$, $\Delta_{
m mix}\lesssim 2.5$ GeV if mixing with H is neglected

Mixing term between singlet and SM-like doublet:

$$\hat{M}_{hs}^2 = \lambda v (2\mu - \Lambda \sin 2\beta)$$

For moderate and large values of $\tan\beta$

$$\hat{M}_{hs}^2 \approx 2\lambda v \mu$$

$$v \simeq 174 \text{ GeV}, \ \mu \gtrsim 100 \text{ GeV}$$

 $\Rightarrow m_s^2 \text{ becomes negative for } \lambda \text{ bigger than } O(0.1)$

Predictions for the branching ratios of the SM-like Higgs

Mixing with \hat{H} changes also the properties of the SM-like Higgs

Production and decays of the 125 GeV Higgs

$$R_i^{(h)} \equiv \frac{\sigma(pp \to h) \times \text{BR}(h \to i)}{\sigma^{\text{SM}}(pp \to h) \times \text{BR}^{\text{SM}}(h \to i)}$$

Couplings of the 125 GeV Higgs to up-type quarks and gauge bosons are reduced with respect to the SM:

$$C_g \approx C_\gamma \approx C_{t_h} \approx C_{V_h} = \sqrt{1 - \overline{g}_s^2} \qquad \Rightarrow \qquad \frac{\sigma(pp \to h)}{\sigma^{\rm SM}(pp \to h)} \approx 1 - \overline{g}_s^2$$

Anti-correlation between the branching ratios of h and s:

 $\overline{BR}(s \to b\bar{b}) \text{ suppressed } \Rightarrow R_{\gamma\gamma}^{(h)} \approx R_{VV}^{(h)} < 1 - \overline{g}_s^2$

Properties of the 125 GeV Higgs consistent with the SM but still a lot of room for new physics

Numerical scan

Marcin Badziak

Phenomenology of a light singlet-like scalar in NMSSM

Enhanced $s \rightarrow \gamma \gamma$

In the region with suppressed $sb\bar{b}$ coupling the branching ratios to up-type fermions and gauge bosons are enhanced by a factor that may exceed 10.

The $s \rightarrow \gamma \gamma$ channel is very promising for the s discovery at the LHC

$$C_{b_s} = C_{\tau_s} = 0$$

 C_{b_s} suppressed only by the amount required to satisfy LEP constraints on $\xi^2_{b\bar{b}}$

The signal in γγ channel up to 3 times stronger than in the SM!
Maximal Δ_{mix} predicts R^s_{γγ} > 1 for (almost) all values of m_s

Marcin Badziak

Constraints on $R^s_{\gamma\gamma}$ from the 125 GeV Higgs data

Constraints from the 125 GeV Higgs data: excluded at 3σ consistent within 3σ consistent within 2σ

consistent within 1σ

• Enhancement of the $s \rightarrow \gamma \gamma$ signal consistent with the LHC data!

For $m_s = 110$ GeV:

- CMS upper bound $R^s_{\gamma\gamma} \lesssim 0.6$
- $\Delta_{\rm mix}^{\rm max}$ more constrained by the LHC than the LEP $s\to jj$ searches

The sensitivity of the search in the $\gamma\gamma$ channel gets worse quite slowly with decreasing m_s

For $m_s = 110$ GeV:

- CMS upper bound $R^s_{\gamma\gamma} \lesssim 0.6$
- $\Delta_{\rm mix}^{\rm max}$ more constrained by the LHC than the LEP $s\to jj$ searches

The sensitivity of the search in the $\gamma\gamma$ channel gets worse quite slowly with decreasing m_s

s could have already been discovered at the LHC if the already collected data were analysed for $m_s < 110~{\rm GeV}$

125 GeV Higgs mass may be much easier to obtain in NMSSM with large $\tan\beta$ due to mixing in the Higgs sector:

Correction from mixing $\Delta_{\rm mix}$ up to $5-7~{\rm GeV}$ for $m_s \in (60,110)~{\rm GeV} \Rightarrow$ Stop masses around 1 TeV even for small stop mixing

In spite of suppressed production rate, the signal for s in the $\gamma\gamma$ channel is typically stronger than for the SM Higgs!

Decays of s and 125 GeV Higgs are anti-correlated:

Enhanced $s \to \gamma \gamma$ implies suppressed $h \to \gamma \gamma$, $h \to WW^*/ZZ^*$

The scenario could be tested by precision measurements of the h couplings (ILC, TLEP?) or \ldots

direct searches of s at the LHC - the Higgs searches in the $\gamma\gamma$ channel need to be extended below 110 GeV, down to 60 GeV.