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Introduction and Motivation

{
Type IIB String Theory in AdS5 × S5

}
←→

{
N = 4, SU(N) Super Yang-Mills Theory in 4d

}
Maldacena, 1998

Tests of AdS/CFT Correspondence: Global symmetries, , Correlation functions, Anomalies, etc...

We would like to compare the spectra of the two dual theories...

Step 1: Compute scaling dimensions ∆ of all gauge-invariant operators of N = 4 SYM.

Step 2: Identify their dual string states.

Step 3: Compute the energies E of the dual string states.

Step 4: Compare dimensions ∆ and energies E as the ’t Hooft coupling λ→ 0 or ∞.

Before comparing spectra, we have to develop techniques to compute them (in appropriate form)!
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Magnons in N = 4 SYM

The su(2) sector of N = 4 SYM consists of the single-trace operators ÔL = Tr
[
ZL−MWM

]
(the 6 real scalars Φi of N = 4 SYM have been combined into 3 complex scalars Z, W, Y).

Owing to the cyclic property of the trace, these can be written as a closed spin-chain, e.g.

Tr
[
Z5W2Z3W3

]
←→ = | ↑↑↑↑↑↓↓↑↑↑↓↓↓>

The su (2) one-loop dilatation operator of N = 4 SYM has the form of an integrable spin chain:

D = L · I +
λ

8π2
Ĥ +

∞∑
n=2

λnDn , Ĥ =
L∑

j=1

(
Ij,j+1 − Pj,j+1

)
= 2

L∑
j=1

(
1

4
− σj · σj+1

) (
λ = g2

YMNc
)

Minahan-Zarembo, 2002
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Bethe Ansatz

The Heisenberg XXX1/2 ferromagnetic (quantum) spin chain Hamiltonian Ĥ can be diagonalized by BA:

Tr
[
ZJWM

]
∼ |x1, x2, . . . , xM〉 = | ↑ . . . ↑ ↓

x1

↑ . . . ↑ ↓
x2

↑ . . . ↑ ↓
xM

↑ . . . ↑>

∆ = J + M +
λ

2π2

∑
j

sin2 pj

2
+O

(
λ2
)
,

∑
j

pj =
2πk

L
, k ∈ Z, j = 1, 2, . . . ,M.

An all-loop, asymptotic BA for su (2) has been proposed...

∆ = J + M +
λ

8π2

M∑
j=1

E
(
pj
)
, E

(
pj
)

=
8π2

λ

[√
1 +

λ

π2
sin2 pj

2
− 1

]
= 4 sin2 pj

2
−

λ

π2
sin4 pj

2
+O

(
λ2
)

Beisert-Dippel-Staudacher (BDS), 2004
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One-Magnon States

Let us consider M = 1 magnon states:

Ô =
∑
m

e imp |. . .ZZW(m)ZZ . . .〉

In infinite size, their all-loop dispersion relation becomes:

∆− J =

√
1 +

λ

π2
sin2 p

2
, all λ, J →∞

This relation follows by extending the corresponding symmetry algebra su (2|2)⊕ su (2|2) ⊂ psu (2, 2|4).

Beisert, 2005

We may obtain its weak and strong coupling limits as follows:

∆− J = 1 +
λ

2π2
sin2 p

2
−

λ2

8π4
sin4 p

2
+

λ3

16π6
sin6 p

2
− . . . , λ→ 0 (weak coupling)

∆− J =

√
λ

π
sin

p

2
+ 0 +

π

2
√
λ

csc
p

2
−

π3

8λ3/2
csc3 p

2
+ . . . , λ→∞ (strong coupling)
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Hofman-Maldacena (HM) Giant Magnons

Giant Magnons (GMs) are open, single-spin strings that rotate in R× S2 ⊂ AdS5 × S5:{
t = τ, ρ = θ = φ1 = φ2 = 0

}
×
{
θ = θ (σ − vτ) , φ = τ + ϕ (σ − vτ) , θ1 = φ1 = φ2 = 0

}
Hofman-Maldacena, 2006

HM Giant Magnon (v = 0.9)
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GMs extend between parallels 0 ≤ z ≤ 1− v2. Their angular extent is equal to their momentum p = ∆φ.

Their conserved energy E and spin J diverge →∞. Their difference remains constant:

E − J =

√
λ

π
sin

p

2
, J,

√
λ =

R2

α′
→∞

The leading term of the all-loop (BDS) dispersion relation is recovered.

It can be proved that the GM s-matrix matches the one for magnons obtained from the gauge theory side.

In AdS/CFT Duality, GMs are the string theory duals of N = 4 SYM theory magnon excitations:
| . . . ↑↑↓↑↑ . . . >↔ | . . .ZZWZZ . . . >.
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Gubser-Klebanov-Polyakov (GKP) String

GMs are open strings which are incompatible with the spectrum of a IIB string theory possessing only
closed strings.

Their dual gauge theory magnons have non-vanishing momentum p which is incompatible with the
cyclicity of the trace.

To get physical configurations, superpose more than one magnon/GMs to form closed strings and
operators of vanishing total momentum.

Superposing two GMs with v = 0, p = π and angular momenta equal to J/2, a closed folded string
rotating on S2 is obtained. This is the infinite-volume Gubser-Klebanov-Polayakov (GKP) string on S2:{

t = τ, ρ = θ = φ1 = φ2 = 0
}
×
{
θ = θ (σ) , φ = τ, θ1 = φ1 = φ2 = 0

}
Gubser-Klebanov-Polyakov, 2002

The GKP dispersion relation is:

E − J =
2
√
λ

π
, J, λ→∞

It is dual to the 2-magnon N = 4 SYM operator Tr
[
WZmWZJ−m

]
+ . . .
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Finite-Size Giant Magnons
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AdS/CFT in Finite-Size

If AdS/CFT is to hold, it must do so also in finite-size.

We therefore want to establish the validity of AdS/CFT for finite system sizes, L = J + M.

In the following we will examine what happens on the string theory side of the correspondence by
studying the dispersion relation of finite-size GMs.
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Finite-Size Giant Magnons

Finite-size GMs are described in terms of a linear and an angular velocity v and ω:{
t = τ, ρ = θ = φ1 = φ2 = 0

}
×
{
θ = θ (σ − vωτ) , φ = ωτ + ϕ (τ, σ) , θ1 = φ1 = φ2 = 0

}
They possess two basic regions, the Elementary 0 ≤ |v | < 1/ω < 1 and the Doubled 0 ≤ |v | < 1 < 1/ω.

The Elementary Region is Stable while the Doubled is Unstable.

As before, GMs have 3 conserved charges, Energy E , Spin J and momentum/angular extent ∆ϕ = p.

Elementary GMs do not touch the equator of S2, but extend between parallels 1− 1/ω2 < z < 1− v2.

For ω → 1 the endpoints of GMs touch the equator and their 2 regions merge to one as their size J →∞.

Putting together two GMs with v = 0, maximum momentum p = ∆ϕ = π and angular momentum equal
to J/2 we obtain the Gubser-Klebanov-Polyakov (GKP) string on S2, dual to the 2-magnon state
Tr
[
ZJW2

]
.
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Finite-Size GM & GKP String: Elementary Region, 0 ≤ |v | < 1/ω < 1

GM (v = 0.5 & ω = 1.1) GKP String (v = 0 & ω = 1.5)
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GM momentum, energy and spin

We may plot the momentum, energy and spin of the giant magnon as functions of its angular
velocity ω:
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Dispersion Relation

The general dispersion relation of finite-size GMs is:

E − J = ε∞ +
√
λ δεcl + δε1-loop +

1
√
λ
δε2-loop + . . .︸ ︷︷ ︸

finite-size corrections

, λ→∞

For J →∞ it must reproduce the all-loop result of BDS:

ε∞ =

√
1 +

λ

π2
sin2 p

2
=

√
λ

π
sin

p

2
+ 0 +

π

2
√
λ

csc
p

2
−

π3

8λ3/2
csc3 p

2
+ . . .

The first few terms of the classical finite-size corrections δεcl have been known (R ≡ 2πJ csc p/2/
√
λ):

δεcl = −
4

π
sin3 p

2
e−2−R

{
1 +

[
2R2 cos2 p

2
+ 2 (3 cos p + 2)R+ (6 cos p + 7)

]
e−2−R + . . .

}
.

Arutyunov-Frolov-Zamaklar, 2006

The leading term of δεcl has also been obtained by finite gap methods and the Lüscher formulae.

Minahan-Ohlsson Sax, 2008 & Heller-Janik- Lukowski, 2007-2008
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Classical Finite-Size Corrections

The structure of classical finite-size corrections δεcl is the following (no negative powers, b1 = c1 = 0):

δεcl =
1

π
·
∞∑
n=1

[
an (p) J 2n−2 + bn (p) J 2n−3 + cn (p) J 2n−4 + . . .

]
e−n(2+R), J ≡

πJ
√
λ

The first few leading terms are known:

δεcl

∣∣∣
leading

= −
4

π
sin3 p

2
e−Leff

[
1+2 L2

eff cos2 p

2
e−Leff + 8 L4

eff cos4 p

2
e−2Leff +

128

3
L6

eff cos6 p

2
e−3Leff +

+
800

3
L8

eff cos8 p

2
e−4Leff +

9216

5
L10

eff cos10 p

2
e−5Leff + . . .

]
.

Klose-McLoughlin, 2008

We would like to go beyond these approximations...

... and have to tell something more about the structure of finite-size corrections.

In the following we will obtain closed-form expressions for the leading, subleading and next-to-subleading
coefficients of δεcl.
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δεcl =
1

π
·
∞∑
n=1

[
an (p) J 2n−2

leading
+ bn (p) J 2n−3 + cn (p) J 2n−4 + . . .

]
e−n(2+R), J ≡

πJ
√
λ

The first few leading terms are known:

δεcl

∣∣∣
leading

= −
4

π
sin3 p

2
e−Leff

[
1+2 L2

eff cos2 p

2
e−Leff + 8 L4

eff cos4 p

2
e−2Leff +

128

3
L6

eff cos6 p

2
e−3Leff +

+
800

3
L8

eff cos8 p

2
e−4Leff +

9216

5
L10

eff cos10 p

2
e−5Leff + . . .

]
.

Klose-McLoughlin, 2008

We would like to go beyond these approximations...

... and have to tell something more about the structure of finite-size corrections.

In the following we will obtain closed-form expressions for the leading, subleading and next-to-subleading
coefficients of δεcl.
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The Method

Our method was inspired by a 2010 paper by Georgiou & Savvidy, dealing with the AdS GKP string case.

We begin with a 3× 3 system of equations for the conserved charges:

E = d (a, x) ln x + h (a, x)

J = c (a, x) ln x + b (a, x)

p = f (a, x) ln x + g (a, x)

where v ≡ cos a, x = x (ω, v) and d , h, c, b, f , g are known power series of x and a.

First, we eliminate the logarithm out of the last 2 equations −→ p (J , a, x).

Secondly, this expression is inverted for a = a (x , p,J ) which is plugged into the first 2 equations:

E = d (x , p,J ) ln x + h (x , p,J )

J = c (x , p,J ) ln x + b (x , p,J ) .

Thirdly, we eliminate x from these two equations leading to an expression for E = E (p,J ).
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Classical Finite-Size Corrections via the W-Function

For E ≡ πE/
√
λ, J ≡ πJ/

√
λ, we find:

E − J
∣∣∣
classical

= sin
p

2
+

1

4J 2
tan2 p

2
sin3 p

2

[
W +

W 2

2

]
−

1

16J 3
tan4 p

2
sin2 p

2

[
(3 cos p + 2)W 2+

+
1

6
(5 cos p + 11)W 3

]
−

1

512J 4
tan6 p

2
sin

p

2

{
(7 cos p − 3)2 W 2

1 + W
−

−
1

2
(25 cos 2p − 188 cos p − 13)W 2 −

1

2
(47 cos 2p + 196 cos p − 19)W 3−

−
1

3
(13 cos 2p + 90 cos p + 137)W 4

}
+ . . . (J , λ→∞)

Floratos-Georgiou-GL, 2013-2014

where the argument of the W-function is W0

(
±16J 2 cot2 (p/2) e−2J csc p/2−2

)
and ± refers to the

Elementary/Doubled Region.
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Lambert W-Function

The Lambert W-function is defined implicitly
by the following relation:

W (z) eW (z) = z ⇔W (z ez ) = z

Infinite exponential: (ez )∞ = ez
z...

= W (−z)
−z

It has two real branches, W0 (x) for
x ∈

[
−e−1,∞

)
and W−1 (x) for x ∈

[
−e−1, 0

]
and a branch point at W

(
−e−1

)
= −1.

Its principal branch W0 may be expanded
according to the following Taylor series:

W0 (x) =
∞∑
n=1

(−1)n+1 nn−1

n!
· xn , |x | ≤ e−1.
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Closed-Form Expressions via the W-function

Using the Taylor series of the Lambert W-function, we may compute the following terms:

leading:
∞∑
n=1

an (p) J 2n−2 e−n(2+R) =
1

4J 2
tan2 p

2
sin3 p

2

[
W +

W 2

2

]
.

subleading:
∞∑
n=2

bn (p) J 2n−3 e−n(2+R) = −
1

16J 3
tan4 p

2
sin2 p

2

[
(3 cos p + 2)W 2 +

1

6
(5 cos p + 11)W 3

]
.

next-to-subleading:
∞∑
n=2

cn (p) J 2n−4 e−n(2+R) = −
1

512J 4
tan6 p

2
sin

p

2

{
(7 cos p − 3)2 W 2

1 + W
−

−
1

2
(25 cos 2p − 188 cos p − 13)W 2 −

1

2
(47 cos 2p + 196 cos p − 19)W 3−

−
1

3
(13 cos 2p + 90 cos p + 137)W 4

}
.

Floratos-GL, 2014

a1, a2, b2, c2 are the Arutyunov-Frolov-Zamaklar coefficients.

a1-a6 are the Klose-Mcloughlin coefficients.
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Section 4

Conclusions
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Why Study Magnons?

N = 4 SYM possesses certain elementary excitations that are known as magnons.

Giant magnons are the string theory duals of N = 4 SYM magnon excitations, living in
R× S2 ⊂ AdS5 × S5.

This identification allows to test the validity of AdS/CFT correspondence at the level of its
elementary excitations.

We also learn a lot about the way the two theories are equal – i.e. the AdS/CFT dictionary.

Owing to the weak/strong nature of AdS/CFT we also learn a lot about each theory’s structure
in its non-perturbative sector.

Going beyond AdS/CFT, we learn a lot about the structure of gauge theories and gravity in
curved space-times.
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Results Summary

By inverting the elliptic integrals that furnish the conserved charges of GMs, we have succeeded in
obtaining closed-form expressions for the leading, subleading and next-to-subleading series of the
finite-size corrections to the dispersion relation of the HM giant magnon:

E − J = ε∞ +
√
λ δεcl + δε1-loop +

1
√
λ
δε2-loop + . . . (J, λ→∞) , J ≡

πJ
√
λ

δεcl =
1

π
·
∞∑
n=1

[
an (p) J 2n−2 + bn (p) J 2n−3 + cn (p) J 2n−4 + . . .

]
e−n(2+R), R ≡ 2J csc

p

2

This results in compact expressions of the GM dispersion relations:

∞∑
n=1

an (p) J 2n−2 e−n(2+R) =
1

4J 2
tan2 p

2
sin3 p

2

[
W +

W 2

2

]
, bn (p) = . . . , cn (p) = . . .

We learn about the structure of the classical exponential corrections ...

We may assume that the W-functions will keep appearing to all orders ...
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Outlook

Many questions still unanswered.

Can we find an iterative all-orders formula?

How about quantum corrections?

What about weak coupling?

Can we make contact with other methods that account for wrapping effects (Lüscher corrections,
TBA, Y-system, QSC)?

Many interesting generalizations: ABJM, AdS, spiky strings, deformed backgrounds, correlation
functions ...

Also: do these new expressions teach us anything about the physics of GMs?

Do 2+1-dimensional generalizations with M2-branes exist? (Axenides-Floratos-GL, 2013)
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Coordinate Bethe Ansatz Revisited

Let Tr
[
ZL
]
∼ |x >= | ↑ . . . ↑↑↑ . . . ↑> denote the ground state: ∆ = J.

1-magnon states
∣∣ZJW

〉
∼ |x >= | ↑ . . . ↑ ↓

x
↑ . . . ↑> are diagonalized by:

|p >=
J+1∑
x=1

e ipx |x >−→ ∆ = J + 1 +
λ

2π2
sin2 p

2
+O

(
λ2
)

& p =
2πk

L
, k ∈ Z.

2-magnon states Tr
[
ZJW2

]
∼ |x1, x2 >= | ↑ . . . ↑ ↓

x1

↑ . . . ↑ ↓
x2

↑ . . . ↑> are diagonalized by:

|p1, p2 >=
J+2∑

x2>x1=1

(
e ip1x1+ip2x2 + S21e

ip1x2+ip2x1

)
|x1, x2 >−→ ∆ = J + 2 +

λ

2π2

∑
j=1,2

sin2 pj
2

+O
(
λ2
)

We also find, S12 =
u1 − u2 + i

u1 − u2 − i
= e ip1L , uj =

1

2
cot

pj
2

& p1 + p2 =
2πk

L
, k ∈ Z.
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Factorized Scattering

For M-magnon states Tr
[
ZJWM

]
the situation is similar, i.e.

|p1, p2, . . . , pM >=
J+M∑

xM>...>x1=1

[∑
σ

Sσ(1,2,...,M)e
ipj xσj

]
|x1, x2, . . . , xM >

Scaling dimensions: ∆ = J + M + λ
2π2

∑
sin2 pj

2
+O

(
λ2
)

S-matrix: S12...M (p1, p2, . . . , pM) = S12S23 . . . SM1 → Factorized (Elastic) Scattering!

Momenta are conserved:
{
p′1, p

′
2, . . . , p

′
M

}
= {p1, p2, . . . , pM} → L conservation laws → Integrability.

Bethe ansatz equations (BAE): e ipjL = Sj1Sj2 . . . SjM , j = 1, 2, . . . ,M.
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Going to Higher Loops

Higher-loop contributions to the dilatation operator are known, however these become more and
more complicated:

D = L · I +
λ

8π2
Ĥ + λ2D2 + λ3D3 + . . .

Ĥ =
1

2

L∑
j=1

(1− 4σj · σj+1) , D2 =
L∑

j=1

(−σj · σj+2 + 4σj · σj+1 − 3) , D3 = . . .

They contain non-neighboring, as well as higher-order interactions (e.g. σ4 in D3).

However Integrability is an all-loop property of N = 4 SYM !

We thus expect factorized scattering to persist in higher loops and all sectors of the gauge theory.
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All-Loop Asymptotic Bethe Ansatz

An all-loop, asymptotic BA for su (2) has been proposed...

∆ = J + M +
λ

8π2

M∑
j=1

E
(
pj
)
, E

(
pj
)

=
8π2

λ

[√
1 +

λ

π2
sin2 pj

2
− 1

]
= 4 sin2 pj

2
−

λ

π2
sin4 pj

2
+O

(
λ2
)

e ipjL =
M∏
k=1
k 6=j

Sjk , Sjk =
uj − uk + i

uj − uk − i
· SD

jk , u
(
pj
)

=
1

2
cot

pj

2

√
1 + λ sin2 pj

2
, SD

jk ≡ ”Dressing Factor”

Beisert-Dippel-Staudacher (BDS), 2004

Asymptotic means that there’s a ”critical” loop order equal to the length of the spin-chain L at which the
ABA ceases to hold.
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The Dressing Phase

The su(2) ”Dressing Phase/Factor” of N = 4 SYM,

SD
jk = σ2 (pj , pk)

Arutyunov-Frolov-Staudacher (AFS), 2004

... was introduced in order to reconcile the weak and strong coupling limits of the BA.

At weak coupling it is equal to unity up to 3-loops: σ2
jk(weak) = 1 +O

(
λ3
)
.

At strong coupling it is given by the AFS phase: σ2
jk(strong) = σ2

jk(AFS).

For M = 2 magnons at strong coupling (λ→∞) one may calculate the AFS phase exactly:

σ2
(AFS) (p1, p2) = exp

{
i

√
λ

π

(
cos

p1

2
− cos

p2

2

)
· log

[
sin2 (p1 − p2) /4

sin2 (p1 + p2) /4

]}
.
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Pohlmeyer Reduction

Classical strings in R× S2 are dual to the sine-Gordon (sG) equation:

∂+X · ∂−X = Ẋ
2 − X́

2
= cos 2φ =⇒ φ̈− φ′′ +

1

2
sin 2φ = 0 Pohlmeyer, 1976

Classical strings in R× S3 are dual to the complex sine-Gordon (CsG) equation:

Ki ≡ eijklXj∂+Xk∂−Xl

±K · ∂2
±X = 4 sin2 φ∂±χ

=⇒ ψ̈ − ψ′′ +
ψ∗
(
ψ̇2 − ψ′2

)
1− |ψ|2 + ψ

(
1− |ψ|2

)
= 0 , ψ ≡ e iχ sinφ

Pohlmeyer & Lund-Regge, 1976

Also: classical strings in AdS2,3,4 are equivalent to Liouville, sinh-Gordon and B2 Toda model...
de Vega-Sanchez, 1993

CsG equation can be written as a deformed gWZW model (Bakas, 1993).
IIB Superstring in AdS5 × S5 has similarly been proven equivalent to a deformed gWZW model.

Grigoriev-Tseytlin & Mikhailov, Schäfer-Nameki 2007
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Giant Magnon Scattering

Plugging the GM ansatz into the string EoM & using the definition of the sG field φ, we find that
GMs are the Pohlmeyer duals of the sG solitons:

φ (σ, τ) = 2 arctan e±γ(σ−vτ) = arcsin sech [γ (σ − vτ)] , γ =
(

1− v 2
)−1/2

We may scatter GMs in the sG picture and recover the gauge theory results. E.g. we may
consider the sG kink-antikink solution (the result is the same for any 2-soliton solution),

tan
φ

2
=

1

v

sinh γvτ

cosh γσ

The time delay is given by:

∆T12 =
2

γ1v1
log vcm =

∂δ12 (ε1, ε2)

∂ε1
,

from which we calculate the phase shift (for sin p1,2/2 > 0):

δ12 = −
√
λ

π

{(
cos

p1

2
− cos

p2

2

)
· log

[
sin2 (p1 − p2) /4

sin2 (p1 + p2) /4

]
+ p1 sin

p2

2

}
The last term of δ12 depends on the choice of the world-sheet gauge and it may be omitted.
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Magnons in AdS/CFT Correspondence

We therefore recover the argument of the AFS phase:

σ2
AFS (p1, p2) = e−iδ12

...which is just the strong-coupling limit of the 2-magnon scattering matrix:

S12 =
u1 − u2 + i

u1 − u2 − i
· σ2

AFS (p1, p2)
λ→∞−−−−→ σ2

AFS (p1, p2)

By factorized scattering, the su (2) S-matrices on both sides of the AdS/CFT match!
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The BMN String

The BMN string is a point-like string that rotates at the equator of R× S2 ⊂ AdS5 × S5:{
t = τ, ρ = θ = φ1 = φ2 = 0

}
×
{
θ =

π

2
, φ = τ, θ1 = φ1 = φ2 = 0

}
BMN String
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The energy of the point-like string equals its spin: E = J.

It is the AdS/CFT dual of the N = 4 SYM BPS operator Tr
[
ZJ
]
.
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Classical GKP String on S2 at Finite-Size

Two finite-sized GMs with v = 0, p = π and angular momentum J/2 each, give the GKP string on S2:

E − J
∣∣∣
GKP

=
2
√
λ

π

[
1− 4e−πJ/

√
λ−2 + 4

(
2πJ
√
λ
− 1

)
e−2πJ/

√
λ−4 − . . .

]
, J, λ→∞

Arutyunov-Frolov-Zamaklar, 2006

In general, we may write (E ≡ π E/2
√
λ and J ≡ π J/2

√
λ):

E − J
∣∣∣
GKP

= 1 +
∞∑
n=1

[
ãn J n−1 + b̃n J n−2 + c̃n J n−3 + . . .

](
e−2J−2

)n
In terms of the W-function, we obtain:

E − J
∣∣∣
GKP

= 1−
1

4J
(
2W + W 2

)
−

1

16J 2

(
W 2 + W 3

)
−

1

256J 3

W 3
(
11W 2 + 26W + 16

)
1 + W

+ . . .

Floratos-Georgiou-GL, 2013

where the argument of the W-function is W
(
±8J e−2J−2

)
, with the plus sign corresponding to closed

and folded strings (ω > 1) and the minus sign to circular strings (ω < 1).
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Magnon & Giant Magnon Summary at Infinite Size

BMN String
E − J = 0

M = 0 Magnons

Tr
[
ZL
]

| ↑ . . . ↑↑↑ . . . ↑>
∆− J = 0

Giant Magnon

E − J =
√
λ
π

sin p
2

M = 1 Magnon∣∣ZJW
〉
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Symbolic Computations

Using Mathematica, we obtain the following results for GMs in the elementary region:
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More about the Lambert W-Function

The Lambert W-function is defined implicitly by the following relation:

W (z) eW (z) = z ⇔W (z ez ) = z
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Branch Structure

The general branch structure is reminiscent of that of the logarithm:

The curves separating the branches are not straight lines, but the ”Quadratrix of Hippias”:{
− η cot η + iη, −π < η < π, 2kπ < ±η < (2k + 1)π

}
, k = 1, 2, 3, . . .

Two real branches, W0

(
−e−1 ≤ x <∞

)
∈ [−1,∞) and W−1

(
−e−1 ≤ x ≤ 0

)
∈ [−1,−∞).

Triple branch point at W0,±1

(
−e−1

)
= −1.

Branch cuts:
(
−∞,−e−1

]
for W0,±1 and (−∞, 0] for Wk 6=0.
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More about the Lambert W-Function

Its real branches W0, W−1 may be expanded according to the following Taylor series:

W0 (x) =
∞∑
n=0
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(n + 1)n
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· xn+1 =
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where the unsigned Stirling numbers of the first kind,
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]
are defined recursively as:
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n
k
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]
&
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n
0

]
=
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= 0 ,

[
0
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= 1 , n, k ≥ 1.
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