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Introduction
2 We know about neutrino masses.

O Neutrinos have masses and this experimental evidence demands
for a satisfactory theoretical explanation.

O “Satisfactory” means no huge fine-tuning or parameter hierarchy.

O The most popular such explanation is provided by the seesaw
mechanism.

2 We have the LHC.

O The LHC has been running for two years, and many searches
(including some for seesaw mediators) have been performed.

O lItis now being upgraded to 13.5 £ 0.5 TeV.

2 This talk is about that; seesaw searches at the LHC.
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Minimal seesaw models
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If they are light enough, seesaw mediators can be produced at LHC
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Extra interactions

The presence of extra interactions is crucial for type-l seesaw where N

production is suppressed by their small mixing with SM leptons ¢ = e, , T.
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Once produced, they decay. Example: decays of a heavy N

N - WTtei~
via small couplin — p+ relative BR
PINS — N — W g D depend mildly on
to SM bosons and N — Zu S
light leptons N — Hu

LNV, not present
if N Dirac particle

relative importance
depends on coupling to
SM bosons and masses

via large coupling
to new heavy bosons
(if any)

- N — (Wj:{l_)*é_ —> ]]f_jtgg_(_ f relz:jtive.|5|R
N 5 (Wgh) et — jjet, thet TNWa mass

¢ = e, Y, T any lepton flavour in principle
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Interlude #l

Heavy N can also be Dirac particles in seesaw | and ||

Type | inverse seesaw

Mohapatra & Valle ’86

N1+N2—>N

Type lll inverse seesaw
Aguila & JAAS "08 ¢
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\
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Production and cascade decay of seesaw messengers yields multilepton

signals Fileviez et al.’08,Aguila & JAAS *08, ]JAAS 09

best expected sensitivity
[ W Wl il W G Al WA Al W il i A
type | X X
type | inverse X X X
type | (W) X X
type | inverse (W) X X X
type | (£°) X
type | inverse (Z°) X X
type |l (large Y) X
type Il (small Y) X
type I

type lll inverse

smaller signals

smaller backgrounds
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Back to 2009...

Identifying new quarks and leptons at LHC:
the role of multi-lepton signals

J. A. Aguilar-Saavedra

Departamento de Fisica Teodrica y del Cosmos
Universidad de Granada

Corfu Summer Institute, September 3¢ 2009

J. A. Aguilar-Saavedra Identifying new quarks and leptons at LHC ... 9/63



Today...

only search for
inverse seesaw

most popular
channel

[ATLAS] [ CMS

underrated
channel

/

type lll invers
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type | X X
type | inverse X X
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type |l (large Y) m X
type Il (small Y) X
type Il

no searches yet!
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What’s new in the talk! The T lepton enters the game

It was always there, and the sensitivity was considered fairly insignificant.

But now:
O Some cases have been identified in which the sensitivity is interesting

O its role in explaining possible signals has been [again] highlighted
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Review: flavour in type-ll

In type |l seesaw the flavour mixing of triplets with leptons (and then their

decays) is fixed by neutrino data.

ATt 5 oot .
it { fu gt e (D) Gy Schwe 07
AT = Ly, Akeroyd et al,"07

Kadastik et al.’07
Fileviez et al.’08

ATT 5 WTWT
small Y = fl d ¢ Aguila & JAAS ’08
{ AT — WTZ,tb Qo demeeaic Melfo et al.”|

Then, once we assume normal or inverted hierarchy, the different branching
ratios for flavours i, j is fixed and flavour-consistent searches for seesaw ||

can be performed by experiments. CMS actually did it.
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Review: flavour in type-|, type-l

On the other hand, in type |, lll seesaw the heavy-light mixing and neutrino
mass matrix are not directly related.

v Y ?}2 YkYk
V. . — i v)ii — ’ J
VG 3 VP2 A R VA

> “flavour benchmarks” commonly used for LHC searches

Although the mixing of a heavy neutrino N with e, Y, T is in principle

arbitrary, there are experimental constraints: del Aguila et al.’08
V.n| < 0.055 V.n| < 0.019

> [Vl < 0.057 > V| 0017
Vyn| < 0.079 Vyn| < 0.027

and very stringent limits (from low-energy LFV) for simultaneous mixing

with e and [.
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Coupling of N (2 in type-lll seesaw) determines the flavour of the signals

coupling @
coupling @
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But most flavour benchmarks used are actually flavourless benchmarks

searches for type-| seesaw
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Flavourless benchmarks are used even when not needed...

N coupling to e only

T
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Flavourless benchmarks used in type-lll seesaw too...

Flavoured benchmark violating u — ey by 107 x

—
o
w

—
o
i)

o(pp — N° N*)x BF(N* — Z )x BF(N® — W I) [fb]

searches for type-lll seesaw

T — T ——

——— Observed 95% C.L. upper limit

------ Expected 95% C.L. upper limit

[ Expected limit = 10

|| Expected limit = 20

o(pp — N°N*),BF(N*— Z [¥)x BF(N°— W I)=1
o(pp = N°N)x BF(N:— Z I¥)x BF(N— W )

IV1=0.055
IV 1=0.063
ATLAS Preliminary IVMI=O .

Ldt=5.8fb" {s=8TeV

150 200 250 300 350 400 450 500
my [GeV]

10F

10F

2. coupling to e only

CMS 2011\Ns=7TeV,L=4.9 fb’

) b =b =0
-------- Expected (CLs)
* [ Expected at 68% confldence
[ Expected at 95% confldence
e %  Observed iCLs)
® Observed (Bayesian)
o x B (theory LO)

IIl]llllIIIlIIlIllllJlI]llllllJlII

140 160 180 200 220 240 260 280 300
fermion mass M, (GeV)

2. coupling to p only

CMS 2011 Ns=7TeV,L=4.9 fb’

-------- Expected (CLs)
- [ Expected at 68% confldence ........
@@ Expected at 95% confldence
%  Observed (CLs)
® Observed (Bayesian)
oxB (theory LO)

IIl]llllllIllllll[lljllllllllljll

140 160 180 200 220 240 260 280 300
fermion mass M, (GeV)

17/63



Flavourless searches are clearly insufficient but flavoured reinterpretations
[by theorists] are often possible

For heavy leptons coupling to the T, the final states involve one or more T,
which subsequently can decay giving e, p too, but

O the signals are smaller: Br(7 — evv, uvv) ~1/3.
O the signals involve missing energy Er.
O the resulting e, y are softer.

Reinterpretations of existing analyses (with fast simulation of new MC
signals tuned to reproduce efficiencies in actual experiments) are possible if
experimental analyses do not include a veto on Er. JAAS et al.’12’13
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fix flavour structure and fix my and Mw- and let
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The problem comes when one sees something like this...
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. with a disclaimer like that:

The Myyj; distributions for events satisfying all selection criteria appear in Fig. 2, A comparison
of the observed data to SM expectations yields a normalized x? of 1.4 (0.9) for electron (muon)
channel events. We observe an excess of events in the electron channel with 1.8 < M.j; <
2.2 TeV, with a local significance of 2.8c using the method discussed in Section 7. This excess
does not appear to be consistent with Wg — eN, decay, as we find no localized excess in other
distributions associated with these events. Examining the charge of the electrons used to build
Wr boson candidates in data events with 1.8 < Me;; < 2.2TeV, we find same-sign electrons in

only one of the 14 reconstructed events.
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This is a search for type-l seesaw in LR models

sensitive to
quasi-Dirac N

focusing on same-flavour energetic leptons (ee, pu) of either sign and jets

O pr = 60,40 GeV for leading and subleading lepton
O pr = 40 GeV for jets
O dilepton invariant mass m; = 100 GeV

O W'reconstructed mass my; = 600 GeV
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The immediate question is whether this 2.80 excess
— aside the fact that it might just be a statistical fluctuation —

is compatible or not with heavy neutrino production in a less restrictive
framework. So, let us think what it could be in terms of seesaw.

O The excess only appears in eejj, and not in ppjj. But epjj not analysed

> some new particle with non-universal lepton couplings

O The excess only appears in opposite-sign leptons

> if this particle is heavy N, it has (quasi-)Dirac character

O The cross section is too large for type-lll seesaw

> new W’ or Z’ required
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Interlude #2

Besides seesaw models, other explanations proposed every couple of days

O leptoquarks (2.40, 2.60 excesses in other searches) Bai & Berger ’14
O R-parity violating susy Chun et al.’14; Allanach et al.’ 14
O Z" + new leptons + new scalars Dobrescu & Martin ’ 14

And other unflavoured W’ explanations:

O LR model withg' <g Deppisch et al.’|4; Heikinheimo et al.’ 14

Plus some other related stuff Bhupal Dev et al.’14; Senjanovic & Tello ’ 14
Fowlie & Marzola ’14; Biswas et al.’ | 4
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W' flavoured interpretation JAAS & Joaquim ' 14

O signal targeted by CMS search (left-right model)
O m(eejj) peaks at Mw

O distributions smeared if significant T mixing

O RH mixings satisfy |Ven|? + |Vun|? + [Von|? =1

25/63



Z’ flavoured interpretation JAAS & Joaquim ' 14

| ee— B

O obviously requires leptophobic Z* Aguila & JAAS '07
O m(eejj) still peaks close to Mz because two highest pr jets are chosen
O other distributions already smooth even if mixing only with e

O mixings are LH and can be normalised to |Ven|* + |Vun|? + [Von|? =1
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Reproducing the flavour of the signals

1.0
0.8
0.6
Z Z
> 0.4
D
02F3S
<—§ 0.2
L
— i
0.0L— i . . oL L
03 04 05 06 07 08 09 10 03 04 05 06 07 08 09 10
VeN VeN

O fast sim slightly tuned to reproduce efficiencies of CMS analysis
O assuming g’ = g for the moment

O signal suggests Vun = 0, which is in agreement with p = ey bounds in the

case of W'. For Z" no LFV problem because Vy can be small
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Interlude #3

Notice that even if V1N is sizable (but not close to one), dielectron signals
are much larger than dimuon signals if Vuyn = 0

‘VGN‘4
o(ee) x ¢ 2 x |Von|?|Vin|? Br(T — evi)

Ven|? Br(t — evi)?

o(pp) o< |Von|? Br(r — pvi)?
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Constraints!?

0.0 0.2 0.4 0.6 0.8 1.0

O assuming Vun = 0 as suggested by the excess

O there is room to explain the size of the signal without conflicts with
& dijets

® {1, tb resonances
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Distributions: W’ reconstructed mass [Mej]

19.7 fb' (8 TeV
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O W™ and Z" masses of 2.2 TeV chosen so as to reproduce the excesses in
the two bins: [.8 TeV - 2.2TeV /2.2 TeV - 4.0 TeV

O peaks in both cases, excess well reproduced even if Vn significant
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Distributions: dilepton invariant mass

19.7 fb' (8 TeV)
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Distributions: N reconstructed mass [mej with either €]
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O maybe this is is the mysterious distribution that CMS claims does not
display a peak!?

O peaks at mn in the case of W', should the peak be visible!?
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Moral from this exercise [conclusions]

2 If this excess were confirmed, we would be very happy:

media citations funding

2 Even if it is not (which is quite possible), we should at least be warned
once more that experimental searches should:

O consider a wide scope of signals

O be interpreted correctly!
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Slides



Wishlist for future analyses
JAAS & Joaquim ’12

instead of being inclusive on Er, one could split the event sample into high
Er and low Er subsamples and combine results, to:

Potential measurement of mixings

O probe LNV in low Er events 1-1_A-n-n-n-l-n-n-lww-l _
_ : M,=2TeV ,m=1TeV

O distinguish decays to e, p from 10— B B =2 7oV m= TV -
09 L TN M, = 25TeV, m=1TeV |

thoseto T [
O measure N mixing with e, i, T e

@g with p
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Reinterpretation of type-lll seesaw searches

In type-lll seesaw the trilepton signal has a good sensitivity to Vtn because:
O the signal is clean: no hard pT cuts needed
O one of the leptons comes from W decay: high pt even if Vin =1

Moreover, in type-lll seesaw there are only three independent parameters
(the multiplet mass and two mixings): it is possible to present general limits.
JAAS et al.’| 3
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Heavy lepton decays in type lll seesaw

N — W*e
N — W_ﬁ—l_ relative BR

< depend mildly on
/ N — Zv \ N mass

N — Hy
LNV, not present
in inverse seesaw

via small coupling
to SM bosons and

lisht leptons

STt eP ~_ [ B oW ‘
E — Zg_ Y depreeliztlr\:il(?; on
E_ N Hg— E mass

Additional decay modes present if new W'or Z".
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10:1

fix flavour structure
and let ms arbitrary
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limits on minimal limits also on inverse
type lll seesaw type-lll seesaw
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