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@ We would like to compare the spectra of the two dual theories...
Step 1: Compute scaling dimensions A of all gauge-invariant operators of A’ = 4 SYM.
Step 2: ldentify their dual string states.
Step 3: Compute the energies E of the dual string states.

Step 4: Compare dimensions A and energies E as the 't Hooft coupling A — 0 or co.
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@ Tests of AdS/CFT Correspondence: Global symmetries, Spectra, Correlation functions,
Anomalies, etc...

@ We would like to compare the spectra of the two dual theories...
Step 1: Compute scaling dimensions A of all gauge-invariant operators of A’ = 4 SYM.
Step 2: ldentify their dual string states.
Step 3: Compute the energies E of the dual string states.

Step 4: Compare dimensions A and energies E as the 't Hooft coupling A — 0 or co.

@ Before comparing spectra, we have to develop techniques to compute them (in appropriate form)!
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Magnons in N' = 4 SYM

@ The su(2) sector of ' =4 SYM consists of the single-trace operators OF = Tr [ZL=MwM]

(the 6 real scalars ®; of N'=4 SYM have been combined into 3 complex scalars Z, W, V).

@ Owing to the cyclic property of the trace, these can be written as a closed spin-chain, e.g.

Tr [25W2 2305 = [PHHLATT>
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Magnons in N' = 4 SYM

@ The su(2) sector of ' =4 SYM consists of the single-trace operators OF = Tr [ZL=MwM]
(the 6 real scalars ®; of N'=4 SYM have been combined into 3 complex scalars Z, W, V).

@ Owing to the cyclic property of the trace, these can be written as a closed spin-chain, e.g.

Tr [25W2 2305 = [PHHLATT>

@ The su(2) one-loop dilatation operator of N' =4 SYM has the form of an integrable spin chain:

L L
A 1
D=L1+ H+§ XDy, A= (e —Pijar) =2 (Zfaj-am) (A = g2uNe)
j=1

=2 Jj=1

Minahan-Zarembo, 2002
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Bethe Ansatz

@ The Heisenberg XXX, /, ferromagnetic (quantum) spin chain Hamiltonian A can be diagonalized by BA:

Te [29WM] ~ s = [T bt LTt L
X X\

X1

A . 2 Pj 5 2wk .
A:J+M+?JZsm E+(9(,\), ij_ L ke€Z, j=1,2,...,M.
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Bethe Ansatz

@ The Heisenberg XXX, /, ferromagnetic (quantum) spin chain Hamiltonian A can be diagonalized by BA:

Te [29WM] ~ s = [T bt LTt L
X X\

X1

A . 2 Pj 5 2wk .
A:J+M+?JZsm E+(9(,\), ij_ L ke€Z, j=1,2,...,M.

@ An all-loop, asymptotic BA for su(2) has been proposed...

M 8m?
A_J+M+ Z ) PJ)ZT
=1

1+7T25in22—1] :4sin2%——sin4&+0()\2)

Beisert-Dippel-Staudacher (BDS), 2004
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One-Magnon States

@ Let us consider M = 1 magnon states:

0= e[ . zZW(mZZ...)
m

@ In infinite size, their all-loop dispersion relation becomes:

A
s 2

This relation follows by extending the corresponding symmetry algebra su (2]2) @ su (2|2) C psu(2,2|4).

Beisert, 2005
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One-Magnon States

@ Let us consider M = 1 magnon states:

0= e[ . zZW(mZZ...)
m

@ In infinite size, their all-loop dispersion relation becomes:

A
s 2

This relation follows by extending the corresponding symmetry algebra su (2]2) @ su (2|2) C psu(2,2|4).
Beisert, 2005

@ We may obtain its weak and strong coupling limits as follows:

A LLp X2 ,p A
A—J=14"sin?Z - Z_sin*E sin® £ — .
Pty T em N 3 T e T 2

A — 0 (weak coupling)

L]

by 3
A—J:%sing—&—o-i-%%cscg—s;/z csc3g+..., A — oo (strong coupling)
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Hofman-Maldacena (HM) Giant Magnons

@ Giant Magnons (GMs) are open, single-spin strings that rotate in R x S C AdSs x S°:
{t=rp=0=061=3,=0} x{0=0(c—vr),0=7+¢(c—vr) .01 = 61 = ¢ =0}

Hofman-Maldacena, 2006
HM Giant Magnon (v = 0.9)
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@ Giant Magnons (GMs) are open, single-spin strings that rotate in R x S C AdSs x S°:
{t=rp=0=061=3,=0} x{0=0(c—vr),0=7+¢(c—vr) .01 = 61 = ¢ =0}
Hofman-Maldacena, 2006

@ GMs extend between parallels 0 < z < 1 — v2. Their angular extent is equal to their momentum p = Ag.

@ Their conserved energy E and spin J diverge — oco. Their difference remains constant:

A R?
Eos=an? =R s
g 2 o'
The leading term of the all-loop (BDS) dispersion relation is recovered.
@ It can be proved that the GM s-matrix matches the one for magnons obtained from the gauge theory side.

@ In AdS/CFT Duality, GMs are the string theory duals of N’ =4 SYM theory magnon excitations:
[0 MM > | ZEWEZ L >,
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Gubser-Klebanov-Polyakov (GKP) String

@ GMs are open strings which are incompatible with the spectrum of a IIB string theory possessing only
closed strings.

@ Their dual gauge theory magnons have non-vanishing momentum p which is incompatible with the
cyclicity of the trace.

@ To get physical configurations, superpose more than one magnon/GMs to form closed strings and
operators of vanishing total momentum.
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Gubser-Klebanov-Polyakov (GKP) String

@ GMs are open strings which are incompatible with the spectrum of a IIB string theory possessing only
closed strings.

@ Their dual gauge theory magnons have non-vanishing momentum p which is incompatible with the
cyclicity of the trace.

@ To get physical configurations, superpose more than one magnon/GMs to form closed strings and

operators of vanishing total momentum.

@ Superposing two GMs with v = 0, p = 7 and angular momenta equal to J/2, a closed folded string
rotating on S? is obtained. This is the infinite-volume Gubser-Klebanov-Polayakov (GKP) string on S2:

{t:ﬂﬂzazalzazzo}X{9:9(0)7¢:T,91:¢1:¢2:0}

Gubser-Klebanov-Polyakov, 2002
@ The GKP dispersion relation is:

E-J=2"2 J Ao oo

@ It is dual to the 2-magnon N = 4 SYM operator Tr [W zm WZJ*’"] +...
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Gubser-Klebanov-Polyakov (GKP) String

@ Superposing two GMs with v = 0, p = 7 and angular momenta equal to J/2, a closed folded string
rotating on S? is obtained. This is the infinite-volume Gubser-Klebanov-Polayakov (GKP) string on S2:

{t:ﬂpzézgl =%, :o} x {9:0(0),¢:7,01 — 61 = :o}
Gubser-Klebanov-Polyakov, 2002
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AdS/CFT in Finite-Size

@ If AdS/CFT is to hold, it must do so also in finite-size.
@ We therefore want to establish the validity of AdS/CFT for finite system sizes, L = J + M.

@ In the following we will examine what happens on the string theory side of the correspondence by
studying the dispersion relation of finite-size GMs.

11 /40
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Finite-Size Giant Magnons

@ Finite-size GMs are described in terms of a linear and an angular velocity v and w:
{t:'r,p:@:%l :62:0} X {9:9(0—vw7’),¢:w7’+g&(7’,0),91 :¢1:¢2:0}
@ They possess two basic regions, the Elementary 0 < |v| < 1/w < 1 and the Doubled 0 < |v| < 1 < 1/w.
@ The Elementary Region is Stable while the Doubled is Unstable.
@ As before, GMs have 3 conserved charges, Energy E, Spin J and momentum/angular extent Ap = p.
@ Elementary GMs do not touch the equator of S2, but extend between parallels 1 — l/u.z2 <z<1—v2
@ For w — 1 the endpoints of GMs touch the equator and their 2 regions merge to one as their size J — co.

@ Putting together two GMs with v = 0, maximum momentum p = A = 7 and angular momentum equal
to J/2 we obtain the Gubser-Klebanov-Polyakov (GKP) string on S2, dual to the 2-magnon state
Tr[ZJV\Jz] .

12 /40
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Finite-Size Giant Magnons Closed-Form Expressions with the W-Function

Finite-Size GM & GKP String: Elementary Region, 0 < |v| < 1/w <1

GM (v=05& w=1.1) GKP String (v =0 & w = 1.5)

13 /40
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~Function

GM momentum, energy and spin

@ We may plot the momentum, energy and spin of the giant magnon as functions of its angular
velocity w:

E(nw)

O<v<l

o

0.0
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Dispersion Relation

@ The general dispersion relation of finite-size GMs is:

E—J=¢€oo+VAbeq+ O€1-loop + 0€2-loop + - -+ A — oo

1
2

finite-size corrections
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Dispersion Relation

@ The general dispersion relation of finite-size GMs is:
1
VA

finite-size corrections

E—J=¢coo+VAbeq+ O€1-loop + 0€2-loop + - -+ A — oo

@ For J — oo it must reproduce the all-loop result of BDS:

i
2 2Vx 60 T a2 ©F
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Dispersion Relation

@ The general dispersion relation of finite-size GMs is:
1
VA

finite-size corrections

E—J=¢€x+ \/X(Sﬁd + 6El—loop + 662-Ioop +..., A — o0

@ For J — oo it must reproduce the all-loop result of BDS:

X . L,p VA p w p 3P
€oo = 1+§5|n 5:75|n§+0+2\/xcsc578>\3/2csc EJr

@ The first few terms of the classical finite-size corrections dey have been known (R = 27J csc p/2/vV/A):
™

4
Seq = —— sin® g e 2R {1 + [2R2 cos? g +2(3 cosp+2)7€+(6cosp+7)] e 2 R4 }

Arutyunov-Frolov-Zamaklar, 2006

@ The leading term of de has also been obtained by finite gap methods and the Liischer formulae.
Minahan-Ohlsson Sax, 2008 & Heller-Janik-t.ukowski, 2007-2008
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Classical Finite-Size Corrections

@ The structure of classical finite-size corrections dey is the following (no negative powers, by

= = 0):
Je, | = l . i a (P) j2n—2 4 b (P) j2n—3 T (P) an—4 NI e—n(2+R) J = LJ
c T n n n s = \/X
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Classical Finite-Size Corrections

@ The structure of classical finite-size corrections de is the following (no negative powers, by = ¢; = 0):

1 & J
dea == lan(p) T+ ba(p) T2+ calp) T 4. | MR, 7= T2
m n=1 leading \/X
@ The first few leading terms are known:
4 128
Seq|  =——sin® P e Ler 142 L2 cos? P e Ler +8L4% cos* P e 2ter + == L8 cos® 6P e 3keft -
leading s 2 2 2 3 2
800 9216
+T LSfF cos® ,2) e dker 227 Leff 510 g e oLt 4, } .

Klose-McLoughlin, 2008
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@ We would like to go beyond these approximations...
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Classical Finite-Size Corrections

@ The structure of classical finite-size corrections dey is the following (no negative powers, by

= = 0):
1 & wJ
dea == lan(p) T2 +bn(p) T3+ cn(p) T4 + R, g = —
m n=1 leading \/X
@ The first few leading terms are known:
4 128
Seq|  =——sin® P e Ler 142 L2 cos? P e Ler +8L4% cos* P e 2ter + == L8 cos® 6P e 3keft -
leading s 2 2 2 3 2
800 9216
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@ We would like to go beyond these approximations...

@ ... and have to tell something more about the structure of finite-size corrections.
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Classical Finite-Size Corrections

@ The structure of classical finite-size corrections de is the following (no negative powers, by = ¢; = 0):

1 & wJ
dea == lan(p) T2 +bn(p) T >+ cn(p) T4 + R, g = —
m n=1 leading subleading \/X
@ The first few leading terms are known:
4 128
degl = sin3 p e Leff 1+2 Lgff cos? p e Leff +8 L‘e‘fF cos* p e 2Left + — Le]CF cos® 6 P ’3Leff+
leading s 2 2 2 3 2
800 9216
+T LSfF cos® ,2) e dker 227 Leff 510 g e oLt 4, } .

Klose-McLoughlin, 2008
@ We would like to go beyond these approximations...
@ ... and have to tell something more about the structure of finite-size corrections.

@ In the following we will obtain closed-form expressions for the leading, subleading
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Classical Finite-Size Corrections

@ The structure of classical finite-size corrections de is the following (no negative powers, by = ¢; = 0):

1 (oo}
Sea=="-»_ [an (p) T*" 2+ b, (p) T*" 3+ cn(p) T +
s

n—=1 leading subleading next-to-subleading

e n2iR) 7=
)

@ The first few leading terms are known:

4 128
O€g| leading = sin® g e~ Leff [1+2 L% cos® g e Leff 18 1% cost g e 2het 4 T 3 L8 cos g e 3kefr -
800 9216
+T LSfF cos® ,2) e Aer o 227 Leff 510 g e oLt 4 } .

Klose-McLoughlin, 2008
@ We would like to go beyond these approximations...
@ ... and have to tell something more about the structure of finite-size corrections.

@ In the following we will obtain closed-form expressions for the leading, subleading and next-to-subleading
coefficients of deg.
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The Method

@ Our method was inspired by a 2010 paper by Georgiou & Savvidy, dealing with the AdS GKP string case.
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The Method

@ Our method was inspired by a 2010 paper by Georgiou & Savvidy, dealing with the AdS GKP string case.

@ We begin with a 3 x 3 system of equations for the conserved charges:
E=d(a,x)Inx+ h(a,x)
J =c(a,x)Inx+ b(a,x)
p=f(a,x)Inx+g(a,x)

where v = cosa, x = x (w, v) and d, h, c, b, f, g are known power series of x and a.
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@ First, we eliminate the logarithm out of the last 2 equations — p (7, a, x).
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@ First, we eliminate the logarithm out of the last 2 equations — p (7, a, x).

@ Secondly, this expression is inverted for a = a(x, p, J) which is plugged into the first 2 equations:
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17 /40



Finite-Size Giant Magnons

The Method

@ Our method was inspired by a 2010 paper by Georgiou & Savvidy, dealing with the AdS GKP string case.

@ We begin with a 3 x 3 system of equations for the conserved charges:

E=d(a,x)Inx+ h(a,x)
J =c(a,x)Inx+ b(a,x)
p=f(ax)Inx+g(ax)

where v = cosa, x = x (w, v) and d, h, c, b, f, g are known power series of x and a.
@ First, we eliminate the logarithm out of the last 2 equations — p (7, a, x).

@ Secondly, this expression is inverted for a = a(x, p, J) which is plugged into the first 2 equations:

E=d(x,p,T)Inx+ h(x,p,T)
T =c(x,p,T)Inx+b(x,p,T).

@ Thirdly, we eliminate x from these two equations leading to an expression for £ = &€ (p, J).
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p 1 2P . 3P w2 1 WP . 2P "
£ =sin St sy (W5 - tan* Zsin® =1 (3 2) W
dassical SN Fg gz BN SIS (W | T ezt oS 5 | Beosp R 2) W
! w2
+g (5cosp+11) W3] ~ s tan5§sin g{ (7COsp_3)2 W

1 1
-5 (25 cos2p — 188 cos p — 13) W2 — 5 (47 cos2p 4 196 cos p — 19) W3—

1
75(13cos2p+90cosp+137) W4}+... (T, A — o0)

Floratos-Georgiou-GL, 2013-2014

where the argument of the W-function is Wy (£16.72 cot? (p/2) e =27 ©¢P/2=2) and = refers to the
Elementary/Doubled Region.
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Lambert W-Function

W(x)

0.2 04 06 0.8 1.0

Finite
Dispe

rsion ation

Closed-Form Expressions with the W-Function

The Lambert W-function is defined implicitly
by the following relation:

W(z) VO =z W(ze?) =2

Infinite exponential: ®(e?) = e’ =
It has two real branches, Wy (x) for
x € [—e71,00) and W_; (x) for x € [—e~1,0]

and a branch point at W (—e™1) = —1.

Its principal branch Wy may be expanded
according to the following Taylor series:

o p "t 1
Wo () =3 (1" sk, x < e

n=1
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Closed-Form Expressions via the W-function

@ Using the Taylor series of the Lambert W-function, we may compute the following terms:

leadi EOO (p) 22 e R) = Ly P {W-I— Wz]
eading: an(p e an® Esin® = —_—
p 472 70 270 2

20/40
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Closed-Form Expressions via the W-function

@ Using the Taylor series of the Lambert W-function, we may compute the following terms:

leadi EOO (p) 22 e R) = Ly P {W-I— Wz]
eading: an(p e an® Esin® = —_—
prt 472 2 2

1 1
subleading: ; b (p) T2 3 e "HR) = _ 1673 tan* g sin? g [(3 cosp +2) W2 4 6 (5cosp+ 11) W3|.

20/40



@ Using the Taylor series of the Lambert W-function, we may compute the following terms:

- 1 w2
leading: ,,Ezl an (p) T2 e "2HR) — e tan? g sin3 g {W + T} .
- 1 1
subleading: n§:2 bn (p) T2 2 e TR = — 1673 tan* g sin? g [(3 cosp +2) W2 + 6 (5cosp+11) W3|.
next-to-subleading: E ¢ (p) T4 e HR) = _ 51277 tan® g sin 123{ (Tcosp—3)° Tw_

n=2

1 1
-5 (25cos2p — 188 cos p — 13) W2 — > (47 cos2p + 196 cos p — 19) W3—

1
—= (13 cos2p + 90 cos p + 137) W4}.

w

Floratos-GL, 2014
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Closed-Form Expressions via the W-function

@ Using the Taylor series of the Lambert W-function, we may compute the following terms:

- 1 w2
leading: ,,Ezl an (p) T2 e "2HR) — e tan? g sin3 g {W + T} .
> 1 P P 1
subleading: b =3 g=n(24R) — _ tan* = sin? 7[ 3cos 2) W2 + = (5cos 11) Wi,
u ing n§:2n(p)J 1677 5 sin” o | (Bcosp+2) W7+ = (Scosp +11)
next-to-subleading: ,,522 e (p) T4 e MHR) — _ 127 tan® g sin ’23{ (7 cos p — 3)? W

1 1
-5 (25cos2p — 188 cos p — 13) W2 — > (47 cos2p + 196 cos p — 19) W3—

1
—= (13 cos2p + 90 cos p + 137) W4}.

w

Floratos-GL, 2014

@ qy, ap, by, ¢ are the Arutyunov-Frolov-Zamaklar coefficients.
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Finite-Size Giant Magnons Closed-Form Expressions with the W-Function

Closed-Form Expressions via the W-function

@ Using the Taylor series of the Lambert W-function, we may compute the following terms:

- 1
leading: Zan (p) J?"—2en+R) = e tan? g sin3 g {W + 7} .

n=1

1
tan4Bsin2B[(3cosp+2) w? 4+ 6(5cosp+11) wi|.

subleading: Z bn (p) T3 e MHR) — _

3
pr 167 27 2

W2
1+wW

oo
next-to-subleading: Z e (p) T4 e MHR) — _

n=2

1 1
-5 (25cos2p — 188 cos p — 13) W2 — > (47 cos2p + 196 cos p — 19) W3—

51274 tan® g sin 123{ (7 cos p — 3)?

1
—= (13 cos2p + 90 cos p + 137) W4}.

w

Floratos-GL, 2014
@ qy, ap, by, ¢ are the Arutyunov-Frolov-Zamaklar coefficients.
@ a;-a6 are the Klose-Mcloughlin coefficients.
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Conclusions
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Conclusions

Why Study Magnons?

N =4 SYM possesses certain elementary excitations that are known as magnons.

@ Giant magnons are the string theory duals of A' = 4 SYM magnon excitations, living in
R x S* C AdSs x S°.

@ This identification allows to test the validity of AdS/CFT correspondence at the level of its
elementary excitations.

@ We also learn a lot about the way the two theories are equal —i.e. the AdS/CFT dictionary.

@ Owing to the weak/strong nature of AdS/CFT we also learn a lot about each theory’s structure
in its non-perturbative sector.

@ Going beyond AdS/CFT, we learn a lot about the structure of gauge theories and gravity in
curved space-times.
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Conclusions

Results Summary

@ By inverting the elliptic integrals that furnish the conserved charges of GMs, we have succeeded in
obtaining closed-form expressions for the leading, subleading and next-to-subleading series of the
finite-size corrections to the dispersion relation of the HM giant magnon:

E—J + VA et + Serr00n + —— €100 + UArooo), g="2
—J=e€ €l €1-| —=0€2 ) ) =—F—=
oo cl oop \/X oop \/X
o0
beg = — Z [an (P) T2 b, (p) T3+ cn(p) T4+ .. ] e "tR) R =27 csc p
m
n=1
o

This results in compact expressions of the GM dispersion relations:

- P .3p w2
Z an (p) J2"2 e 2R = Ve tan? 5 sin® £ [W + —
n=1

We learn about the structure of the classical exponential corrections ...

We may assume that the W-functions will keep appearing to all orders ...
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Conclusions

Outlook

Many questions still unanswered.

Can we find an iterative all-orders formula?
How about quantum corrections?
What about weak coupling?

Can we make contact with other methods that account for wrapping effects (Liischer corrections,
TBA, Y-system, QSC)?

Many interesting generalizations: ABJM, AdS, spiky strings, deformed backgrounds, correlation
functions ...

Also: do these new expressions teach us anything about the physics of GMs?

Do 2+1-dimensional generalizations with M2-branes exist? (Axenides-Floratos-GL, 2013)
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Magnon Scattering

Coordinate Bethe Ansatz Revisited

@ Let Tr[Z'] ~ |x >=|71... 117 ... 1> denote the ground state: A = J.
@ 1-magnon states ’ZJW> ~|x>=|1...1T)7T...T> are diagonalized by:

angy A 21k
p>=3" e™|x >— A:J+1+2—7rzsin2§+(’)(>\2) & p="% keu.

x=1
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Coordinate Bethe Ansatz Revisited

@ Let Tr[Z'] ~ |x >=|71... 117 ... 1> denote the ground state: A = J.
@ 1-magnon states ’ZJW> ~|x>=|1...1T)7T...T> are diagonalized by:

angy A 21k
p>=3" e™|x >— A:J+1+2—7rzsin2§+(’)(>\2) & p="" kel
x=1

@ 2-magnon states Tr [ZJW2] ~x,e >=1T.. LT T L1 ... > are diagonalized by:
X1 Xxp

J42
|p1, p2 >= Z (e'p1X1+'p2X2 + Sgle'p1X2+'p2X1) |x1,0 >—|A=J+2 + — Z sin’ p, + O ()\2)
xp>x1=1 Jj=12
. - j ; 1 2wk
Wealsoflnd,Slgzuliuz—'_’_:eplL, Uj**COtpj & pr+p=— il , k€.
up—up — I 2 2 L
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Magnon Scattering

Factorized Scattering

@ For M-magnon states Tr [ZJWM] the situation is similar, i.e.

J+M
iPjXo;
|p17p27"'7pl\/l>: § E 5 Mejoj |X17X27"'7XM>
xp>...>x1=1 o

@ Scaling dimensions: A =J+ M+ 5= Z:sm2 Y+0 (\?)
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Magnon Scattering

Factorized Scattering

@ For M-magnon states Tr [ZJWM] the situation is similar, i.e.

J+M

iPjXo;
|p17p27"'7pM >= § E 5 Mejoj |X17X27"'7XM>
xp>...>x1=1 o

@ Scaling dimensions: A =J+ M+ 5= Z:sm2 Y+0 (\?)
@ S-matrix: S12.. m(p1,pP2,---,Pm) = S12523...Sy1 —  Factorized (Elastic) Scattering!
P1
P1
P, P2
P3 Ps
@ Momenta are conserved: {p},pj},...,p},} ={p1,P2,.--,Pm} — L conservation laws — Integrability.

@ Bethe ansatz equations (BAE): ePit = SiSjp..-Sm, j=12,...,M.
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Magnon Scattering

Going to Higher Loops

@ Higher-loop contributions to the dilatation operator are known, however these become more and
more complicated:

D= L-T4 2 A4 XD+ NDs+...
872
1t L
H:EJZ:;(].—4O'J'~UJ'+1), 'Dz:jzzl(—a'j'dj+2+40'j~0'j+1—3), Dz=...

@ They contain non-neighboring, as well as higher-order interactions (e.g. o* in Ds).
@ However Integrability is an all-loop property of N' =4 SYM !

@ We thus expect factorized scattering to persist in higher loops and all sectors of the gauge theory.
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Magnon Scattering

All-Loop Asymptotic Bethe Ansatz

@ An all-loop, asymptotic BA for su(2) has been proposed...

A:J+M+A§E(-) E(-):ﬁ 1+ism2pj 1 :4sm2&fism4pj+0()\2)
grz £\ BT 2 2 2"

i— i 1
ePit H Sik, Si= %:ir: . Sﬁ? . u(p) = 5 cot 2 2 1+ Asin? Zj , Sﬁ? = "Dressing Factor”
k#/
Beisert-Dippel-Staudacher (BDS), 2004

@ Asymptotic means that there's a "critical” loop order equal to the length of the spin-chain L at which the
ABA ceases to hold.
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Magnon Scattering

The Dressing Phase

@ The su(2) "Dressing Phase/Factor” of N' =4 SYM,
Sjc = o (pj, Px)
Arutyunov-Frolov-Staudacher (AFS), 2004
@ ... was introduced in order to reconcile the weak and strong coupling limits of the BA.
@ At weak coupling it is equal to unity up to 3-loops: JJ-Q,((

y=1+0(X).

weak

@ At strong coupling it is given by the AFS phase: ajzk(smng) = afk(AFS).
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Magnon Scattering

The Dressing Phase

@ The su(2) "Dressing Phase/Factor” of N' =4 SYM,
Sjc = o (pj, Px)
Arutyunov-Frolov-Staudacher (AFS), 2004
@ ... was introduced in order to reconcile the weak and strong coupling limits of the BA.
@ At weak coupling it is equal to unity up to 3-loops: Jfk(weak) =140 ()\3).

@ At strong coupling it is given by the AFS phase: ajzk(smng) = afk(AFS).

@ For M =2 magnons at strong coupling (A — c0) one may calculate the AFS phase exactly:

VA sin? - 4
U(2AFS) (p1, p2) = exp {I — (cos % — cos %) - log [%} .
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Magnon Scattering

Pohlmeyer Reduction

@ Classical strings in R x S? are dual to the sine-Gordon (sG) equation:

04 X-0-X = XX = cos2¢p = ¢) —¢" + %sin 20=0 Pohlmeyer, 1976
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Pohlmeyer Reduction

Magnon Scattering

@ Classical strings in R x S? are dual to the sine-Gordon (sG) equation:

X -0_X =X — X = cos2¢ —> £¢;—¢”+%sin2¢:o

Pohlmeyer, 1976

@ Classical strings in R x S® are dual to the complex sine-Gordon (CsG) equation:

K,' = e,-jk,XthXkB,X/
+K - 931X =4sin® 0y

=

o (¢2 -~ wlz)

LA S gy e

+¢(1—|¢|2) 0|, p=eXsing

Pohlmeyer & Lund-Regge, 1976
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Magnon Scattering

Pohlmeyer Reduction

@ Classical strings in R x S? are dual to the sine-Gordon (sG) equation:

04 X-0-X = XX = cos2¢p = ¢) —¢" + %sin 20=0 Pohlmeyer, 1976

@ Classical strings in R x S* are dual to the complex sine-Gordon (CsG) equation:

K,' = e,-jk,ch’thB,X, " ” w* (¢2 - 1/1'2)
=YY +

— % +¢ (1-[¢]’) =0, ¢ =X sin
+K - 931X =4sin® 0y 1— |y w( 4] ) P 10)

Pohlmeyer & Lund-Regge, 1976

@ Also: classical strings in AdS2 3.4 are equivalent to Liouville, sinh-Gordon and B> Toda model...
de Vega-Sanchez, 1993

@ CsG equation can be written as a deformed gWZW model (Bakas, 1993).
IIB Superstring in AdSs x S° has similarly been proven equivalent to a deformed gWZW model.
Grigoriev-Tseytlin & Mikhailov, Schifer-Nameki 2007
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Magnon Scattering

Giant Magnon Scattering

@ Plugging the GM ansatz into the string EoM & using the definition of the sG field ¢, we find that
GMs are the Pohlmeyer duals of the sG solitons:

—1/2
¢ (0,7) = 2arctan eV = arcsinsech [y (0 — v7)], ~= (1 - v2)
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Giant Magnon Scattering

@ Plugging the GM ansatz into the string EoM & using the definition of the sG field ¢, we find that
GMs are the Pohlmeyer duals of the sG solitons:

—1/2
¢ (0,7) = 2arctan eV = arcsinsech [y (0 — v7)], ~= (1 - v2)

@ We may scatter GMs in the sG picture and recover the gauge theory results. E.g. we may
consider the sG kink-antikink solution (the result is the same for any 2-soliton solution),
¢ _ lsinhyvr

tan = =
2 v coshyo
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Giant Magnon Scattering

@ Plugging the GM ansatz into the string EoM & using the definition of the sG field ¢, we find that
GMs are the Pohlmeyer duals of the sG solitons:

—1/2
¢ (0,7) = 2arctan eV = arcsinsech [y (0 — v7)], ~= (1 - v2)

@ We may scatter GMs in the sG picture and recover the gauge theory results. E.g. we may
consider the sG kink-antikink solution (the result is the same for any 2-soliton solution),
¢ _ lsinhyvr

tan = =
2 v coshyo

@ The time delay is given by:

2
AT = —2 log vy = 202(c1€2)
Yivi 861
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Magnon Scattering

Giant Magnon Scattering

@ Plugging the GM ansatz into the string EoM & using the definition of the sG field ¢, we find that
GMs are the Pohlmeyer duals of the sG solitons:
+y(oc—vT) . 2 —1/2
¢ (o,7) = 2arctane™” = arcsinsech[y(oc —v7)], 7= (1 —v )
@ We may scatter GMs in the sG picture and recover the gauge theory results. E.g. we may
consider the sG kink-antikink solution (the result is the same for any 2-soliton solution),
tan [} _ 1sinhyvr
2 v coshyo

@ The time delay is given by:

2
AT = —2 log vy = 202(c1€2)
Yivi 861

from which we calculate the phase shift (for sin p12/2 > 0):

VA p1 p2 sin (p1 — p2) /4 . p
12 = - {(cos? - cosf) -log {m} + p1sin ?}
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Magnon Scattering

Giant Magnon Scattering

@ Plugging the GM ansatz into the string EoM & using the definition of the sG field ¢, we find that
GMs are the Pohlmeyer duals of the sG solitons:
+y(oc—vT) . 2 —1/2
¢ (o,7) = 2arctane™” = arcsinsech[y(oc —v7)], 7= (1 —v )
@ We may scatter GMs in the sG picture and recover the gauge theory results. E.g. we may
consider the sG kink-antikink solution (the result is the same for any 2-soliton solution),
tan [} _ 1sinhyvr
2 v coshyo

@ The time delay is given by:

2
AT = —2 log vy = 202(c1€2)
Yivi 861

from which we calculate the phase shift (for sin p12/2 > 0):
VA { p P2 {Sinz (1 — P2)/4}
00 = —— (cos——cos—)~|o — | + (-
R 2 2) % 6 (ot p2) 4]
@ The last term of 12 depends on the choice of the world-sheet gauge and it may be omitted.

32/40



Magnon Scattering

Magnons in AdS/CFT Correspondence

@ We therefore recover the argument of the AFS phase:

O'iFS (p1,p2) = e
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Magnons in AdS/CFT Correspondence

@ We therefore recover the argument of the AFS phase:

O'iFS (p1,p2) = e

@ ...which is just the strong-coupling limit of the 2-magnon scattering matrix:

m—wm+i A—oo. 2
S = m - OAFS (P17P2) — OAFS (P17P2)
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Magnon Scattering

Magnons in AdS/CFT Correspondence

@ We therefore recover the argument of the AFS phase:

O'iFS (p1,p2) = e

@ ...which is just the strong-coupling limit of the 2-magnon scattering matrix:

m—wm+i A—oo. 2
S = m - OAFS (P17P2) — OAFS (P17P2)

@ By factorized scattering, the su (2) S-matrices on both sides of the AdS/CFT match!
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BMN String

The BMN String

@ The BMN string is a point-like string that rotates at the equator of R x $? C AdSs x S°:

{rzT,p=§:¢1=$2=0} x {9:§,¢:T,91=¢1=¢2=0}
BMN String
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BMN String

The BMN String

@ The BMN string is a point-like string that rotates at the equator of R x $? C AdSs x S°:

{tzT,p=§:¢1=$2=0}x{9:§,¢:r,91=¢1=¢2=0}

@ The energy of the point-like string equals its spin: E = J.
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BMN String

The BMN String

@ The BMN string is a point-like string that rotates at the equator of R x $? C AdSs x S°:

{tzT,p=§:¢1=$2=0}x{9:§,¢:r,91=¢1=¢2=0}

@ The energy of the point-like string equals its spin: E = J.

@ It is the AdS/CFT dual of the A= 4 SYM BPS operator Tr[Z/].
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GKP String on s?

Classical GKP String on S? at Finite-Size

@ Two finite-sized GMs with v = 0, p = 7 and angular momentum J/2 each, give the GKP string on S2:

’ 2\f { —4e~m/VA=2 4 g (@ _ 1) e—2md/VX-4 _ } . J A — oo
GKP VA

Arutyunov-Frolov-Zamaklar, 2006
@ In general, we may write (§ =7 E/2V/X and J = 7 J/2V/\):

oo

€= ‘GKP Z

n=1

()

T T b T4 T

@ In terms of the W-function, we obtain:

2 3 1 W3 (11W2+26W +16)
1672 ( e 1+w

Floratos-Georgiou-GL, 2013

-t 2) _
S—jGKP71—4J(2W+W)

where the argument of the W-function is W (:tSje_2‘7_2), with the plus sign corresponding to closed
and folded strings (w > 1) and the minus sign to circular strings (w < 1).
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Magnon & Giant Magnon Summary

Magnon & Giant Magnon Summary at Infinite Size

BMN String Giant Magnon GKP String
E—J=0 Eszgsing E—J:%
M = 0 Magnons M =1 Magnon M = 2 Magnons
Tr[24] |Z2/W) Tr [2IW?]
[ERRE S S [T NS [EPUPE NS SO S S S
A—J=0 A—J=1+ 25sin?? A—J=2+ %sin?
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Symbolic Computations

Symbolic Computations

@ Using Mathematica, we obtain the following results for GMs in the elementary region:

E-J =sin g — 4sin® 257(2+R) - [8J2 csc g sinp— J (12cos2p — 8cosp — 4) +4(6cosp + 7) sin® g] e 224+ R) _

) =S|
classical

32 5 3
- [32]4 esc® g sint p + ?.73 (31 cos 2p + 88 cos p + 57) + 3272 (QSin ?p + 11sin ?p + 6sin g) -
8 _
—J (96 cos3p + 44 cos2p — 112 cos p — 28) + g (37 cos 2p + 97 cos p + 72) sin® g} e 3(2+R) _

cot

512
— [ +

64
TJ6 csc® g sin® p+ 2048‘75 (19cosp + 5) cos’ J4(1273 cos2p + 1824 cos p +

3

N T

2 P
2
P p 64 3 2 . TP
+ 1319) cos 5 cot 5 + 3‘7 (441 cos3p + 1242 cos 2p + 1983 cos p + 1118) + 87T (431 sin ?Jr
. 5p . 3p . P 4
+734sin > + 544 sin > + 273sin E) — EJ (511 cos 4p + 360 cos 3p — 88 cos2p — 588 cos p — 195) +
+4(118 cos 3p + 322 cos 2p + 532 cos p + 349) sin’ g} e HR) _ s R = 27 csc g (T, X — o0)
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) =S|
classical

— [32J4 csc5 g

.4 32 3 2 . 5p . 3p . P

sin' p+ ?.7 (31cos2p + 88cos p + 57) +327° | 9sin ? + 11sin ? + 65in 5 —
8 _

—J (96 cos3p + 44 cos2p — 112 cos p — 28) + g (37 cos 2p + 97 cos p + 72) sin® g} e 3(2+R) _

512 5 9P .6 5 2 64 4
— TJ csc Esln p + 20487 (19 cos p + 5) cos cot + J (1273cos2p+1824cosp+

3

N T

2 P
2
P p 64 3 2 . TP
+ 1319) cos 5 cot 5 + 3‘7 (441 cos3p + 1242 cos 2p + 1983 cos p + 1118) + 87T (431 sin ?Jr
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) =S|
classical

— [32J4 csc5 g

4 32 3 2 . 5p . 3p P
sin' p+ ?\_’7 (31cos2p + 88cos p + 57) + 32T 95|n?+115|n?+6sm5 —
8 _
—J (96 cos3p + 44 cos2p — 112 cos p — 28) + g (37 cos 2p + 97 cos p + 72)sin3 g} e 3(2+R) _
_[512 9P
2

6 64 ,
TJ csc T (1273cos2p+1824cosp+

sin® P+ 2048\75 (19 cos p + 5) cos’ p cot? P + —
2 2 3
P p 64 3 2 . TP
+ 1319) cos 5 cot 5 + 3‘7 (441 cos3p + 1242 cos 2p + 1983 cos p + 1118) + 87T (431 sin ?Jr
. 5p . 3p . P 4
+734sin > + 544 sin > + 273sin E) — EJ (511 cos 4p + 360 cos 3p — 88 cos2p — 588 cos p — 195) +
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@ Using Mathematica, we obtain the following results for GMs in the elementary region:

E-TJ =sin g — 4sin® 257(2+R) — [sz csc g sin’ p— J (12cos2p — 8cosp — 4) + e72(2+7?’)—

) =S|
classical

— [32J4 csc5 g

.4 32 3
sin” p+ ?\_’7 (31cos2p + 88cosp + 57) + -

8 _
—J (96 cos3p + 44 cos2p — 112 cos p — 28) + g (37 cos 2p + 97 cos p + 72) sin® g} e 3(2+R) _

_[512 9P 2
2

T J6 csc sin® p+ 2048\75 (19 cos p + 5) cos’ g cot’ g +
64 5 2 . Tp
+ 3‘7 (441 cos 3p + 1242 cos 2p + 1983 cos p + 1118) + 8T (431 sin ?‘F
. 5p . 3p . P 4
+734sin > + 544 sin > + 273sin E) — EJ (511 cos 4p + 360 cos 3p — 88 cos2p — 588 cos p — 195) +

+4(118 cos 3p + 322 cos 2p + 532 cos p + 349) sin’ g} e HR) _ s R = 27 csc g (T, X — o0)
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Lambert W-Function

More about the Lambert W-Function

@ The Lambert W-function is defined implicitly by the following relation:
W(z) VO =z W(ze?) =2

1

Wi(x)

0.2 04 0.6 0.8 1.0

38/40



Lambert W-Function

Branch Structure

@ The general branch structure is reminiscent of that of the logarithm:

@ The curves separating the branches are not straight lines, but the " Quadratrix of Hippias”:
{—ncotn—i—in, —r<n<m 2kr<+n< (2k+1)7r}, k=1,2,3,...
@ Two real branches, Wy (—e™! < x < 00) € [-1,00) and W_; (—e~! < x <0) € [-1, —00).

@ Triple branch point at Wp, 41 (—efl) — 1.
@ Branch cuts: (—oo7 —efl] for Wo,+1 and (—o0, 0] for Wi.
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Lambert W-Function

More about the Lambert W-Function

@ Its real branches Wy, W_1 may be expanded according to the following Taylor series:

= Gy X SR G s
W,1(X)=|n|x\—|n|n|x|+zz(_ ’ n+m (In|x])™""" (InIn|x])"

where the unsigned Stirling numbers of the first kind, [ Zj—r{)

][t ]sen[ 2]« [a]-[0]-0 [8] -0 mezn

} are defined recursively as:
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