CMSSM WITH GENERALIZED YUKAWA QUASI-UNIFICATION: AN UPDATE

C. Pallis

DEPARTAMENT DE FÍSICA TÉORICA – IFIC
UNIVERSITY OF VALÉNCIA – CSIC

Based On

• N. Karagiannakis, G. Lazarides and C. P., to Appear.

Outlook

• Embedding The Minimal Supersymmetric (SUSY) Standard Model (MSSM) in A Pati-Salam (PS) SUSY Grand Unified Theory (GUT)
• Confronting the Resulting Constrained MSSM (CMSSM) With LHC, PLANCK & LUX
• Results: Stau-Coannihilation Vs Focus-Point Region
• Conclusions

The Corfu Summer Institute 2014
3-12 September 2014
Corfu, Greece
The Initial Superpotential

We focus on the PS and PQ-invariant superpotential

\[W_1 = W_{\text{MSSM}} + W_{\text{PQ}} + W_{\text{HPS}} \]

where

- \(W_{\text{MSSM}} = y_{ij} F_i h F_j^c = y_{ij} F_i \left(\tilde{H} \right) F_j^c = y_{ij} \left(H^T \varepsilon L_i e_j^c - \tilde{H}^T \varepsilon L_i \nu_j^c + H^T \varepsilon Q_{ia} d_j^c - \tilde{H}^T \varepsilon Q_{ia} u_j^c \right), \]

with \(\varepsilon = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \), \(Q_{ia} = \begin{pmatrix} u_{ia} \\ d_{ia} \end{pmatrix} \) and \(L_i = \begin{pmatrix} \nu_i \\ e_i \end{pmatrix} \).
The Initial Superpotential

We focus on the PS and PQ-invariant superpotential

$$W_1 = W_{\text{MSSM}} + W_{\text{PQ}} + W_{\text{HPS}}$$

where

- $$W_{\text{MSSM}} = y_{ij} F_i h F^c_j = y_{ij} F_i (\bar{H} \ H) F^c_j = y_{ij} \left(H^T \varepsilon L_i e^c_j - \bar{H}^T \varepsilon L_i \nu^c_j + H^T \varepsilon Q_{ia} d^c_{ja} - \bar{H}^T \varepsilon Q_{ia} u^c_{ja} \right),$$

with $$\varepsilon = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ Q_{ia} = \begin{pmatrix} u_{ia} \\ d_{ia} \end{pmatrix} \text{ and } L_i = \begin{pmatrix} \nu_i \\ e_i \end{pmatrix}. $$

- $$W_{\text{MSSM}} \text{ leads to Yukawa unification (YU), i.e., }$$

\[
h_t(M_{\text{GUT}}) = h_b(M_{\text{GUT}}) = h_{\tau}(M_{\text{GUT}}) = y_{33}
\]

Embedding MSSM in a Pati-Salam SUSY GUT

Confronting the Resulting CMSSM With LHC, PLANCK & LUX Results: Stau-Coannihilation Vs Focus-Point Region

C. Pallis

CMSSM With Generalized Yukawa Quasi-Unification: An Update
The Initial Superpotential

We focus on the PS and PQ-invariant superpotential

\[W_1 = W_{\text{MSSM}} + W_{\text{PQ}} + W_{\text{HPS}} \]

where

\[W_{\text{MSSM}} = y_{ij} F_i h F_j^c = y_{ij} F_i \begin{pmatrix} \tilde{H} \\ H \end{pmatrix} F_j^c \]

\[y_{ij} \begin{pmatrix} H^T \epsilon L_i e_j^c - \bar{H}^T \epsilon L_i \nu_i^c + H^T \epsilon Q_{ia} d_{ja}^c - \bar{H}^T \epsilon Q_{ia} u_{ja}^c \end{pmatrix}, \]

with \(\epsilon = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, Q_{ia} = \begin{pmatrix} u_{ia} \\ d_{ia} \end{pmatrix} \) and \(L_i = \begin{pmatrix} \nu_i \\ e_i \end{pmatrix} \).

- \(W_{\text{MSSM}} \) leads to Yukawa unification (YU), i.e.,

\[h_i(M_{\text{GUT}}) = h_b(M_{\text{GUT}}) = h_r(M_{\text{GUT}}) = y_{33} \]

- \(W_{\text{PQ}} = \lambda_{pq} \frac{P^2 \bar{P}^2}{M_S} - \lambda_{\mu} \frac{P^2}{2M_S} \text{Tr}(h\epsilon h^T \epsilon), \)

 to generate \(\mu = \frac{\lambda_{\mu} f_a^2}{M_S} \sim 1 \text{ TeV} \)

- \(W_{\text{HPS}} = \lambda_S \left(\bar{H}^c H^c - M^2 \right) + \lambda_{ivc} \frac{(\bar{H}^c F_i^c)^2}{M_S}, \)

 to generate masses for RHNs

Table: Superfields

<table>
<thead>
<tr>
<th>Superfields</th>
<th>Representations Under (G_{\text{PS}})</th>
<th>Decompositions Under (G_{\text{SM}})</th>
<th>Global Charges</th>
<th>(R)</th>
<th>(PQ)</th>
<th>(\mathbb{Z}_2^{\text{mp}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matter Superfields</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(F_i)</td>
<td>(4, 2, 1)</td>
<td></td>
<td>(Q_{ia} (3, 2, 1/6))</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>(F_i^c)</td>
<td>(3, 2, 1/3)</td>
<td></td>
<td>(L_i (1, 2, -1/2))</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>Higgs Superfields</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(H^c)</td>
<td>(4, 1, 2)</td>
<td></td>
<td>(u_{Ha}^c (3, 1, -2/3))</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\bar{H}^c)</td>
<td>(4, 1, 2)</td>
<td></td>
<td>(d_{Ha}^c (3, 1, 1/3))</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(S)</td>
<td>(1, 1, 1)</td>
<td></td>
<td>(S (1, 1, 0))</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(G)</td>
<td>(6, 1, 1)</td>
<td></td>
<td>(g_a^c (3, 1, -1/3))</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(h)</td>
<td>(1, 2, 2)</td>
<td></td>
<td>(H(1, 2, 1/2))</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(P)</td>
<td>(1, 1, 1)</td>
<td></td>
<td>(P(1, 1, 0))</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>(\bar{P})</td>
<td>(1, 1, 1)</td>
<td></td>
<td>(\bar{P}(1, 1, 0))</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
The Initial Superpotential

We focus on the PS and PQ-invariant superpotential

\[W_1 = W_{\text{MSSM}} + W_{\text{PQ}} + W_{\text{HPS}} \]

Where

- \(W_{\text{MSSM}} = y_{ij} F_i h F_j^c = y_{ij} F_i (\tilde{H} \cdot H) F_j^c = y_{ij} \left(H^T \epsilon_L e_j^c - \tilde{H}^T \epsilon_L e_j^c + H^T \epsilon Q_{ia} d_{ja} - \tilde{H}^T \epsilon Q_{ia} u_{ja} \right), \)

with \(\epsilon = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \), \(Q_{ia} = \begin{pmatrix} u_{ia} \\ d_{ia} \end{pmatrix} \), and \(L_i = \begin{pmatrix} \nu_i \\ e_i \end{pmatrix} \).

- **\(W_{\text{MSSM}} \) leads to Yukawa unification (YU), i.e.,**

\[h_i(M_{\text{GUT}}) = h_b(M_{\text{GUT}}) = h_\tau(M_{\text{GUT}}) = y_{33} \]

- **\(W_{\text{PQ}} = \alpha_{\text{PQ}} \frac{p^2 \bar{p}^2}{M_S} - \lambda_\mu \frac{p^2}{2M_S} \text{Tr}(h e h^T \epsilon), \)**

to generate \(\mu = \lambda_\mu f_a^2 / M_S \sim 1 \text{ TeV} \)

- **\(W_{\text{HPS}} = \lambda_S \left(\tilde{H}^c H^c - M^2 \right) + \lambda_{iv} \frac{\left(\tilde{H}^c F_i^c \right)^2}{M_S} \)**

to generate masses for RHNs

\[+ \left(\lambda_H H^c H^c + \lambda_{\tilde{H}} \tilde{H}^c \tilde{H}^c \right) \]

to generate masses for \(d_H^c, \tilde{d}_H^c \)

with \(G = \begin{pmatrix} \epsilon_{abc} g_{c}^c & \bar{g}_{a}^c \\ -\bar{g}_{a}^c & 0 \end{pmatrix} \) \(\Rightarrow \bar{G} = \begin{pmatrix} \epsilon_{abc} \bar{g}_{c}^c & g_{a}^c \\ -g_{a}^c & 0 \end{pmatrix} \)
SOFT SUSY BREAKING TERMS

WORKING IN THE CONTEXT OF CMSSM, WE ADOPT UNIVERSAL INITIAL CONDITIONS AT $M_{\text{GUT}} \approx 2 \times 10^{16}$ GeV:

- A COMMON MASS $M_{1/2}$ FOR GAUGINOS:

 $$M_1(M_{\text{GUT}}) = M_2(M_{\text{GUT}}) = M_3(M_{\text{GUT}}) = M_{1/2}$$

 $$\Rightarrow M_1(M_{\text{SUSY}}) < M_2(M_{\text{SUSY}}) < M_3(M_{\text{SUSY}}).$$

- A COMMON MASS m_0 FOR SCALARS:
 - SLEPTONS, $m_L(M_{\text{GUT}}) = m_E(M_{\text{GUT}}) = m_0$
 - SQUARKS,

 $$m_Q(M_{\text{GUT}}) = m_U(M_{\text{GUT}}) = m_D(M_{\text{GUT}}) = m_0,$$

- HIGGS, $m_H(M_{\text{GUT}}) = m_{\tilde{H}}(M_{\text{GUT}}) = m_0$.

- A COMMON TRILINEAR COUPLING CONSTANT, A_0:

 $$A_t(M_{\text{GUT}}) = A_b(M_{\text{GUT}}) = A_\tau(M_{\text{GUT}}) = A_0.$$

THE MINIMIZATION OF THE TREE LEVEL EFFECTIVE POTENTIAL AT AN OPTIMAL SCALE $M_{\text{SUSY}} = \sqrt{m_{11} m_{12}}$ GIVES:

$$\mu^2(M_{\text{SUSY}}) \approx \frac{m_H^2(M_{\text{SUSY}}) - m_{\tilde{H}}^2(M_{\text{SUSY}}) \tan^2 \beta}{\tan^2 \beta - 1} - \frac{1}{2} M_Z^2. \quad (\text{NATURALITY ENTAILS: } \mu \sim m_{H,\tilde{H}} \sim M_Z)$$

FREE PARAMETERS OF CMSSM: $M_{1/2}$, m_0, A_0, $\tan \beta = \langle \tilde{H} \rangle / \langle H \rangle$, sign$\mu$.

1 B.C. Allanach (2002); G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov, http://lapth.in2p3.fr/micromegas
Soft SUSY Breaking Terms

Working in the Context of CMSSM, We Adopt Universal Initial Conditions At $M_{\text{GUT}} \approx 2 \times 10^{16}$ GeV:

- **A Common Mass $M_{1/2}$ For Gauginos:**

 $$M_1(M_{\text{GUT}}) = M_2(M_{\text{GUT}}) = M_3(M_{\text{GUT}}) = M_{1/2}$$

 \[\Rightarrow M_1(M_{\text{SU}}) < M_2(M_{\text{SU}}) < M_3(M_{\text{SU}}). \]

- **A Common Mass m_0 For Scalars:**

 - **Sleptons,** $m_L(M_{\text{GUT}}) = m_E(M_{\text{GUT}}) = m_0$
 - **Squarks,**

 $$m_Q(M_{\text{GUT}}) = m_U(M_{\text{GUT}}) = m_D(M_{\text{GUT}}) = m_0,$$

 - **Higgs,** $m_H(M_{\text{GUT}}) = m_H(M_{\text{GUT}}) = m_0$.

- **A Common Trilinear Coupling Constant,** A_0:

 $$A_t(M_{\text{GUT}}) = A_b(M_{\text{GUT}}) = A_\tau(M_{\text{GUT}}) = A_0.$$

The minimization of the tree level effective potential at an optimal scale $M_{\text{SU}} = \sqrt{m_1 m_2}$ gives:

$$\mu^2(M_{\text{SU}}) \approx \frac{m_H^2(M_{\text{SU}}) - m_H^2(M_{\text{SU}}) \tan^2 \beta}{\tan^2 \beta - 1} - \frac{1}{2} M_Z^2. \quad \text{(Naturality entails: $\mu \sim m_{H,R} \sim M_Z$)}$$

Free Parameters Of **CMSSM:** $M_{1/2}, m_0, A_0, \tan \beta = \langle \tilde{H} \rangle / \langle H \rangle, \text{sign}\mu.$

Software used for the Analysis of The Parameter Space of CMSSM

- Mathematica For Solving the RGEs (Gauge and Yukawa Constants and Soft SUSY Masses and Trilinears);

- SOFTSUSY1 For the Calculation of SUSY Spectrum;

- micrOMEGAs2.4.51 For the Computation of the Various Cosmological Constraints.

1B.C. Allanach (2002); G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov, http://lapth.in2p3.fr/micromegas
SUSY Corrections to the Fermion Masses

- **(a) Sbottom-Gluino** and **(b) Stop-Higgsino** loops give rise to sizable (20%) **SUSY corrections**\(^2\) to \(b\)-quark mass:

\[
\Delta m_b \approx \frac{g_3^2}{6\pi^2} m_g \mu \tan \beta \left(m_Z, m_{b_1}, m_{b_2} \right) + \frac{h_t^2}{16\pi^2} A_t \mu \tan \beta \left(\mu, m_{t_1}, m_{t_2} \right)
\]

Where \(I(x, y, z)\) is a **dimensionless function** which arises from the loop computation.

\(^2\) L. Hall, R. Rattazzi and U. Sarid (1994); M. Carena et al. (1994); D. Pierce et al. (1997); S.F. King and M. Oliveira (2000)
SUSY Corrections to the Fermion Masses

- **(a) Sbottom-Gluino** and **(b) Stop-Higgsino Loops** give rise to sizable (20%) **SUSY corrections** to b-quark mass:

$$\Delta m_b \approx \frac{g_s^2}{6\pi^2} m_\tilde{g} \mu \tan\beta I(m_\tilde{g}, m_{\tilde{b}_1}, m_{\tilde{b}_2}) + \frac{h_t^2}{16\pi^2} A_t \mu \tan\beta I(\mu, m_{\tilde{t}_1}, m_{\tilde{t}_2})$$

Where $I(x, y, z)$ is a dimensionless function which arises from the loop computation.

- **We require** $m_t(\text{physical}) = 173$ GeV $\Leftrightarrow m_t(m_t) = 164.6$ GeV, $m_{\tilde{t}}(M_Z) = m_t(M_Z)(1 + \Delta m_t) = 1.748$ GeV

With given $m_t(m_t)$ and $m_{\tilde{t}}(M_Z)$ YU leads to an unacceptable $m_{\tilde{g}}(M_Z) = m_b(M_Z)(1 + \Delta m_b)$ in the context of CMSSM.

2 L. Hall, R. Rattazzi and U. Sarid (1994); M. Carena et al. (1994); D. Pierce et al. (1997); S.F. King and M. Oliveira (2000).
Superfields | **Representations** | **Transformations** | **Global Charges** | **Global Charges** | **Z^mp**
---|---|---|---|---|
Under G_{PS} | Under G_{PS} | R | PQ | Z^mp

Extra Higgs Fields

- h' (15, 2, 2) $U_c^* U_L h' U_R^T U_c^T$ 0 1 0
- h' (15, 2, 2) $U_c^* U_L h' U_R^T U_c^T$ 1 -1 0
- ϕ (15, 1, 3) $U_c U_R \phi U_R^T U_c^T$ 0 0 0
- $\bar{\phi}$ (15, 1, 3) $U_c U_R \bar{\phi} U_R^T U_c^T$ 0 0 0
- ϕ' (15, 1, 1) $U_c \phi' U_c^T$ 0 0 0
- $\bar{\phi}'$ (15, 1, 1) $U_c \bar{\phi}' U_c^T$ 0 0 0

The Additional Superpotential Terms

- **We Add the Pati-Salam and Peccei-Quinn (PQ) Invariant Superpotential Terms**

$$W_2 = W_H + W_m + W_{MSSM'}$$ **Where**

- $W_H = m \phi \bar{\phi} + m' \phi' \bar{\phi}' - S \left(\beta \phi^2 + \beta' \phi'^2 \right)$
- $+ (\lambda \phi + \lambda' \phi') H^c \bar{H}^c$,

- **From the Scalar Potential We Find That The SUSY Vacuum Lies At**

$$\langle H^c \bar{H}^c \rangle \sim \langle \phi \rangle^2 \sim \langle \phi' \rangle^2 \sim M_{GUT}^2, \langle S \rangle = \langle \phi \rangle = \langle \phi' \rangle = 0$$

- **W_m Is The Part Of W Which Is Responsible For The Mixing of the Doublets in h and h'**

$$W_m = M_{\bar{h}} h' h' + \lambda_3 \phi \bar{h}^* h + \lambda_1 \phi' \bar{h}' h = M_{\bar{h}} h_1 h_1^T \epsilon \left(h_2^2 + \alpha_2 h_2 \right) + M_{\bar{h}} \left(h_1^T + \alpha_1 h_1^T \right) \epsilon \bar{h}'_2 + \cdots \text{, with } \alpha_{1,2} = F (\langle \phi \rangle, \langle \phi' \rangle) \sim 1$$

- **Models With Only ϕ and $\bar{\phi}$ ($\alpha_1 = -\alpha_2$) Or ϕ' and $\bar{\phi}'$ ($\alpha_1 = \alpha_2$) Have Been Excluded** within CMSSM.

- **We Obtain Two Pairs Of Superheavy Doublets With Mass $M_{\bar{h}}$ and One Pair Which Remains Massless At The GUT Scale:**

$$h_1', h_2' \text{ and } H_1', \bar{h}'_2, \text{ where } H_r' = \frac{h_r' + \alpha_r h_r}{\sqrt{1 + |\alpha_r|^2}}, \text{ for } r = 1, 2 \Rightarrow H_r = \frac{-\alpha_r h_r' + h_r}{\sqrt{1 + |\alpha_r|^2}} \text{, } (1)$$

Which can be identified with the Electroweak Doublets $H_1 := H$ and $H_2 := \bar{H}$ and are orthogonal to the H_r'.

C. Pallis

CMSSM With Generalized Yukawa Quasi-Unification: An Update
THE ADDITIONAL SUPERPOENTIAL TERMS

- **We Add the Pati-Salam and Peccei-Quinn (PQ) Invariant Superpotential Terms**

\[
W_2 = W_H + W_m + W_{MSSM'} \quad \text{Where}
\]

\[
W_H = m\phi\bar{\phi} + m'\phi'\bar{\phi}' - S \left(\beta\phi^2 + \beta'\phi'^2 \right)
\]

\[
+ \left(\lambda\phi + \lambda'\phi' \right) H^c\bar{H}^c,
\]

- **From the Scalar Potential We Find That The SUSY Vacuum Lies At**

\[
\langle H^c\bar{H}^c \rangle \sim \langle \phi \rangle^2 \sim \langle \phi' \rangle^2 \sim M_{GUT}^2, \quad \langle S \rangle = \langle \phi \rangle = \langle \phi' \rangle = 0
\]

- **W_m is the Part of W Which is Responsible For the Mixing of the Doublets in h and h'**

\[
W_m = M_h h' h' + \lambda_3 \phi \bar{h}' h + \lambda_1 \phi' \bar{h}' h = M_h \bar{h}'_1 \epsilon \left(h'_2 + \alpha_2 h_2 \right) + M_h \left(h'_1 + \alpha_1 h_1 \right) \epsilon h'_2 + \cdots, \quad \text{With} \quad \alpha_{1,2} = F \left(\langle \phi \rangle, \langle \phi' \rangle \right) \sim 1
\]

- **Models With Only ϕ and $\bar{\phi}$ ($\alpha_1 = -\alpha_2$) Or ϕ' and $\bar{\phi}'$ ($\alpha_1 = \alpha_2$) Have Been Excluded**\(^3\) **Within CMSSM.**

- **We Obtain Two Pairs Of Superheavy Doublets With Mass M_h and One Pair Which Remains Massless At The GUT Scale:**

\[
\bar{h}'_1, \ H'_2 \quad \text{and} \quad H'_1, \ \bar{h}'_2, \quad \text{Where} \quad H'_r = \frac{h'_r + \alpha_r h_r}{\sqrt{1 + |\alpha_r|^2}}, \ r = 1, 2 \Rightarrow H_r = \frac{-\alpha^* r h'_r + h_r}{\sqrt{1 + |\alpha_r|^2}}, \quad (1)
\]

Which can be identified with the **Electroweak Doublets** $H_1 := H$ and $H_2 := \bar{H}$ and are orthogonal to the H'_r.

- **The Yukawa Interactions** Of the 3rd family of fermions are described by the following **Two** Superpotential Terms

\[
W_{MSSM} + W_{MSSM'} = y_{33} F_3 h F_3^c + 2 y_{33}' F_3 h' F_3'^c = y_{33} F_3 \left(h_2 + 2\rho h'_2 \right) - h_2 + 2\rho h'_2 \right) F_3^c
\]

With $\rho := y_{33}'/y_{33}$ and $h' \sim T_c^{15}$ and solving Eq. (1) w.r.t. h_r and h'_r, we obtain

\[
h_r = \left(H_r + \alpha^*_r H'_r \right) / \left(\sqrt{1 + |\alpha_r|^2} \right) \quad \text{and} \quad h'_r = \left(-\alpha_r H_r + H'_r \right) / \left(\sqrt{1 + |\alpha_r|^2} \right).
\]

YUKAWA QUASI-UNIFICATION CONDITIONS

- We can readily derive the superpotential terms of the MSSM — except for the \(\mu \) term:

\[
W_{\text{MSSM}} + W_{\text{MSSM}'} = -h_t \bar{H}^T \epsilon Q^c u^c_3 + h_b \bar{H}^T \epsilon Q^c d^c_3 + h_t \bar{H}^T \epsilon L^c_3 e^c_3 - h_{\nu t} \bar{H}^T \epsilon L^c_3 \nu^c_3
\]
YUKAWA QUASI-UNIFICATION CONDITIONS

- Where the h_t, h_b, and h_τ must obey the following set of generalized Yukawa quasi-unification conditions:

$$h_t(M_{GUT}) : h_b(M_{GUT}) : h_\tau(M_{GUT}) = \frac{1 - \tan^2 \beta}{\sqrt{1 + |\alpha|^2}} : \frac{1 - \tan^2 \beta}{\sqrt{1 + |\alpha|^2}} : \frac{1 + V_3 \rho}{\sqrt{1 + |\alpha|^2}}$$

- We can readily derive the superpotential terms of the MSSM except for the μ term:

$$W_{\text{MSSM}} + W_{\text{eff}} = -h_\tau H^T e_3 d_3 + h_\tau H^T e_L e_3 - h_t H^T T e_L \bar{\nu}_3$$

W_{MSSM} side.

W_{MSSM} side.
Yukawa Quasi-Unification Conditions

- **We can readily derive the superpotential terms of the MSSM — except for the \(\mu\) term:**

\[
W_{\text{MSSM}} + W_{\text{MSSM}'} = -h_t \tilde{H}^T \varepsilon Q_3 u_3^c + h_b \tilde{H}^T \varepsilon Q_3 d_3^c + h_t \tilde{H}^T \varepsilon L_3 e_3^c - h_{\nu_t} \tilde{H}^T \varepsilon L_3 \nu_3^c
\]

- **Where the \(h_t, h_b\) and \(h_\tau\) must obey the following set of generalized Yukawa quasi-unification conditions:**

\[
h_t(M_{\text{GUT}}) : h_b(M_{\text{GUT}}) : h_\tau(M_{\text{GUT}}) = \left| \frac{1 - \rho \alpha_2 / \sqrt{3}}{\sqrt{1 + |\alpha_2|^2}} \right| : \left| \frac{1 - \rho \alpha_1 / \sqrt{3}}{\sqrt{1 + |\alpha_1|^2}} \right| : \left| \frac{1 + \sqrt{3} \rho \alpha_1}{\sqrt{1 + |\alpha_1|^2}} \right|
\]

- **For \(\rho, \alpha_1\) and \(\alpha_2 \sim 1\), we expect that \(h_m / h_n \sim 1\) with \(m, n = t, b, \tau\).**

Stau-Coannihilation Region

- E.g. For \(\tan \beta = 48\), \(\Delta \tilde{\tau}_2 \approx 0\), \(A_0/M_{1/2} = -1.4\) and \(M_{1/2} = 2.2\) TeV we find \(h_t/h_\tau(M_{\text{GUT}}) = 1.117\), \(h_b/h_\tau(M_{\text{GUT}}) = 0.623\) and \(h_t/h_b(M_{\text{GUT}}) = 1.792\).
Yukawa Quasi-Unification Conditions

- **We Can Readily Derive The Superpotential Terms of the MSSM – Except for the \(\mu \) Term:**

\[
W_{\text{MSSM}} + W_{\text{MSSM}'} = -h_t \tilde{H}^T \epsilon Q_3 u^c_3 + h_b H^T \epsilon Q_3 d^c_3 + h_\tau H^T \epsilon L_3 e^c_3 - h_{\nu_\tau} \tilde{H}^T \epsilon L_3 \nu^c_3
\]

- **Where The \(h_t, h_b \) and \(h_\tau \) Must Obey The Following Set of Generalized Yukawa Quasi-Unification Conditions:**

\[
h_t(M_{\text{GUT}}) : h_b(M_{\text{GUT}}) : h_\tau(M_{\text{GUT}}) = \left| \frac{1 - \rho \alpha_2 / \sqrt{3}}{\sqrt{1 + |\alpha_2|^2}} \right| : \left| \frac{1 - \rho \alpha_1 / \sqrt{3}}{\sqrt{1 + |\alpha_1|^2}} \right| : \left| \frac{1 + \sqrt{3} \rho \alpha_1}{\sqrt{1 + |\alpha_1|^2}} \right|
\]

- **For \(\rho, \alpha_1 \) and \(\alpha_2 \sim 1 \), We Expect That \(h_m / h_n \sim 1 \) with \(m, n = t, b, \tau \).

Stau-Coannihilation Region

Focus-Point Region

- E.g. For \(\tan \beta = 48 \), \(\Delta \tilde{t}_2 \approx 0 \), \(A_0/M_{1/2} = -1.4 \) and \(M_{1/2} = 2.2 \text{ TeV} \) we find \(h_t / h_\tau(M_{\text{GUT}}) = 1.117 \)

 \(h_b / h_\tau(M_{\text{GUT}}) = 0.623 \) and \(h_t / h_b(M_{\text{GUT}}) = 1.792 \).

- E.g. For \(\tan \beta = 48 \), \(M_{1/2} = 2.9 \text{ TeV} \), \(A_0/M_{1/2} = -1.5 \) and \(m_0 = 8.8 \text{ TeV} \) we find \(h_t / h_\tau(M_{\text{GUT}}) = 1.107 \)

 \(h_b / h_\tau(M_{\text{GUT}}) = 0.763 \) and \(h_t / h_b(M_{\text{GUT}}) = 1.45 \).
Cosmo-Phenomenological Requirements: Preliminaries

Phenomenological Requirements

1. Mass Of the Lighter CP- Even Higgs Boson:

 \[122 \lesssim m_h/\text{GeV} \lesssim 129.2. \]

2. The Branching Ratios of the Rare B decays:

 - \(\text{BR} (B_s \rightarrow \mu^+\mu^-) \leq 4.2 \times 10^{-9} \) or
 \[1.1 \leq \text{BR} (B_s \rightarrow \mu^+\mu^-)/10^{-9} \lesssim 6.4; \]
 - \(2.84 \times 10^{-4} \leq \text{BR} (b \rightarrow s\gamma) \leq 4.2 \times 10^{-4}; \)
 - \(0.52 \leq \text{R} (B_u \rightarrow \tau\nu) \leq 2.04. \)

3. The Bounds on the Masses of Sparticles;
 Most Notably \(m_{\chi^\pm} \geq 103.5 \text{ GeV} \) and \(m_{\tilde{g}} \geq 1.4 \text{ TeV}. \)

4. Muon Anomalous Magnetic Moment of \(\mu, a_\mu: \)

 \[7.5 \times 10^{-10} \leq \delta a_\mu = a_\mu^{\exp} - a_\mu^{\text{SM}} \leq 42.3 \times 10^{-10}. \]
Cosmo-Phenomenological Requirements: Preliminaries

Phenomenological Requirements

1. Mass Of the Lighter CP-Even Higgs Boson:
 \[122 \leq m_h / \text{GeV} \leq 129.2. \]

2. The Branching Ratios of the Rare B decays:
 - \(\text{BR} (B_s \rightarrow \mu^+\mu^-) \leq 4.2 \times 10^{-9} \) or
 \[1.1 \leq \text{BR} (B_s \rightarrow \mu^+\mu^-)/10^{-9} \leq 6.4.; \]
 - \(2.84 \times 10^{-4} \leq \text{BR} (b \rightarrow s\gamma) \leq 4.2 \times 10^{-4}; \)
 - \(0.52 \leq R (B_u \rightarrow \tau\nu) \leq 2.04. \)

3. The Bounds on the Masses of Sparticles:
 Most Notably \(m_{\chi^\pm} \geq 103.5 \text{ GeV} \) and \(m_{\tilde{g}} \geq 1.4 \text{ TeV}. \)

4. Muon Anomalous Magnetic Moment of \(\mu, a_{\mu}: \)
 \[7.5 \times 10^{-10} \leq \delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{\text{SM}} \leq 42.3 \times 10^{-10}. \]

Cosmological Considerations

- To avoid the Proton Decay via terms
 \[UDD, Q^T \varepsilon LD, L^T \varepsilon LE, L^T \varepsilon H, \]
 We require that \(\mathcal{L}_{\text{MSSM}} \) is invariant under a multiplicative quantum number defined as follows:
 \[R = \begin{cases} +1 & \text{for SM particles and Higgs} \\ -1 & \text{for sparticles} \end{cases} \]
 with the following consequences:
 - In every term of \(\mathcal{L}_{\text{MSSM}} \) there is even number of sparticles.
 - The sparticles can be produced in pairs;
 - The heavier sparticles decay to the lighter;
 - The lightest SUSY particle (LSP) is stable.
 - The LSP is weakly interacting (i.e., it interacts via the exchange of a heavier sparticle)
 - The LSP can act as a viable CDM candidate if
 \[\Omega_{\text{LSP}} h^2 \leq 0.12 \] at 95% c.l.
 - The spin-independent LSP-proton cross section is to be lower than the LUX results.
Cosmo-Phenomenological Requirements: Preliminaries

Phenomenological Requirements

1. **Mass Of the Lighter CP-Even Higgs Boson:**
 \[122 \lesssim m_h / \text{GeV} \lesssim 129.2. \]

2. **The Branching Ratios of the Rare B decays:**
 - \(\text{BR} (B_s \rightarrow \mu^+\mu^-) \lesssim 4.2 \times 10^{-9} \) or
 - \(1.1 \lesssim \text{BR} (B_s \rightarrow \mu^+\mu^-)/10^{-9} \lesssim 6.4; \)
 - \(2.84 \times 10^{-4} \lesssim \text{BR} (b \rightarrow s\gamma) \lesssim 4.2 \times 10^{-4}; \)
 - \(0.52 \lesssim R (B_u \rightarrow \tau\nu) \lesssim 2.04. \)

3. **The Bounds on the Masses of Sparticles:**
 - Most Notably \(m_{\chi^\pm} \gtrsim 103.5 \text{ GeV} \) and \(m_{\tilde{g}} \gtrsim 1.4 \text{ TeV}. \)

4. **Muon Anomalous Magnetic Moment** of \(\mu, a_\mu: \)
 \[7.5 \times 10^{-10} \lesssim \delta a_\mu = a_\mu^{\text{exp}} - a_\mu^{\text{SM}} \lesssim 42.3 \times 10^{-10}. \]

Cosmological Considerations

- **To Avoid the Proton Decay Via Terms**
 \[UDD, Q^T \epsilon LD, L^T \epsilon LE, L^T \epsilon H, \]
 We require that \(\mathcal{L}_{\text{MSSM}} \) is invariant under a multiplicative quantum number defined as follows:
 \[R = \begin{cases}
 +1 & \text{for SM particles and Higgs} \\
 -1 & \text{for Sparticles}
 \end{cases} \]
 with the following consequences:
 - In every term of \(\mathcal{L}_{\text{MSSM}} \) there is even number of sparticles.
 - The sparticles can be produced in pairs.
 - The heavier sparticles decay to the lighter.
 - The lightest SUSY particle (LSP) is stable.
 - The LSP is weakly interacting (i.e., it interacts via the exchange of a heavier sparticle).
 - The LSP can act as a viable CDM candidate if
 \(\Omega_{\text{LSP}}h^2 \lesssim 0.12 \) at 95% c.l.
 - The spin-independent LSP-proton cross section is to be lower than the LUX results.

\[?????? \lesssim m_{\text{LSP}} / \text{GeV} \lesssim ?????? \]
1. MASS OF THE LIGHTER CP-EVEN (SM-LIKE) HIGGS BOSON

- At Tree Level we obtain \(m_h \leq M_Z \cos 2\beta \leq M_Z \).
- SUSY Corrections Arise From Sfermions \(\tilde{f} \to \tilde{t}, \tilde{b} \) Loops Which INCREASE \(m_h \) AS FOLLOWS

\[
\Delta m_h^2 \approx \ln \frac{M_{SUSY}^2}{m_t^2} + \frac{X_t^2}{M_{SUSY}^2} \left(1 - \frac{X_t^2}{12M_{SUSY}^2} \right)
\]

With \(X_t = A_t - \mu \cot \beta \) and \(M_{SUSY} \approx \sqrt{m_{\tilde{t}_1}m_{\tilde{t}_2}} \).

- The LHC \(^5\) DISCOVERED A Bosonic Particle Which Fits The Profile Of The SM Higgs with Mass

\[
m_h = \begin{cases}
125.3 \pm 0.4 \text{ (stat)} \pm 0.5 \text{ (sys)} \text{ GeV} & \text{CMS} \\
126.0 \pm 0.4 \text{ (stat)} \pm 0.4 \text{ (sys)} \text{ GeV} & \text{ATLAS}
\end{cases}
\]

\(\Rightarrow \) \(122 \leq m_h/\text{GeV} \leq 129.2 \).

\(^4\) Allowing for a Theoretical Uncertainty of \(\pm 1.5 \) GeV.

- We Present \(m_h \) Vs \(m_{\text{LSP}} \) for Various \(A_0/M_{1/2} \)'s.
- A LOWER Bound on \(m_{\text{LSP}} \) Can Be Inferred from THE LOWER Bound on \(m_h \)
- We REMARK THAT \(m_h \) INCREASES With \(m_{\text{LSP}} \) and AS \(A_0/M_{1/2} \) Decreases To VALUES Lower Than Zero. This Occurs since \(X_t \) is MAXIMIZED FOR \(A_0/M_{1/2} < 0 \).
- As A Consequence the bound on \(m_{\text{LSP}} \) for \(A_0/M_{1/2} < 0 \) is Less Restrictive.

2. The Branching Ratio of $B_s \rightarrow \mu^+\mu^-$

- The SUSY Contributions Originate6 from Neutral Higgs Bosons in Chargino-, H^{\pm}-, and W^{\pm}-Mediated Penguins which are Particularly Important For Large $\tan\beta$'s:

- We Impose the Following Very Stringent Constraint $\text{BR}(B_s \rightarrow \mu^+\mu^-) \sim |A_t \tan^3 \beta/m_A|^2 \lesssim 4.2 \times 10^{-9}$ (95% c.l.7) (i)
 Although There is Recently a Novel Less Restrictive Bound $1.1 \lesssim \text{BR}(B_s \rightarrow \mu^+\mu^-)/10^{-9} \lesssim 6.4$ (95% c.l.).

- We Present $\text{BR}(B_s \rightarrow \mu^+\mu^-)$ Vs m_{LSP} for Various $A_0/M_{1/2}$'s.
- Eq. (i) Imposes a Lower bound on m_{LSP}
- We Remark that $\text{BR}(B_s \rightarrow \mu^+\mu^-)$ Decreases As m_{LSP} and $A_0/M_{1/2}$ Increases.
- As A Consequence the Bound on m_{LSP} for $A_0/M_{1/2} < 0$, Favored by m_h Data, is More Restrictive.
- The Inclusion Of $\phi, \bar{\phi}$ AND $\phi' \bar{\phi}'$ Assists us to Decrease $\tan\beta$ Below 50, Reducing Thereby $\text{BR}(B_s \rightarrow \mu^+\mu^-)$.

7LHCb (2012).
3. **Muon Anomalous Magnetic Moment of μ, a_μ**

- **There is a 2.9 - σ Discrepancy Between the Experimental Value of a_μ, a_μ^{exp}, and the one Predicted by SM, a_μ^{SM}, Which Can Be Attributed to SUSY Corrections**\(^8\) Arising From (a) Muon - Neutralino and (b) Sneutrino - Chargino Loops:

\[\delta a_\mu \]

\[7.5 \times 10^{-10} \leq \delta a_\mu \leq 42.3 \times 10^{-10}, \]

Where: $\delta a_\mu = a_\mu^{\text{exp}} - a_\mu^{\text{SM}}$

- **We Present δa_μ Vs m_{LSP} for $A_0/M_{1/2} = 0$ and Both signs of μ.**
- **Eq. (ii) Imposes a Lower Bound on m_{LSP} and Eq. (i) Imposes an Upper Bound on m_{LSP}, Not Compatible With the Bound Inferred by $\Omega_{\text{LSP}} h^2$ as We will See.**
- **The $\mu < 0$ Case is More Disfavored Than the $\mu > 0$ Case From the δa_μ Considerations. Therefore, We Decide To Use $\mu > 0$.**

- **Are These Lower Limits on m_{LSP} Compatible With The Candidacy of LSP as CDM Particle?**
- **A Reply to This Dilemma Can be given the Cosmological Consideration of LSP as a CDM Candidate.**

9 G.W. Bennett et al. (2006); K. Hagiwara et al. (2011); T. Aoyama et al. (2012).
The Standard Cosmological Scenario (SC)

Assumptions of SC for the Decoupling of a Weekly Interacting Massive Particle (WIMP) χ from the Cosmic Bath:

- **The χ’s Achieve Kinetic and Chemical Equilibrium.** Therefore, the Thermal Averaged Cross Section Times The Relative Velocity of χ’s is to be $\langle \sigma v \rangle \gtrsim 10^{-20}$ GeV$^{-2}$. Within a Specific Particle Model $\langle \sigma v \rangle$ can be Derive Self-Consistently from the (s)particle Spectrum of the Theory.

- **The χ’s Are Produced by Thermal Scatterings.** The Number Density of χ, n_χ, Obey the Boltzmann Equation:

 $$ n_\chi + 3Hn_\chi + \langle \sigma v \rangle \left(n_\chi^2 - n_\chi^{eq2} \right) = 0 \quad \text{With Initial Condition: } n_\chi(T = m_\chi) = n_\chi^{eq}(x = 1) \quad \text{(Note: } \rho_\chi = m_\chi n_\chi)$$

 Where $n_\chi^{eq}(x) = \frac{g}{(2\pi)^3/2} m_\chi^3 x^{3/2} e^{-1/x} P_2(1/x)$, With $x = T/m_\chi$, $P_n(z) = 1 + (4n^2 - 1)/8z$, $g = 2$.

- **The χ’s Decouple During a Radiation Dominated Era**, $H = \sqrt{\rho_R}/\sqrt{3}m_p \sim T^2$ And $sR^3 = \text{cst} \Rightarrow TR = \text{cst}$.

![Graph showing ρ_χ / s vs T (GeV)](image)

- **The Relic Abundance of χ is Given By** $\Omega_\chi = \rho_\chi / \rho_\text{c0} = m_\chi s_0 Y_\chi / \rho_\text{c0} \Rightarrow \Omega_\chi h^2 = 2.748 \cdot 10^8 Y_{\chi0} m_\chi / \text{GeV}$

 Where m_χ, the Mass of WIMP χ and $Y_\chi = n_\chi / s$. Therefore $\Omega_\chi h^2 = f \left(m_\chi, \langle \sigma v \rangle \right)$. Mostly $\Omega_\chi h^2 \sim m_\chi / \langle \sigma v \rangle$.

![Graph showing $\log P_R$ vs T (GeV)](image)
The Relic Abundance of The Neutralino LSP, $\tilde{\chi}$, & the CMSSM Parameter Space

- Focusing on the Case of CMSSM, The Computation of $\langle \sigma v \rangle$ Includes Annihilation and Coannihilation Processes:

$$\langle \sigma v \rangle \sim \sigma_{\text{eff}} \sim \sigma_{\text{LSP-LSP}} + e^{-\Delta_{\text{LSP}}/x_F} \sigma_{\text{LSP-NLSP}} + e^{-2\Delta_{\text{LSP}}/x_F} \sigma_{\text{LSP-NLSP}(*)}, \quad \text{With } x_F \sim \frac{1}{25} \quad \text{and} \quad \Delta_{\text{LSP}} = \frac{m_{\text{NLSP}} - m_{\text{LSP}}}{m_{\text{LSP}}}$$

- $\Omega_{\tilde{\chi}} h^2$ Can Be Consistent With Observations Only Into Well Localized Portions Of the CMSSM Parameter Space.
The Relic Abundance of The Neutralino LSP, $\tilde{\chi}$, & The CMSSM Parameter Space

- Focusing on the case of CMSSM, the computation of $\langle \sigma v \rangle$ includes **annihilation** and **coannihilation** processes:

$$\langle \sigma v \rangle \sim \sigma_{\text{eff}} \sim \sigma_{\text{LSP-LSP}} + e^{-\Delta \text{NLSP} / x_{F}} \sigma_{\text{LSP-NLSP}} + e^{-2\Delta \text{NLSP} / x_{F}} \sigma_{\text{LSP-NLSP}^*} ,$$

with $x_{F} \sim \frac{1}{25}$ and $\Delta_{\text{NLSP}} = \frac{m_{\text{NLSP}} - m_{\text{LSP}}}{m_{\text{LSP}}}$

- $\Omega_{\tilde{\chi}} h^2$ can be consistent with observations only into well localized portions of the CMSSM parameter space.

1. Annihilation Processes ($\tilde{\chi} \tilde{\chi}$) - $\Delta_{\text{NLSP}} \gg 0.25$

<table>
<thead>
<tr>
<th>States</th>
<th>Channels</th>
<th>Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{\chi} \tilde{\chi}$</td>
<td>$f \tilde{f}$</td>
<td>$s(h), s(H), s(A), s(Z)$</td>
</tr>
<tr>
<td>(f := t, τ, b)</td>
<td></td>
<td>$t(\tilde{f}{1[2]}), u(\tilde{f}{1[2]})$</td>
</tr>
<tr>
<td>hh, hH, HH</td>
<td>$s(h), s(H), t(\tilde{h}^0_i), u(\tilde{h}^0_i)$</td>
<td></td>
</tr>
<tr>
<td>AA, ZA</td>
<td>$s(h), s(H), t(\tilde{\chi}^0_i), u(\tilde{\chi}^0_i)$</td>
<td></td>
</tr>
<tr>
<td>hA, HA</td>
<td>$s(z), s(A), t(\tilde{\chi}^0_i), u(\tilde{\chi}^0_i)$</td>
<td></td>
</tr>
<tr>
<td>$W^+ W^-, H^+ H^-$</td>
<td>$s(h), s(H), t(\tilde{\chi}^+_i), u(\tilde{\chi}^+_i)$</td>
<td></td>
</tr>
<tr>
<td>$H^+ W^-$</td>
<td>$s(h), s(H), s(A), t(\tilde{\chi}^+_i), u(\tilde{\chi}^+_i)$</td>
<td></td>
</tr>
<tr>
<td>ZZ</td>
<td>$s(h), s(H), s(A), t(\tilde{\chi}^0_i), u(\tilde{\chi}^0_i)$</td>
<td></td>
</tr>
<tr>
<td>Zh, ZH</td>
<td>$s(A), s(Z), t(\tilde{\chi}^0_i), u(\tilde{\chi}^0_i)$</td>
<td></td>
</tr>
</tbody>
</table>
The Relic Abundance of The Neutralino LSP, $\tilde{\chi}$, & the CMSSM Parameter Space

- Focusing on the Case of CMSSM, The Computation of $\langle \sigma v \rangle$ Includes Annihilation and Coannihilation Processes:

$$\langle \sigma v \rangle \sim \sigma_{\text{eff}} \sim \sigma_{\text{LSP-LSP}} + e^{-\Delta_{\text{NLSP}}/x_F} \sigma_{\text{LSP-NLSP}} + e^{-2\Delta_{\text{NLSP}}/x_F} \sigma_{\text{LSP-NLSP}}(*)$$

With $x_F \sim \frac{1}{25}$ and $\Delta_{\text{NLSP}} = \frac{m_{\text{NLSP}} - m_{\text{LSP}}}{m_{\text{LSP}}}$

- $\Omega_{\chi} h^2$ Can Be Consistent With Observations Only Into Well Localized Portions Of the CMSSM Parameter Space.

1. Annihilation Processes ($\tilde{\chi}\tilde{\chi}$) - $\Delta_{\text{NLSP}} \gg 0.25$

<table>
<thead>
<tr>
<th>States</th>
<th>Channels Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{\chi}\tilde{\chi}$</td>
<td>$f\bar{f}$, $s(h), s(H), s(A), s(Z)$</td>
</tr>
<tr>
<td></td>
<td>$t(f_{1[2]}), u(f_{1[2]})$</td>
</tr>
<tr>
<td>h, hH, HH</td>
<td>$s(h), s(H), t(h^0), u(h^0)$</td>
</tr>
<tr>
<td>AA, ZA</td>
<td>$s(h), s(H), t(h^0), u(h^0)$</td>
</tr>
<tr>
<td>hA, HA</td>
<td>$s(Z), s(A), t(h^0), u(h^0)$</td>
</tr>
<tr>
<td>W^+W^-, h^+h^-</td>
<td>$s(h), s(H), s(Z), t(h^\pm), u(h^\pm)$</td>
</tr>
<tr>
<td>H^+W^-</td>
<td>$s(h), s(H), s(A), t(h^\pm), u(h^\pm)$</td>
</tr>
<tr>
<td>ZZ</td>
<td>$s(h), s(H), t(h^0), u(h^0)$</td>
</tr>
<tr>
<td>Zh, ZH</td>
<td>$s(A), s(Z), t(h^0), u(h^0)$</td>
</tr>
</tbody>
</table>

- Bulk Region With $m_0, M_{1/2} \ll 500$ GeV Where $\tilde{\chi}$ is Bino-like And The Dominant Processes Are

\[
\begin{align*}
\chi &\rightarrow \tau^- [e^+] \\
\tilde{\chi} &\rightarrow \tau^+ [e^+] \\
\tilde{\chi} &\rightarrow \tau^+ [e^+] \\
\end{align*}
\]

This Region Is Excluded by the LHC bound on m_h.

- Bulk Region With $m_0, M_{1/2} \ll 500$ GeV Where $\tilde{\chi}$ is Bino-like And The Dominant Processes Are
The Relic Abundance of The Neutralino LSP, $\tilde{\chi}$, & The CMSSM Parameter Space

- Focusing on the case of CMSSM, the computation of $\langle \sigma v \rangle$ includes annihilation and coannihilation processes:

$$\langle \sigma v \rangle \sim \sigma_{\text{eff}} \sim \sigma_{\text{LSP-LSP}} + e^{-\Delta_{\text{NLSP}}/x_F} \sigma_{\text{LSP-LSP}} + e^{-2\Delta_{\text{NLSP}}/x_F} \sigma_{\text{LSP-NLSP}}^*, \quad \text{with } x_F \sim \frac{1}{25} \text{ and } \Delta_{\text{NLSP}} = \frac{m_{\text{NLSP}} - m_{\text{LSP}}}{m_{\text{LSP}}}$$

- $\Omega_{\tilde{\chi}} h^2$ can be consistent with observations only into well localized portions of the CMSSM parameter space.

1. **Annihilation Processes ($\tilde{\chi}\tilde{\chi}$) - $\Delta_{\text{NLSP}} \gg 0.25$**

<table>
<thead>
<tr>
<th>States</th>
<th>Channels Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>Final</td>
</tr>
<tr>
<td>$\tilde{\chi}\tilde{\chi}$</td>
<td>$f\bar{f}$, h, H, A, $s(Z)$, $t(\tilde{f}{1[2]}^\pm)$, $u(\tilde{f}{1[2]}^\pm)$</td>
</tr>
<tr>
<td>($f := t, \tau, b$)</td>
<td>$s(h), s(H), s(A), s(Z)$</td>
</tr>
<tr>
<td>hh, hH, HH</td>
<td>$s(h), s(H), t(\tilde{\chi}_i^0), u(\tilde{\chi}_i^0)$</td>
</tr>
<tr>
<td>$\tilde{\chi}h$, $\tilde{\chi}A$, $\tilde{\chi}a$, $\tilde{\chi}A$</td>
<td>$s(h), s(H), t(\tilde{\chi}_i^0), u(\tilde{\chi}_i^0)$</td>
</tr>
<tr>
<td>$W^+W^−$, $H^+H^−$</td>
<td>$s(h), s(H), s(Z), t(\tilde{\chi}_i^0), u(\tilde{\chi}_i^0)$</td>
</tr>
<tr>
<td>$Z\bar{Z}$</td>
<td>$s(h), s(H), t(\tilde{\chi}_i^0), u(\tilde{\chi}_i^0)$</td>
</tr>
<tr>
<td>Zh, ZH</td>
<td>$s(A), s(Z), t(\tilde{\chi}_i^0), u(\tilde{\chi}_i^0)$</td>
</tr>
</tbody>
</table>

- **The A-Funnel Region** where the process $\tilde{\chi}\tilde{\chi} \rightarrow b\bar{b}$ is enhanced if $\Delta_A = (m_A - 2m_{\tilde{\chi}})/2m_{\tilde{\chi}} \approx 0$ for $\tan\beta > 40$. This region is also almost excluded by the LHC bound on m_h.

- **Bulk Region** with $m_0, M_{1/2} \ll 500 \text{ GeV}$ where $\tilde{\chi}$ is bino-like and the dominant processes are

\[\tilde{\chi} \rightarrow \tau^- [e^+]\]
\[\tilde{\chi}_{1[2]} \rightarrow \tilde{\tau}_{1[2]} [\tilde{e}_R]\]

This region is excluded by the LHC bound on m_h.

- C. Pallis

CMSSM With Generalized Yukawa Quasi-Unification: An Update
The Relic Abundance of The Neutralino LSP, $\tilde{\chi}$, & The CMSSM Parameter Space

- **Focusing on the Case of CMSSM, The Computation of $\langle \sigma v \rangle$ Includes Annihilation and Coannihilation Processes:**

 $\langle \sigma v \rangle \sim \sigma_{\text{eff}} \sim \sigma_{\text{LSP-LSP}} + e^{-\Delta \text{LSP}/x_F} \sigma_{\text{LSP-NLSP}} + e^{-2\Delta \text{LSP}/x_F} \sigma_{\text{LSP-NLSP}(*)}$, With $x_F \sim \frac{1}{25}$ and $\Delta_{\text{LSP}} = \frac{m_{\text{NLSP}} - m_{\text{LSP}}}{m_{\text{LSP}}}$

- **$\Omega_{\tilde{\chi}} h^2$ Can Be Consistent With Observations Only Into Well Localized Portions Of The CMSSM Parameter Space.**

1. **Annihilation Processes ($\tilde{\chi}\tilde{\chi}$) - $\Delta_{\text{LSP}} \gg 0.25$**

<table>
<thead>
<tr>
<th>States</th>
<th>Channels Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>Final</td>
</tr>
<tr>
<td>$\tilde{\chi}\tilde{\chi}$</td>
<td>$f\bar{f}$</td>
</tr>
<tr>
<td></td>
<td>($f := t, \tau, b$)</td>
</tr>
<tr>
<td></td>
<td>hh, hH, HH</td>
</tr>
<tr>
<td></td>
<td>AA, ZA</td>
</tr>
<tr>
<td></td>
<td>aH, HA</td>
</tr>
<tr>
<td></td>
<td>W^+W^-, H^+H^-</td>
</tr>
<tr>
<td></td>
<td>$W_\pm W_\mp$</td>
</tr>
<tr>
<td></td>
<td>Z_{\pm}</td>
</tr>
<tr>
<td></td>
<td>Zh, ZH</td>
</tr>
</tbody>
</table>

- **Bulk Region** With $m_0, M_{1/2} < 500$ GeV Where $\tilde{\chi}$ is Bino-like And The Dominant Processes Are

- **The A-Funnel Region** Where The Process $\tilde{\chi}\tilde{\chi} \rightarrow b\bar{b}$ Is Enhanced If $\Delta_A = (m_A - 2m_{\tilde{\chi}})/2m_{\tilde{\chi}} \approx 0$ For $\tan\beta > 40$. This Region Is Also Almost Excluded by the LHC bound on m_h.

- **The Hyperbolic Branch/Focus Point Region** at Large $m_0 > 5$ TeV, Where $|\mu|$ Becomes Small, and $\tilde{\chi}$ Develops A Significant Higgsino Component. The Dominant Process Is:
\section{Coannihilation Processes - $\Delta_{NLSP} < 0.25$}

- These processes can be activated10 for every $\tan \beta$ if $\Delta_{NLSP} \ll 0.25$ since $\sigma_{LSP-NLSP} + \sigma_{LSP-NLSP^*} \gg \sigma_{LSP-LSP}$. Can dominate the $\langle \sigma v \rangle$ computation. For given m_{LSP}, $\Omega_{LSP} h^2$ decreases with Δ_{NLSP}.

Focus-Point (FP) Coannihilations

(In the limit $m_{H,A,H^\pm} \gg m_{\tilde{\chi}}$, $m_{\tilde{\chi}\pm}$)

<table>
<thead>
<tr>
<th>States</th>
<th>Final</th>
<th>Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Interactions</td>
</tr>
<tr>
<td>$\tilde{\chi} \tilde{\chi}^+$</td>
<td>$W^+ h$</td>
<td>$t(\tilde{\chi}_k^0)$, $u(\tilde{\chi}_k^0)$, $s(H)$, $s(W)$</td>
</tr>
<tr>
<td></td>
<td>$W^+ Z$</td>
<td>$t(\tilde{\chi}_k^0)$, $u(\tilde{\chi}_k^0)$, $s(W)$</td>
</tr>
<tr>
<td></td>
<td>γW^+</td>
<td>$t(\tilde{\chi}_j^0)$, $s(W)$</td>
</tr>
<tr>
<td></td>
<td>$u\bar{d}$</td>
<td>$t(\tilde{d}{1,2})$, $u(\tilde{u}{1,2})$, $s(H)$, $s(W)$</td>
</tr>
<tr>
<td></td>
<td>$\nu\bar{\ell}$</td>
<td>$t(\tilde{\ell}_{L,R})$, $u(\tilde{\nu}_L)$, $s(H)$, $s(W)$</td>
</tr>
<tr>
<td>$\tilde{\chi}_i^+ \tilde{\chi}_j^+$</td>
<td>$W^+ W^+$</td>
<td>$t(\tilde{\chi}_k^0)$, $u(\tilde{\chi}_k^0)$</td>
</tr>
<tr>
<td>$\tilde{\chi}_i^+ \tilde{\chi}_j^-$</td>
<td>ZZ</td>
<td>$t(\tilde{\chi}_k^0)$, $u(\tilde{\chi}_k^0)$, $s(h,H)$</td>
</tr>
<tr>
<td></td>
<td>$W^+ W^-$</td>
<td>$t(\tilde{\chi}_k^0)$, $s(h,H)$, $s(Z,\gamma)$</td>
</tr>
<tr>
<td></td>
<td>$\gamma \gamma$ (for $i = j$)</td>
<td>$t(\tilde{\chi}_i^0)$, $u(\tilde{\chi}_i^0)$</td>
</tr>
<tr>
<td></td>
<td>$Z\gamma$</td>
<td>$t(\tilde{\chi}_j^0)$, $u(\tilde{\chi}_j^0)$</td>
</tr>
<tr>
<td></td>
<td>$u\bar{u}$</td>
<td>$t(\tilde{d}_{L,R})$, $s(h,H,A)$, $s(Z,\gamma)$</td>
</tr>
<tr>
<td></td>
<td>$\nu\bar{\nu}$</td>
<td>$t(\tilde{\ell}_{L,R})$, $s(Z)$</td>
</tr>
<tr>
<td></td>
<td>$\tilde{d}\bar{d}$</td>
<td>$t(\tilde{u}_{L,R})$, $s(h,H,A)$, $s(Z,\gamma)$</td>
</tr>
<tr>
<td></td>
<td>$\tilde{\ell}\bar{\ell}$</td>
<td>$t(\tilde{\nu}_L)$, $s(h,H,A)$, $s(Z,\gamma)$</td>
</tr>
</tbody>
</table>

10 J. Edsjo & P. Gondolo (1997); J. Ellis et al. (1999); M.E. Gómez, G. Lazarides and C.P. (2000, 2002); G. Bélanger et al. (micromegas) (2001).
2. Coannihilation Processes - $\Delta_{NLSP} < 0.25$

- These processes can be activated\(^{10}\) for every $\tan \beta$ if $\Delta_{NLSP} \ll 0.25$ since $\sigma_{LSP-\text{NLSP}} + \sigma_{LSP-\text{NLSP}(\ast)} \gg \sigma_{LSP-LSP}$. Can dominate the $\langle \sigma v \rangle$ computation. For given m_{LSP}, $\Omega_{LSP} h^2$ decreases with Δ_{NLSP}.

Focus-Point (FP) Coannihilations

(In the limit $m_{H,A,H^\pm} \gg m_{\tilde{\chi}}, m_{\tilde{\chi}_{i}^{\pm}}$)

<table>
<thead>
<tr>
<th>States</th>
<th>Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{\chi}\tilde{\chi}$</td>
<td>$W^{+}h$, $t(\tilde{\chi}{j}^{0}), u(\tilde{\chi}{j}^{+}), s(H^{+}), s(W^{+})$</td>
</tr>
<tr>
<td>$\tilde{\chi}\tilde{\chi}$</td>
<td>$W^{+}Z$, $t(\tilde{\chi}{k}^{0}), u(\tilde{\chi}{k}^{+}), s(W^{+})$</td>
</tr>
<tr>
<td>γW^{+}</td>
<td>γW^{+}, $t(\tilde{\chi}_{j}^{0}), s(W^{+})$</td>
</tr>
<tr>
<td>$u\bar{d}$</td>
<td>$t(\tilde{a}{1,2}), u(\tilde{a}{1,2}), s(H^{+}), s(W^{+})$</td>
</tr>
<tr>
<td>$\nu \bar{\ell}$</td>
<td>$t(\tilde{\ell}{L,R}), u(\tilde{\nu}{L}), s(H^{+}), s(W^{+})$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>States</th>
<th>Final Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{\chi}{i}^{+}\tilde{\chi}{j}^{+}$</td>
<td>$W^{+}W^{+}$, $t(\tilde{\chi}{j}^{0}), u(\tilde{\chi}{k}^{0})$</td>
</tr>
</tbody>
</table>

$\chi - \tilde{\tau}_{2}$ Coannihilations ($\tilde{\tau}_{2}$-CAs)

(At low m_{0} and almost any $M_{1/2}$)

<table>
<thead>
<tr>
<th>States</th>
<th>Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{\chi}\tilde{\tau}_{2}$</td>
<td>$\tau h, \tau H, \tau Z$</td>
</tr>
<tr>
<td></td>
<td>τA</td>
</tr>
<tr>
<td></td>
<td>$\tau \gamma$</td>
</tr>
<tr>
<td></td>
<td>$\tau \bar{\tau}$</td>
</tr>
<tr>
<td>$\tilde{\tau}{2}\tilde{\tau}{2}$</td>
<td>$\tau \bar{\tau}$</td>
</tr>
<tr>
<td></td>
<td>$t(\tilde{\chi}), u(\tilde{\chi})$</td>
</tr>
<tr>
<td>$\tilde{\tau}{2}\tilde{\tau}{2}^{\ast}$</td>
<td>hh, hH, HH, ZZ</td>
</tr>
<tr>
<td></td>
<td>AA</td>
</tr>
<tr>
<td></td>
<td>hZ, HZ</td>
</tr>
<tr>
<td></td>
<td>$h\gamma, H\gamma$</td>
</tr>
<tr>
<td></td>
<td>hA, HA</td>
</tr>
<tr>
<td></td>
<td>AZ</td>
</tr>
<tr>
<td></td>
<td>$H^{+}H^{-}, W^{+}W^{-}$</td>
</tr>
<tr>
<td></td>
<td>$H^{+}W^{-}$</td>
</tr>
<tr>
<td></td>
<td>$\gamma\gamma, \gamma Z$</td>
</tr>
<tr>
<td></td>
<td>$\tilde{u}, b\tilde{b}$</td>
</tr>
<tr>
<td></td>
<td>$\tau\bar{\tau}$</td>
</tr>
<tr>
<td></td>
<td>$u\bar{u}, d\bar{d}, e\bar{e}$</td>
</tr>
<tr>
<td></td>
<td>$\nu\nu$</td>
</tr>
</tbody>
</table>

\(^{10}\) J. Edsjo & P. Gondolo (1997); J. Ellis et al. (1999); M.E. Gómez, G. Lazarides and C.P. (2000, 2002); G. Bélanger et al. (micrOMEGAs) (2001)
Neutralino–Proton Spin Independent (SI) Cross Section $\sigma_{\tilde{\chi} p}^{SI}$

- **The Lagrangian** $L_{\text{eff}} = \alpha_{q}^{SI} (\tilde{\chi} \tilde{\chi}) (\bar{q} q)$ for the $\tilde{\chi}–$Quark Elastic Scattering Takes Contributions\(^\text{11}\) From the Processes:

 \[
 \tilde{\chi} \rightarrow \tilde{q}_1, \tilde{q}_2 \rightarrow \tilde{\chi} q
 \]

 \[
 \tilde{\chi} \rightarrow h, H \rightarrow \tilde{\chi} q q
 \]

 \[
 \tilde{\chi} \rightarrow Z \rightarrow \tilde{\chi} q q
 \]

- L_{eff} Gives Rise to $\sigma_{\tilde{\chi} p}^{SI} = \frac{4}{\pi} \mu_{\tilde{\chi} p}^{2} f_{p}^{2}$, Where $\mu_{\tilde{\chi} p} = \frac{m_{\tilde{\chi}} m_{p}}{m_{\tilde{\chi}} + m_{p}}$ and $f_{p} = \sum_{q=u,d,s} m_{q} f_{T_{q}}^{p} \alpha_{q}^{SI} + \frac{2}{27} f_{T_{G}}^{p} \sum_{q=c,b,t} m_{q} \alpha_{q}^{SI}$

Where the **Hadronic Inputs** $f_{T_{q}}^{p}$ and $f_{T_{G}}^{p}$ Encode The Transition From The Quark To Nucleon Level.

- In The FP Region, Data Coming From LUX Provide **Strict Bounds** On The CMSSM Parameters Since

 \[
 \alpha_{q}^{SI} = \frac{g_{H} m_{H}^{2}}{2 m_{H}^{2}} \tan^{2} \beta \sim \frac{\tan^{2} \beta}{m_{H}^{4}} |N_{11}|^{2} |N_{13}|^{2}
 \]

 With N the Matrix Which Diagonalizes The Neutralino Mass Matrix.

- In Order To Reliably Compare data From LUX With $\sigma_{\tilde{\chi} p}^{SI}$ When $\Omega_{\tilde{\chi}} h^{2} < 0.12$, We Use The **Scaled Quantity**:

 \[
 \sigma_{\text{CDM–p}}^{SI} = \xi \sigma_{\tilde{\chi} p}^{SI}, \quad \xi = \Omega_{\tilde{\chi}} h^{2}/0.12.
 \]

\(^{11}\) M.W. Goodman and E. Witten (1985); J. Ellis and R. Flores (1988); K. Griest (1988).
Restrictions to the CMSSM Parameter Space

The Free Parameters of CMSSM are \(M_{1/2}, m_0, A_0, \tan \beta, \text{sign}\mu \Rightarrow M_{1/2}, A_0/M_{1/2}, \tan \beta, \Delta \tilde{\tau}_2 \) \(\left(\Delta \tilde{\tau}_2 = \frac{m_{\tilde{\tau}_2} - m_{\tilde{\chi}}}{m_{\tilde{\chi}}} \right) \)

We Present Our Results:

• In the \(M_{1/2} - m_0 \) Plane for Various \(A_0/M_{1/2}'s \)

We Find \(0.9 \leq m_{\tilde{\chi}}/\text{TeV} \leq 1.4 \) & \(123.7 \leq m_h/\text{GeV} \leq 125.9 \)
Restrictions to the CMSSM Parameter Space

The free parameters of CMSSM are $M_{1/2}$, m_0, A_0, $\tan \beta$, $\text{sign}\mu \implies M_{1/2}, A_0/M_{1/2}, \tan \beta, \Delta \bar{\tau}_2 \left(\Delta \bar{\tau}_2 = \frac{m_{\bar{\tau}^2} - m_{\tilde{\chi}}} {m_{\tilde{\chi}}} \right)$

We present our results:

- In the $M_{1/2} - m_0$ plane for various $A_0/M_{1/2}$'s

We find $0.9 \leq m_{\tilde{\chi}} / \text{TeV} \leq 1.4$ & $123.7 \leq m_h / \text{GeV} \leq 125.9$

- In the $M_{1/2} - A_0/M_{1/2}$ plane for various $\tan \beta$'s

We find $0.75 \leq m_{\tilde{\chi}} / \text{TeV} \leq 1.4$ & $122 \leq m_h / \text{GeV} \leq 127$
Restrictions to the CMSSM Parameter Space

The Free Parameters of CMSSM are $M_{1/2}$, m_0, A_0, $\tan \beta$, signμ \[\mu > 0 \] \[M_{1/2}, A_0/M_{1/2}, \tan \beta, \Delta \bar{\tau}_2 \] \[\Delta \bar{\tau}_2 = \frac{m_{\tilde{\tau}_2} - m_{\tilde{\chi}}}{m_{\tilde{\chi}}} \]

We present our results:

- In the $M_{1/2} - m_0$ Plane for Various $A_0/M_{1/2}$'s

We find $0.9 \lesssim m_{\tilde{\chi}}/\text{TeV} \lesssim 1.4$ & $123.7 \lesssim m_h/\text{GeV} \lesssim 125.9$

- We obtain a fulfillment of all the restrictions but this from the lower bound of δa_μ.
- The interplay of BR ($B_s \to \mu^+\mu^-$) and $\Omega_\chi h^2$ constraints determine the allowed $m_{\tilde{\chi}}$'s and $\tan \beta$'s i.e., $43.8 \leq \tan \beta \leq 52$
- Since $m_{\tilde{g}}, m_{\tilde{t}_{1,2}}$ and $m_{\tilde{b}_{1,2}} \geq 3 \text{ TeV}$, their discovery is very difficult.
- Since $\mu \geq 1 \text{ TeV}$, the SSB requires some tuning named "Little Hierarchy".
- In the allowed region we obtain $h_t/h_\tau \approx 0.98 - 1.29, h_b/h_\tau \approx 0.60 - 0.65$, and $h_t/h_b \approx 1.62 - 2.00$.
- These values can be motivated by the embedding of CMSSM in our SUSY Pati-Salam model.
Restrictions to the CMSSM Parameter Space

The free parameters of CMSSM are $M_{1/2}$, m_0, A_0, $\tan\beta$, $\text{sign} \mu \quad \mu > 0 \rightarrow m_h, m_{\text{LSP}}, A_0/M_{1/2}, \tan\beta$.

We present our results for $\tan\beta = 48$:

- In the $M_{1/2} - m_0$ plane for various $A_0/M_{1/2}$'s

We find $0.1 \lesssim m_{\text{LSP}}/\text{TeV} \lesssim 1.1$ & $122 \lesssim m_h/\text{GeV} \lesssim 127$.
Restrictions to the CMSSM Parameter Space

The free parameters of CMSSM are $M_{1/2}, m_0, A_0, \tan \beta, \text{sign} \mu \implies m_h, m_{\text{LSP}}, A_0/M_{1/2}, \tan \beta$.

We present our results for $\tan \beta = 48$:

- In the $M_{1/2} - m_0$ plane for various $A_0/M_{1/2}$'s

We find $0.1 \lesssim m_{\text{LSP}}/\text{TeV} \lesssim 1.1$ & $122 \lesssim m_h/\text{GeV} \lesssim 127$.

- In the $m_{\text{LSP}} - A_0/M_{1/2}$ plane for $m_h = 125.5$ GeV

We find $0.1 \lesssim m_{\text{LSP}}/\text{TeV} \lesssim 1.08$ & $-11 \lesssim A_0/M_{1/2} \lesssim 14.1$.
Restrictions to the CMSSM Parameter Space

The free parameters of CMSSM are $M_{1/2}$, m_0, A_0, $\tan\beta$, $\text{sign}\mu \Rightarrow m_h$, m_{LSP}, $A_0/M_{1/2}$, $\tan\beta$.

We present our results for $\tan\beta = 48$:

- In the $M_{1/2} - m_0$ plane for various $A_0/M_{1/2}$’s

We find $0.1 \leq m_{\text{LSP}}/\text{TeV} \leq 1.1$ & $122 \leq m_h/\text{GeV} \leq 127$.

- Varying $40 \leq \tan\beta \leq 51$, the restrictions in the $m_{\text{LSP}} - A_0/M_{1/2}$ plan remain almost intact.
- We obtain a fulfillment of all the restrictions but this from the lower bound of δa_{μ}.
- The bound $m_{\tilde{\chi}_i}^\pm \geq 103.5$ GeV implies $m_{\text{LSP}} \geq 99$ GeV whereas $\text{BR}(B_s \to \mu^+\mu^-)$ remains close to its SM value.
- Since $m_{\tilde{g}}, m_{\tilde{t}_{1,2}}$ and $m_{\tilde{b}_{1,2}} \gtrsim 5$ TeV, their discovery is very difficult.
- For $\Omega_{\tilde{\chi}}h^2 \approx 0.11$ the little hierarchy problem insists, but for $\Omega_{\tilde{\chi}}h^2 \ll 0.11$, we obtain $\mu \approx 0.1$ TeV
- For $40 \leq \tan\beta \leq 51$ we obtain the $h_t/h_T \approx 1 - 1.5$, $h_b/h_T \approx 0.75 - 0.79$, and $h_t/h_b \approx 1.2 - 2.00$. These ratios can be motivated by the embedding of CMSSM in our SUSY Pati-Salam model.
FP Region and Direct Detection of CDM

- In the $\tilde{\tau}_2$-CA Region, $\text{BR}(B_s \rightarrow \mu^+ \mu^-)$ implies $m_{\text{LSP}} \gtrsim 746.5$ GeV and therefore the detection of LSP is unlikely.
FP Region and Direct Detection of CDM

- In the $\tilde{\tau}_2$-CA Region, $\text{BR} (B_s \rightarrow \mu^+ \mu^-)$ implies $m_{\text{LSP}} \gtrsim 746.5$ GeV and therefore the detection of LSP is unlikely.
- In the FP Region we take constraints from LUX and achieve predictions for $\sigma_{\tilde{\chi}p}^{\text{SI}}$.
 - For $A_0/M_{1/2} < 0$
 - For $A_0/M_{1/2} > 0$

- The upper boundary curve comes from the LUX data.
- The remaining $\sigma_{\tilde{\chi}p}^{\text{SI}}$'s are predictions of our scheme.
- The entire allowed region may be probed by XENON1T experiment.
- The present bounds on the spin-dependent $\tilde{\chi} - p$ cross section are not as restrictive as bounds from LUX.
FP REGION AND DIRECT DETECTION OF CDM

• In the $\tilde{\tau}_2$-CA REGION, $\text{BR} \left(B_s \rightarrow \mu^+\mu^- \right)$ implies $m_{\text{LSP}} \gtrsim 746.5$ GeV and therefore the detection of LSP is unlikely.

• In the FP REGION we take constraints from LUX and achieve predictions for $\sigma_{\tilde{\chi}p}^{\text{SI}}$.

 • For $A_0/M_{1/2} < 0$

 • For $A_0/M_{1/2} > 0$

The upper boundary curve comes from the LUX data.
The remaining $\sigma_{\tilde{\chi}p}^{\text{SI}}$'s are predictions of our scheme.
The entire allowed region may be probed by XENON1T experiment.
The present bounds on the spin-dependent $\tilde{\chi} - p$ cross section are not as restrictive as bounds from LUX.

As a bottom line we could say that the FP region is more attractive or even natural than the $\tilde{\tau}_2$-CA REGION.

C. PALLIS CMSSM WITH GENERALIZED YUKAWA QUASI-UNIFICATION: AN UPDATE
Summary

CMSSM can become consistent with the data (except for that of $\delta\alpha_\mu$) within two regions of its parameter space:

Comparison of the allowed regions

<table>
<thead>
<tr>
<th></th>
<th>$\tilde{\tau}_2$-CA Region</th>
<th>FP Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$M_{1/2}$/TeV</td>
<td>1.6 – 3</td>
<td>2 – 4</td>
</tr>
<tr>
<td>m_0/TeV</td>
<td>1.6 – 3</td>
<td>4 – 16</td>
</tr>
<tr>
<td>$A_0/M_{1/2}$</td>
<td>0.2 – (−3)</td>
<td>(−11) – 15</td>
</tr>
<tr>
<td>$\tan\beta$</td>
<td>43.8 – 52</td>
<td>40 – 50</td>
</tr>
<tr>
<td>μ/TeV</td>
<td>\geq 3</td>
<td>0.1 – 1</td>
</tr>
<tr>
<td>h_t/h_τ</td>
<td>0.98 – 1.29</td>
<td>1 – 1.5</td>
</tr>
<tr>
<td>h_b/h_τ</td>
<td>0.6 – 0.65</td>
<td>0.75 – 0.79</td>
</tr>
<tr>
<td>h_t/h_b</td>
<td>1.62 – 2</td>
<td>1.2 – 2</td>
</tr>
<tr>
<td>Spectroscopy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSP:</td>
<td>Bino</td>
<td>Bino-Higgsino</td>
</tr>
<tr>
<td>NLSP:</td>
<td>$\tilde{\tau}_2$</td>
<td>$\tilde{\chi}_i^\pm$, $\tilde{\chi}_i^0$</td>
</tr>
<tr>
<td>$m_{\tilde{\chi}}$/TeV</td>
<td>0.75 – 1.4</td>
<td>0.1 – 1.08</td>
</tr>
<tr>
<td>$m_{\tilde{t}_{1,2}}$/TeV</td>
<td>3 – 4</td>
<td>6 – 10</td>
</tr>
<tr>
<td>$m_{\tilde{u},\tilde{d}}$/TeV</td>
<td>4 – 6</td>
<td>10 – 12</td>
</tr>
<tr>
<td>m_{H^+,H^0}/TeV</td>
<td>2.1 – 2.6</td>
<td>2 – 6</td>
</tr>
<tr>
<td>$m_{\tilde{g}}$/TeV</td>
<td>5 – 6</td>
<td>5 – 8</td>
</tr>
<tr>
<td>Predictions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Omega_\chi h^2$ Tunings</td>
<td>$\Delta_{\tilde{\tau}_2} \approx 0$, $\Delta_H \approx 0$</td>
<td>$\Delta_{\tilde{\chi}_i^\pm} \approx 0$</td>
</tr>
<tr>
<td>$\sigma^{SI}_{\tilde{\chi}_i^0}$/pb</td>
<td>10^{-12}</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>$\delta a_\mu/10^{-10}$</td>
<td>(0.35 – 2.76)</td>
<td>(0.04 – 0.27)</td>
</tr>
</tbody>
</table>

Final Remarks

1. For $\Omega_\chi h^2 \ll 0.12$, the naturality of the FP region increases, since $\mu \sim (100 \pm 20)$ GeV.
2. The sparticle spectra – besides $\tilde{\chi}$ – in the FP region are more heavy than the ones in the $\tilde{\tau}_2$-CA region.
3. The allowed FP region is more ample and natural than the $\tilde{\tau}_2$-CA region.
4. The obtained h_t/h_τ’s for $m, n = t, b, \tau$ can be motivated by the embedding of CMSSM in our SUSY Pati-Salam model.
Summary

CMSSM can become consistent with the data (except for that of $\delta \alpha_{\mu}$) within two regions of its parameter space:

Comparison of the Allowed Regions

<table>
<thead>
<tr>
<th></th>
<th>$\tilde{\tau}_2$-CA Region</th>
<th>FP Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$M_{1/2}$/TeV</td>
<td>1.6 – 3</td>
<td>2 – 4</td>
</tr>
<tr>
<td>m_0/TeV</td>
<td>1.6 – 3</td>
<td>4 – 16</td>
</tr>
<tr>
<td>$A_0/M_{1/2}$</td>
<td>0.2 – (−3)</td>
<td>(−11) – 15</td>
</tr>
<tr>
<td>$\tan \beta$</td>
<td>43.8 – 52</td>
<td>40 – 50</td>
</tr>
<tr>
<td>μ/TeV</td>
<td>≥ 3</td>
<td>0.1 – 1</td>
</tr>
<tr>
<td>h_t/h_τ</td>
<td>0.98 – 1.29</td>
<td>1 – 1.5</td>
</tr>
<tr>
<td>h_b/h_τ</td>
<td>0.6 – 0.65</td>
<td>0.75 – 0.79</td>
</tr>
<tr>
<td>h_t/h_b</td>
<td>1.62 – 2</td>
<td>1.2 – 2</td>
</tr>
<tr>
<td>Spectroscopy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSP:</td>
<td>Bino</td>
<td>Bino-Higgsino</td>
</tr>
<tr>
<td>NLSP:</td>
<td>$\tilde{\tau}_2$</td>
<td>$\tilde{\chi}_i^\pm$, $\tilde{\chi}_i^0$</td>
</tr>
<tr>
<td>$m_{\tilde{\chi}}$/TeV</td>
<td>0.75 – 1.4</td>
<td>0.1 – 1.08</td>
</tr>
<tr>
<td>$m_{\tilde{\tau}_{1,2}}$/TeV</td>
<td>3 – 4</td>
<td>6 – 10</td>
</tr>
<tr>
<td>$m_{\tilde{u},d}$/TeV</td>
<td>4 – 6</td>
<td>10 – 12</td>
</tr>
<tr>
<td>$m_{H,A,H\pm}$/TeV</td>
<td>2.1 – 2.6</td>
<td>2 – 6</td>
</tr>
<tr>
<td>$m_{\tilde{\gamma}}$/TeV</td>
<td>5 – 6</td>
<td>5 – 8</td>
</tr>
</tbody>
</table>

Predictions

<table>
<thead>
<tr>
<th>$\Omega_\chi h^2$ Tunings</th>
<th>$\Delta \tilde{\tau}_2 \approx 0$, $\Delta H \approx 0$</th>
<th>$\Delta \tilde{\chi}_i^\pm \approx 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma^{SI}_{\tilde{\chi}P}$/pb ~</td>
<td>10$^{-12}$</td>
<td>10$^{-9}$</td>
</tr>
<tr>
<td>$\delta a_\mu/10^{-10}$ ≥ 7.5</td>
<td>(0.35 – 2.76)</td>
<td>(0.04 – 0.27)</td>
</tr>
</tbody>
</table>

Final Remarks

1. For $\Omega_\chi h^2 \ll 0.12$, the **naturalness** of the FP region increases, since $\mu \sim (100 \pm 20)$ GeV.
2. The sparticle spectra – besides $\tilde{\chi}$ – in the FP region are **more heavy** than the ones in the $\tilde{\tau}_2$-CA region.
3. The allowed FP region is more **ample & natural** than the $\tilde{\tau}_2$-CA region.
4. The obtained h_t/h_τ’s for $m, n = t, b, \tau$ can be **motivated** by the embedding of CMSSM in our SUSY Pati-Salam model.
5. Although the deviation of ν is not so small, the obtained h_t/h_τ’s are much **closer to unity** than in generic models with lower values of $\tan \beta$ – e.g. we obtain $h_t/h_b = 10$ (!) for $\tan \beta = 10$.

C. Pallis

CMSSM with Generalized Yukawa Quasi-Unification: An Update
SUMMARY

CMSSM CAN BECOME CONSISTENT WITH THE DATA (EXCEPT FOR THAT OF $\delta \alpha_\mu$) WITHIN TWO REGIONS OF ITS PARAMETER SPACE:

COMPARISON OF THE ALLOWED REGIONS

<table>
<thead>
<tr>
<th>Model Parameters</th>
<th>$\tilde{\tau}_2$-CA Region</th>
<th>FP Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_{1/2}$/TeV</td>
<td>1.6 – 3</td>
<td>2 – 4</td>
</tr>
<tr>
<td>m_0/TeV</td>
<td>1.6 – 3</td>
<td>4 – 16</td>
</tr>
<tr>
<td>$A_0/M_{1/2}$</td>
<td>0.2 – (–3)</td>
<td>(–11) – 15</td>
</tr>
<tr>
<td>$\tan \beta$</td>
<td>43.8 – 52</td>
<td>40 – 50</td>
</tr>
<tr>
<td>μ/TeV</td>
<td>≥ 3</td>
<td>0.1 – 1</td>
</tr>
<tr>
<td>h_t/h_τ</td>
<td>0.98 – 1.29</td>
<td>1 – 1.5</td>
</tr>
<tr>
<td>h_b/h_τ</td>
<td>0.6 – 0.65</td>
<td>0.75 – 0.79</td>
</tr>
<tr>
<td>h_t/h_b</td>
<td>1.62 – 2</td>
<td>1.2 – 2</td>
</tr>
</tbody>
</table>

Spectroscopy

<table>
<thead>
<tr>
<th>LSP:</th>
<th>Bino</th>
<th>Bino-Higgsino</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi_1^0, \tilde{\chi}_i^0$</td>
<td>$\tilde{\tau}_2$</td>
<td>$\tilde{\chi}_i^\pm, \tilde{\chi}_i^0$</td>
</tr>
<tr>
<td>$m_\tilde{\chi}_1^0$/TeV</td>
<td>0.75 – 1.4</td>
<td>0.1 – 1.08</td>
</tr>
<tr>
<td>$m_{\tilde{\chi}_{1,2}^0}$/TeV</td>
<td>3 – 4</td>
<td>6 – 10</td>
</tr>
<tr>
<td>$m_{\tilde{b},d}$/TeV</td>
<td>4 – 6</td>
<td>10 – 12</td>
</tr>
<tr>
<td>$m_{H_1,2}$ /TeV</td>
<td>2.1 – 2.6</td>
<td>2 – 6</td>
</tr>
<tr>
<td>$m_{\tilde{g}}$/TeV</td>
<td>5 – 6</td>
<td>5 – 8</td>
</tr>
</tbody>
</table>

Predictions

<table>
<thead>
<tr>
<th>$\Omega_\chi h^2$ Tunings</th>
<th>$\Delta_{\tilde{\tau}_2} \approx 0, \Delta_H \approx 0$</th>
<th>$\Delta_{\tilde{\chi}_1}^{\pm} \approx 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{SI}/pb</td>
<td>10^{-12}</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>$\delta a_\mu/10^{-10}$</td>
<td>$(0.35 – 2.76)$</td>
<td>$(0.04 – 0.27)$</td>
</tr>
</tbody>
</table>

Final Remarks

1. For $\Omega_\chi h^2 \ll 0.12$, the **Natural**y of the FP Region Increases, since $\mu \sim (100 \pm 20)$ GeV.
2. The Sparticle Spectra – Besides $\tilde{\chi}$ – in the FP Region Are **More Heavy** Than the Ones in the $\tilde{\tau}_2$-CA Region.
3. The Allowed FP Region Is More **Ample & Natural** Than the $\tilde{\tau}_2$-CA Region.
4. The Obtained h_t/h_τ’s for $m, n = t, b, \tau$ can be **Motivated** by the Embedding of CMSSM in our SUSY Pati-Salam Model.
5. Although the Deviation of YU is not so Small, the obtained h_t/h_τ’s Are Much **Closer To Unity** Than In Generic Models With Lower Values of $\tan \beta$ – E.g. We Obtaina $h_t/h_b = 10$ (!) for $\tan \beta = 10$.
6. To Obtain a Fulfilment of the Constraints Above An Amount of Tuning (μ Determination, $\Delta_{\tilde{\tau}_2} = 0$ and $\Delta_H = 0$ or $\Delta_{\tilde{\chi}_1}^{\pm} \approx 0$) Is Required Which, Though, Is Significantly Lower Than The Amount Of Tuning Which Is Removed By SUSY.

aS. Antusch et al. (2012).
BACK-UP: TESTING YUKAWA QUASI-UNIFICATION

We present the complex parameters α_1, α_2 for various ρ's corresponding to $h_b/h_\tau = 0.618$ and $h_t/h_\tau = 1.079$.

- Each point in the α_1 plane generally corresponds to more than one points in the α_2 plane.
- We found solutions only for the lower values of the parameter ρ (up to about 0.6).
Back-up: Testing Yukawa Quasi-Unification

We present the complex parameters α_1, α_2 for various ρ's corresponding to $h_b/h_\tau = 0.618$ and $h_t/h_\tau = 1.079$.

- Each point in the α_1 plane generally corresponds to more than one points in the α_2 plane.
- We found solutions only for the lower values of the parameter ρ (up to about 0.6).