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For different views suggest different kinds of modifications which
might be made and hence are not equivalent in the hypotheses one
generates from them in one’s attempt to understand what is not
yet understood.

Richard Feynman, Nobel Lecture
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I. From first to second order fermions

Dirac fermions

We start with the Dirac Lagrangian coupled to Electrodynamics in
3 + 1 dimensions with the metric ηµν = (−,+,+,+). We have:

LD = −iΨ̄ /DΨ−mΨ̄Ψ, /DΨ = (/∂ + ie /A)Ψ (1)

with /D = γµDµ.
The Lagrangian has the usual U(1) gauge symmetry:

Ψ 7→ e−ieα(x)Ψ, Aµ 7→ Aµ + ∂µα (2)



I. From first to second order fermions

Two-component fermions

Using the isomorphism

SO(1, 3) ∼ SL(2,C) (3)

And the soldering form (also referred to as “tetrad” or “vielbein”):

θAA
′

µ : xµ 7→ xAA
′ ≡ θAA′µ xµ (4)

One identifies Minkowski spacetime with the set of hermitian
(2× 2) matrices.



I. From first to second order fermions

Two-component fermions

We can further identify:

Ψ =

(
χ

ξ†

)
, γµ =

(
0

√
2θµ√

2θµ 0

)
(5)

where we omit spinor indices.

• In order to go into a two-component fermions formalism →
rewrite the Dirac Lagrangian in terms of these new quantities.



I. From first to second order fermions

Integrating one chirality out

The Dirac Lagrangian is then:

LD = −i
√

2χ†A′D
A′AχA − i

√
2ξ†A′D

A′AξA −m(χAξA + χ†A′ξ
†A′)

(6)

Equations of motion

From the field equations for the primed spinors we get:

ξ†A
′

= − i
√

2

m
DA′AχA, χ†A

′
= − i

√
2

m
DA′AξA. (7)

• Quadratic Lagrangian for the primed spinors

• Carry out the Berezin path-integral by effectively reinserting
the EOM in the Lagrangian
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I. From first to second order fermions

Second Order QED

The Lagrangian for QED2 is given by:

Lchiral = −2DA′
AχAD

A′BξB −m2χAξA. (8)

Together with the equations of motion:

2DA′
ADA′BξB +m2ξA = 0, 2DA′

ADA′BχB +m2χA = 0 (9)

The unprimed spinor fields satisfy the generalised Klein-Gordon
equation with non-zero bundle curvature.



I. From first to second order fermions

Second Order QED

• The first order equations of motion are now seen as non-trivial
reality conditions:

mξ†A
′

= −i
√

2DA′AχA, mχ†A
′

= −i
√

2DA′AξA (10)

• The fields are now normalised to have canonical mass
dimension 1 (as seen from the Lagrangian).
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I. From first to second order fermions

Feynman rules

The propagator becomes very simple:

〈0|T{χA(p)ξB(−p)}|0〉 ≡ D(p)AB =
−i

p2 +m2
εAB (11)



I. From first to second order fermions

Feynman rules

We have two interaction vertices with Feynman rules (incoming
momenta):

2ie
[
kC

A′εBA + pB
A′εCA

]
, −2ie2εA

′B′εABεCD (12)

AA
′
A

ξCk

χBp

AA
′
A

AB
′
B

χC

ξD



I. From first to second order fermions

Feynman rules

Computing Feynman amplitudes simply amounts to contracting
spinors indices with the simple rules:

λA = εABλB, λA = λBεBA (13)

No gamma matrices algebra to worry about!



I. From first to second order fermions

e−µ− → e−µ− scattering

Simplest QED process: electron-muon scattering at tree level

Amputated amplitude MABCD for an incoming electron with
momentum k1 scattered off an incoming muon with momentum
p1. We have:

MABCD = −4ie2

q2

[
(k1 · p1)AB εCD − (k2 · p1)DB εAC

− (k1 · p2)AC εBD + (k2 · p2)CD εAB
] (14)



I. From first to second order fermions

One-loop charge renormalisation

Although there are half the number of fermions in our theory,
fermions loops are equivalent in both formalisms:

iΠ
1−loop

(k)
A′

A
B′

B

= (−1)4e
2
∫

d4p

(2π)4

[
pA
′
B(p + k)B

′
A + (p + k)A

′
Bp

B′
A − 1

2

(
(p + k)2 + p2

)
εA
′B′ εAB

]
[
p2 +m2

] [
(p + k)2 +m2

]
+ (−1)4e

2
∫

d4p

(2π)4

εA
′B′ εAB[

p2 +m2
]

(15)

Which exhibits the contributions from both diagrams.



I. From first to second order fermions

One-loop charge renormalisation

Although there are half the number of fermions in our theory,
fermions loops are equivalent in both formalisms:

Rewritten:

iΠ
1−loop

(k)
A′

A
B′

B

= (−1)4e
2
∫

dDp

(2π)D

[
pA
′
B(p + k)B

′
A + (p + k)A

′
Bp

B′
A +m2εA

′B′ εAB

]
[
p2 +m2

] [
(p + k)2 +m2

] (16)

We have the usual one-loop integral to compute.



I. From first to second order fermions

Yang-Mills

• Feynman rules obtained for the second-order fermions are
similar to Yang-Mills’:

igfabc [ηµν(k1 − k2)
ρ + perms] , −

i

4
g2

[
fabefcde(ηµρηνσ − ηµσηνρ) + perms

]
(17)

• Main difference comes from the groups structures (both
spacetime and internal)

• Opens new directions for unification (?)
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II. The Standard Model

A. Quark Sector

Quark sector

Using index-free notations, the Lagrangian for the quark sector of
the Standard Model reads:

Lquark = − i
√

2Q†iDQi − i
√

2ū†iDūi − i
√

2d̄†iDd̄i

+ Y ij
u φ

T εQiūj − Y ij
d φ
†Qid̄j

− (Y †u )ij ū†iQ
†
jεφ
∗ − (Y †d )ij d̄†iQ

†
jφ.

(18)

As before DAA′ ≡ θµAA′Dµ and the quantities Y ij are arbitrary
complex 3× 3 Yukawa mass matrices.



II. The Standard Model

A. Quark Sector

Equations of motion

The equations of motion for the unprimed spinors are:

Q†i : i
√

2DQi = − (εφ∗) ū†j(Y
†
u )ji − φ d̄†j(Y

†
d )ji

ū†i : i
√

2Dūi = −(Y †u )ijQ†j (εφ∗)

d̄†i : i
√

2Dd̄i = −(Y †d )ijQ†j φ

(19)

They relate, as before, primed to unprimed spinors.



II. The Standard Model

A. Quark Sector

SU(2) structure

Some structure is making itself explicit in the equations of motion → We
combine the components of the Higgs field into the following 2× 2 matrix:

ρΦ† := (εφ∗, φ) ≡
(

(φ0)∗ φ+

−φ− φ0

)
(20)

Upon field redefinitions and combination of the singlets into a row:

Q̄i :=
(
ūi , d̄i

)
(21)

The equations of motion become:

Q†i : i
√

2DQi = −ρ Φ†
(
Q̄†Λ

)
i

Q̄†i : i
√

2DQ̄i = −ρ Q†iΦ
†

(22)
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II. The Standard Model

A. Quark Sector

Physical variables

• Introducing the new doublet Q̄i has made the equations look more
symmetric, however there is no complete symmetry.

• The doublet Qi and Φ† transform under the weak SU(2), while Q̄i does
not transform.

• Define a new set of SU(2)-invariant quark variables ΦQi

ΦQi := Qinvi . (23)

→ Higgs-field dependent SU(2) gauge rotation. It can be pulled through the
derivative as long as one takes into account that the gauge field also
transforms.
→ The new gauge field will be an SU(2)-invariant object.
The new equations of motion are:

Q†i : i
√

2DQi = −ρ
(
Q̄†Λ

)
i

Q̄†i : i
√

2DQ̄i = −ρ Q†i

(24)

We have dropped the superscript inv from the Qi to avoid clattering of the
notations. We see that the equations become much simpler than in terms of
the original fields.
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II. The Standard Model

A. Quark Sector

Second-order Lagrangian

We now substitute the primed spinors obtained from the above field equations
into the Lagrangian and obtain the following second-order Lagrangian:

Lquarks = −2

ρ
DQ̄iDQi − ρ

(
ΛQ̄

)i
Qi, (25)

• Much simpler Lagrangian: half the terms from the quark sector

• However, non-polynomical in the Higgs scalar field ρ → absorb the Higgs
field and write:

L(2)
quarks = −2DQ̄iDQi − ρ2 (ΛQ̄)i

Qi (26)



II. The Standard Model

A. Quark Sector

Second-order Lagrangian

We now substitute the primed spinors obtained from the above field equations
into the Lagrangian and obtain the following second-order Lagrangian:

Lquarks = −2

ρ
DQ̄iDQi − ρ

(
ΛQ̄

)i
Qi, (25)

• Much simpler Lagrangian: half the terms from the quark sector

• However, non-polynomical in the Higgs scalar field ρ → absorb the Higgs
field and write:

L(2)
quarks = −2DQ̄iDQi − ρ2 (ΛQ̄)i

Qi (26)



II. The Standard Model

A. Quark Sector

Second-order Lagrangian

We now substitute the primed spinors obtained from the above field equations
into the Lagrangian and obtain the following second-order Lagrangian:

Lquarks = −2

ρ
DQ̄iDQi − ρ

(
ΛQ̄

)i
Qi, (25)

• Much simpler Lagrangian: half the terms from the quark sector

• However, non-polynomical in the Higgs scalar field ρ → absorb the Higgs
field and write:

L(2)
quarks = −2DQ̄iDQi − ρ2 (ΛQ̄)i

Qi (26)



II. The Standard Model

B. Higgs Sector

II. The Standard Model
A. Quark Sector
B. Higgs Sector



II. The Standard Model

B. Higgs Sector

Physical Bosons and their masses

The Higgs sector Lagrangian can be rewritten in terms of physical quantities as
follows:

LHiggs = −|Dµφ|2 − V
(
|φ|2

)
= − (∂µρ)2 − (g2ρ)2

2

(
W+W− +

1

2 cos2(θW )
ZµZ

µ

)
− V (ρ2)

(27)

• To extract the mass terms for the W,Z bosons no symmetry breaking
was needed

• The Higgs sector was merely reformulated in terms of the physical
SU(2)-invariant degrees of freedom of the theory.
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III. Future Prospects and Conclusion

A. Anomalies

QED and Measure non-invariance

• When fermions are massless, the QED Lagrangian is invariant under axial
transformations

• However, it turns out that the measure in the path integral formulation of
the theory is not. The measure transforms as

DΨ̄DΨ 7→ ei
∫
d4xθ(x)A(x)DΨ̄DΨ (28)

where the function A(x) is the anomaly:

A(x) = − 1

16π2
εµναβFµνFαβ (29)

• Leads to the anomalous conservation of the axial current:

∂µ〈jµ5 〉 = A(x) (30)
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III. Future Prospects and Conclusion

A. Anomalies

Second-order formalism

• The second order Lagrangian is explicitly not invariant under the (local or
global) chiral transformations. We have, at the classical level:

DAA′j5
AA′ = 2i L. (31)

• However, the massless Lagrangian vanishes on the surface of the reality
conditions. It is only in this sense that the massless theory is invariant
under the chiral transformations.
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III. Future Prospects and Conclusion

A. Anomalies

First-order result recovered

• At the quantum level:

∂µj5
µ ≡ ∂AA′〈j5A′

A〉 = Achiral − 2i〈L〉 ≡ A, (32)

where we have introduced the notation A for the full anomaly.

• The anomaly can be calculated non-pertubatively or in perturbation
theory.

• One finds as usual:

DA
A′〈j5A′

A〉 = − 1

(4π)2
εµναβFµνFαβ (33)
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III. Future Prospects and Conclusion

B. Unitarity

Non-hermitity

The Lagrangian

Lchiral = −2DA′
AχAD

A′BξB −m2χAξA. (34)

is obviously non-hermitian.

• How can the theory be unitary?

• We have to impose reality conditions!

• In our case, we have a non-trivial real-structure that involves a derivative
operator:

† 7→ i

m
D,

(
i

m
D
)2

= IV
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vertex is essential to guarantee full non-linear reality.
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• Our fermions are described by a second order wave equation, much like
forces are → we could expect a unification of matter and forces to be
simpler in this way!

• In certain formulations of gravity, the graviton is described by a complex
(e.g. SU(2) gauge) field. In order to describe real geometry, reality
conditions need to be imposed → often understood only at the linear
level!

• Since the Lagrangian we are working with is partially on-shell as
compared to the usual Dirac one, we may expect simplifications in
different aspects → e.g. the absence or presence of the anomaly can be
(almost) read off the Lagrangian

• The perturbative proof of unitarity for this non-hermitian theory is being
developed.

• Implications on supersymmetric field theories?
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Thank you!


	From first to second order fermions
	The Standard Model
	Quark Sector
	Higgs Sector

	Future Prospects and Conclusion
	Anomalies
	Unitarity
	Conclusions


