Summer School and Workshop on the Standard Model and Beyond

Corfu 3-14 September 2014

Flavour Physics (THEORY)

Ferruccio Feruglio University of Padova

Premise

several aspects

1 flavour puzzle origin of Y

origin of the 22 (20 if B-L is conserved) parameters *Y* needed to describe fermion masses and mixing angles in the SM, minimally extended to accommodate massive neutrinos.

2 flavour problem

how to keep at an acceptable level the contributions to FCNC and CP violation from new flavoured particles at the TeV scale

this two lectures: main focus on 1 + few comments on 2

- -- not a review of the existing models, but rather a
- -- reappraisal of old ideas, by stressing the conceptual points by means of simple examples

Approaches to the flavour puzzle

Y should be deduced from first principles

most striking fact: nothing approaching a standard theory of \mathcal{Y} , despite decades of experimental progress and theoretical efforts

y are due to chance

many variants bottom-up: anarchy, FN models, fermions in ED, partial compositness top-down: fundamental theory with a landscape of ground states

observed \mathcal{Y} are environmental and cannot be fully predicted

relative sizes of solar planetary orbits

fundamental theory

[symmetry and/or

dynamical principle]

assumptions

knowledge of statistical distribution of \mathcal{Y} in the fundamental theory

the observed y are typical

[any anthropic selection?]

relevant questions

how typical are the \mathcal{Y} we observe?

which is the statistical distribution of \mathcal{Y} in the fundamental theory?

Lecture I broken flavour symmetries

short review of SM and surroundings

$$\begin{split} L &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i \, \overline{\Psi} \gamma^{\mu} D_{\mu} \Psi \\ &+ D_{\mu} \Phi^{+} D^{\mu} \Phi - V(\Phi) \\ &+ (\overline{\Psi} Y \Phi \Psi + h \, c \, .) \\ &+ L_{NP} \end{split}$$

gauge sector

symmetry breaking sector

flavour sector

3 copies of fermions with the same quantum numbers distinguishable only by their masses. Each copy, or generations, consists of 5 independent multiplets of the gauge group $G=SU(3)\times SU(2)\times U(1)$

 $q_L = (3,2,+1/6)$ $u_R = (3,1,+2/3)$ $d_R = (3,1,-1/3)$ $l_L = (1,2,-1/2)$ $e_R = (1,1,-1)$

fermion masses and mixing angles described by

$$L_{Y} = -\overline{d}_{R} y_{d} (\Phi^{\dagger} q_{L}) - \overline{u}_{R} y_{u} (\tilde{\Phi}^{\dagger} q_{L}) - \overline{e}_{R} y_{e} (\Phi^{\dagger} l_{L}) + hc$$

yf are diagonalized by

$$f_L \rightarrow V_f f_L$$

 $f_R \rightarrow U_f f_R$

$$U_f^+ y_f V_f = y_f^{diag}$$

y_f^{diag} diagonal, real, positive

the charged current interaction becomes

$$-\frac{g}{\sqrt{2}}W^{+}_{\mu}\left(\overline{u}_{L}\gamma^{\mu}V^{+}_{u}V_{d}d_{L}+\ldots\right)+h.c.$$

$$m_f = \frac{y_f^{diag}}{\sqrt{2}}v \qquad f = u, d, e$$

$$V_{CKM} = V_u^+ V_d$$

mixing matrix 3 angles and 1 phase

so far neutrinos are massless an appealing extension of the SM to accommodate massive neutrinos is obtained by adding 3 copies of right-handed neutrinos, full singlets under G=SU(3)xSU(2)xU(1) [much more on this in Guido Altarelli lectures]

$$\boldsymbol{v}^c \equiv (1,1,0)$$

$$L_{Y} \rightarrow L_{Y} - \left[v^{c} y_{v} (\tilde{\Phi}^{+}l) + \frac{1}{2} v^{c} M v^{c} + h.c. \right]$$

mass term for right-handed neutrinos: G invariant, violates (B-L) by two units. the new mass parameter M is independent from the electroweak breaking scale v. If M>>v, we might be interested in an effective description valid for energies much smaller than M. This is obtained by "integrating out" the field v^c [exercise]

$$L_{eff}(l) = \frac{1}{2} (\tilde{\Phi}^{+}l) \left[y_{v}^{T} M^{-1} y_{v} \right] (\tilde{\Phi}^{+}l) + h.c. + \dots$$

terms suppressed by more powers of M^{-1}

[This particular mechanism is called (type I) see-saw.]

$$m_{\nu} = m_D^T M^{-1} m_D \qquad m_D = \frac{y_{\nu}}{\sqrt{2}} v$$

smallness of neutrino masses due to largeness of M

 m_v is diagonalized by $v_L \rightarrow U_v v_L$

$$U_{v}^{T}m_{v}U_{v}=m_{v}^{diag}$$

 U_{v} unitary

the charged current interaction becomes

$$-\frac{g}{\sqrt{2}}W^{-}_{\mu}\left(\overline{e}_{L}\gamma^{\mu}V^{+}_{e}U_{v}V_{L}+\ldots\right)+h.c.$$

$$U_{PMNS} = V_e^+ U_v$$

mixing matrix, depending on 3 mixing angles and 3 phases [exercise] count the number of physical parameters in the type I see-saw model distinguish between moduli and phases

 y_e , y_v and M depend on (18+18+12)=48 parameters, 24 moduli and 24 phases

we are free to choose any basis leaving the kinetic terms canonical (and the gauge interactions unchange)

$$e^{c} \rightarrow \Omega_{e^{c}} e^{c} \qquad v^{c} \rightarrow \Omega_{v^{c}} v^{c} \qquad l \rightarrow \Omega_{l} l \qquad [U(3)^{3}]$$

these transformations contain 27 parameters (9 angles and 18 phases) and effectively modify $y_e,\,y_\nu$ and M

$$y_e \to \Omega_{e^c}^T y_e \Omega_l \qquad y_v \to \Omega_{v^c}^T y_v \Omega_l \qquad M \to \Omega_{v^c}^T M \Omega_v$$

so that we can remove 27 parameters from $y_e,\,y_\nu$ and M

we remain with 21 parameters: 15 moduli and 6 phases the moduli are 9 physical masses and 6 mixing angles

the same count in the quark sector would give a total of 9 moduli (6 masses amd 3 mixing angles) and 0 phases <- wrong how the above argument should be modified, in general?

a look to the data

charged lepton masses

 $m_e = 0.510\ 998\ 928 \pm 0.000\ 000\ 011$ MeV $m_\mu = 105.658\ 3715 \pm 0.000\ 0035$ MeV $m_{\tau} = 1776.82 \pm 0.16$ MeV

[MS masses except for the top quark μ =2 GeV for u, d , s μ =m_f for f=c,b]

quark mixing

quark masses

$$m_{u} = 2.3_{-0.5}^{+0.7} MeV$$

$$m_{d} = 4.8_{-0.3}^{+0.5} MeV$$

$$m_{s} = 95 \pm 5 MeV$$

$$m_{c} = 1.275 \pm 0.025 GeV$$

$$m_{b} = 4.18 \pm 0.03 GeV$$

$$m_{c} = 173.2 \pm 0.9 GeV$$

$$V_{CKM} = \begin{pmatrix} 1 - \lambda^2 / 2 & \lambda & A \lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2 / 2 & A \lambda^2 \\ A \lambda^3 (1 - \rho - i\eta) & -A \lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

 $\lambda = 0.22535 \pm 0.00065 \quad \overline{\rho} = 0.131^{+0.026}_{-0.013} \approx \rho$ $A = 0.811^{+0.022}_{-0.012} \qquad \overline{\eta} = 0.345^{+0.013}_{-0.014} \approx \eta$

neutrino conventions

$$\begin{array}{ll} \left[\Delta m_{ij}^{2} \equiv m_{i}^{2} - m_{j}^{2} \right] & \left[\Delta m_{21}^{2} < \left| \Delta m_{32}^{2} \right|, \left| \Delta m_{31}^{2} \right| \right] & \text{i.e. 1 and 2 are, by definition, the closest levels} \\ \text{two possibilities:} & 3 & \left[\Delta m_{21}^{2} < \left| \Delta m_{32}^{2} \right|, \left| \Delta m_{31}^{2} \right| \right] & \text{i.e. 1 and 2 are, by definition, the closest levels} \\ \text{two possibilities:} & 3 & \left[\Delta m_{21}^{2} < \left| \Delta m_{32}^{2} \right|, \left| \Delta m_{31}^{2} \right| \right] & \text{i.e. 1 and 2 are, by definition, the closest levels} \\ \text{two possibilities:} & 3 & \left[\Delta m_{21}^{2} < \left| \Delta m_{32}^{2} \right|, \left| \Delta m_{31}^{2} \right| \right] & \text{inverted} \\ \text{hierarchy} & 1 & \left[\frac{1}{1} & 0 & 0 \\ 0 & e^{i\alpha} & 0 \\ 0 & -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{-i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{-i\delta} & c_{13}s_{23} \\ -c_{12}s_{13}c_{23}e^{-i\delta} + s_{12}s_{23} & -s_{12}s_{13}c_{23}e^{-i\delta} - c_{12}s_{23} & c_{13}c_{23} \\ \text{c}_{12} & = \cos \vartheta_{12}, \dots \end{array} \right] \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha} & 0 \\ 0 & 0 & e^{i\beta} \\ 0 & 0 & e^{i\beta} \\ \text{c}_{12} & = \cos \vartheta_{12}, \dots \end{array}$$
three mixing angles $\vartheta_{12}, \vartheta_{13}, \vartheta_{23}$
three phases (in the most general case) oscillations can only test 6 combinations $\Delta m_{21}^{2}, \Delta m_{32}^{2}, \vartheta_{12}, \vartheta_{13}, \vartheta_{23} \\ \Delta m_{21}^{2}, \Delta m_{32}^{2}, \vartheta_{12}, \vartheta_{13}, \vartheta_{23} \\ \delta \end{array}$

neutrinos

$$m_v < 2.2 \ eV$$
 (95% CL) (lab)
 $\sum_i m_i < 0.2 \div 1 \ eV$ (cosmo)

absolute neutrino mass scale is unknown [but well-constrained!]

sign
$$[\Delta m_{atm}^2]$$
 unknown

NO

IO

[ordering (either normal or inverted hierarchy) not known]

$$\Delta m_{sol}^2 \equiv \Delta m_{21}^2 = (7.55^{+0.18}_{-0.17}) \times 10^{-5} \text{ eV}^2$$

 $\Delta m_{atm}^2 = \begin{cases} \Delta m_{31}^2 = (2.462 \pm 0.033) \times 10^{-3} \text{ eV}^2 \\ \Delta m_{32}^2 = -(2.453 \pm 0.047) \times 10^{-3} \text{ eV}^2 \end{cases}$

$$\sin^2 \vartheta_{13} = 0.0223_{-0.0010}^{+0.0011} \delta_{CP} = (259_{-69}^{+76})$$

$$\sin^2 \vartheta_{23} = [0.451^{+0.026}_{-0.020}] \oplus [0.580^{+0.024}_{-0.039}]$$

$$\sin^2 \vartheta_{12} = 0.311_{-0.012}^{+0.013}$$

[G.-Garcia, Maltoni, Salvado, Schwetz 1209.3023 http://www.nu-fit.org]

violation of individual lepton number implied by neutrino oscillations [CP violation in lepton

 δ, α, β

sector not yet established]

unknown

violation of total lepton number not yet established

comments

masses span several order of magnitudes: 5-6 in the charged sector 12 if we also include neutrinos

leaving neutrino aside, the mass spread within each generation is much smaller

useful book-keeping (masses renormalized at the common scale m_z)

$$\frac{m_e}{m_\tau} \approx \lambda^{5.4} \quad \frac{m_\mu}{m_\tau} \approx \lambda^{1.9}$$
$$\frac{m_d}{m_b} \approx \lambda^{4.3} \quad \frac{m_s}{m_b} \approx \lambda^{2.3}$$
$$\frac{m_u}{m_t} \approx \lambda^{7.4} \quad \frac{m_c}{m_t} \approx \lambda^{3.6}$$

 $|U_{fi}| \approx O(1)$

except

$$|U_{e3}| \approx O(\lambda)$$

 $\frac{\Delta m_{21}^2}{|\Delta m_{21}^2|} \approx \lambda^{2.3}$

 $\left|V_{ud}\right| \approx 1$ $\left|V_{us}\right| \approx \lambda$ $\left|V_{cb}\right| \approx \lambda^2$ $\left|V_{ub}\right| \approx \lambda^4 \div \lambda^3$

spontaneously broken flavour symmetries [Froggatt-Nielsen 1979]

U

tailored to explain small parameters

idea: easier to explain why $\xi = 0$ the $\xi = 0$ limit corresponds to the U(1)_A axial symmetry

example:

QED

$$\left\{ \begin{array}{c} e_L \to e^{i\alpha} e_L \\ e_R \to e^{-i\alpha} e_R \end{array} \right.$$

 $U(1)_A$ approximate symmetry of the real world, broken by $\xi \neq 0$

why $\xi = \frac{m_e}{\Lambda} <<1$?

 ξ small is **natural** in the 't Hooft sense: by sending ξ to zero the symmetry of the theory is enhanced

bonus: stability under radiative corrections

$$\delta \xi \propto \xi$$

since in the symmetry limit δξ=0

SM [the quark sector]

 $\frac{m_u}{m_c} << \frac{m_c}{m_c} <$

 $m_t = m_t$

$$<1 \qquad \frac{m_d}{m_b} << \frac{m_s}{m_b} << 1 \qquad \qquad |V_{ub}| << |V_{cb}| << |V_{us}| = \lambda <$$

mass ratios and mixing angles are small breaking terms of an approximate symmetry ${\cal G}_{\rm f}$

simplest candidate $G_f = U(1)_{FN}$

[change of notation such that all fermions are left-handed]

$$\psi_R \rightarrow (\psi_R)^c = (\psi^c)_L$$

introduce a new abelian symmetry U(1)_{FN}

assume all charges p, q, r non-negative and ordered such that $p_1 \ge p_2 \ge p_3$, etc...

	q	u^{c}	d^{c}	
1st gen	p_1	q_{1}	r ₁	
2nd gen	p_2	q_2	r_2	charges
3rd gen	p_3	q_3	r_3	

take FN(Φ)=0 and consider the choice: $p_3 = q_3 = 0$ and (other charges) > 0

only one term is allowed in the Yukawa lagrangian

$$-t^{c}Y_{u}^{33}\tilde{\Phi}^{+}\left(\begin{array}{c}t\\b\end{array}\right)+h.c.$$

$$m_{u} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & Y_{u}^{33} \end{pmatrix} \frac{v}{\sqrt{2}}$$

$$m_d = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \frac{\nu}{\sqrt{2}}$$

$$m_t = Y_u^{33} \frac{v}{\sqrt{2}}$$
 $m_u = m_c = m_d = m_s = m_b = 0$

zeros can be replaced by small quantities if U(1)_{FN} is broken, for instance spontaneously through the VEV of a scalar field θ such that FN(θ)=-1

$$L_{Y} = -u_{i}^{c} Y_{u}^{ij} \tilde{\Phi}^{+} q_{j} \left(\frac{\theta}{\Lambda}\right)^{q_{i}+p_{j}} - d_{i}^{c} Y_{d}^{ij} \Phi^{+} q_{j} \left(\frac{\theta}{\Lambda}\right)^{r_{i}+p_{j}} + h.c.$$

when θ takes a VEV, the vanishing entries in m_u and m_d are replaced by powers of the symmetry breaking parameter

$$\lambda = \frac{\left< \theta \right>}{\Lambda}$$

$$(y_u)_{ij} = \lambda^{q_i + p_j} Y_u^{ij} \qquad (y_d)_{ij} = \lambda^{r_i + p_j} Y_d^{ij}$$

if $\lambda < 1$, for instance $\lambda \approx 0.2$, then we do not need hierarchical Yukawa couplings $Y_{u,d}$. We can take $Y_{u,d} = O(1)$ and appropriate charges p, q, r

at the LO in an expansion in powers of λ we have [omitting all O(1) coefficients $Y_{u,d}$] [exercise]

$$\begin{split} m_u &\approx \lambda^{q_1 + p_1} v \qquad m_d \approx \lambda^{r_1 + p_1} v \\ m_c &\approx \lambda^{q_2 + p_2} v \qquad m_s \approx \lambda^{r_2 + p_2} v \\ m_t &\approx \lambda^{q_3 + p_3} v \qquad m_b \approx \lambda^{r_3 + p_3} v \end{split}$$

$$V_{CKM} \approx \begin{pmatrix} 1 & \lambda^{p_{1}-p_{2}} & \lambda^{p_{1}-p_{3}} \\ \lambda^{p_{1}-p_{2}} & 1 & \lambda^{p_{2}-p_{3}} \\ \lambda^{p_{1}-p_{3}} & \lambda^{p_{2}-p_{3}} & 1 \end{pmatrix}$$

CKM angles only depend on p_i

one prediction independent from the specific charge choice

$$V_{ud} \approx V_{cs} \approx V_{tb} \approx O(1)$$
$$V_{ub} \approx V_{td} \approx V_{us} \times V_{cb}$$

[O.K. within a factor of 2]

correct orders of magnitude of V_{ij} reproduced by e.g.

correct orders of magnitude of quark mass ratios reproduced by e.g.

$$(p_1, p_2, p_3) = (3,2,0)$$

 $(q_1, q_2, q_3) = (4,2,0)$
 $(r_1, r_2, r_3) = (1+r_3, r_3, r_3)$

to match
$$m_b \approx \lambda^{r_3} v$$

results [exercise]
 $\frac{m_d}{m_b} \approx \lambda^4 \quad \frac{m_s}{m_b} \approx \lambda^2$
 $\frac{m_u}{m_a} \approx \lambda^7 \quad \frac{m_c}{m_a} \approx \lambda^4$

we would need $r_3 \approx 2$, unless there are two Higgs doublets such that $m_u \approx v_u$ and $m_d \approx v_d$ if $v_d/v_u \approx \lambda^2$ then we can take $r_3 = 0$

$$\left|V_{ud}\right| \approx 1$$
 $\left|V_{us}\right| \approx \lambda$ $\left|V_{cb}\right| \approx \lambda^2$ $\left|V_{ub}\right| \approx \lambda^3$

successful: compare with previous empirical bookeeping $\lambda \approx 0.22$

extension to the lepton sector

	l	e^{c}	v^{c}		assume all charges s, t, u	
1st gen	S ₁	t_1	<i>u</i> ₁		non-negative and ordered such that $s_1 \ge s_2 \ge s_3$, etc	
2nd gen	<i>s</i> ₂	t_2	<i>u</i> ₂	charges		
3rd gen	S ₃	t_3	u_3			

$$L_{Y} = -e_{i}^{c}Y_{d}^{ij}\Phi^{+}l_{j}\left(\frac{\theta}{\Lambda}\right)^{t_{i}+s_{j}} + \frac{1}{2}(\tilde{\Phi}^{+}l_{i})\left[y_{v}^{T}M^{-1}y_{v}\right]_{ij}(\tilde{\Phi}^{+}l_{j})\left(\frac{\theta}{\Lambda}\right)^{s_{i}+s_{j}} + h.c.$$

no dependence on right-handed neutrino charges u_i at low energies [for $u_i \ge 0$]

at the LO in an expansion in powers of λ we have [omitting all O(1) coefficients; M_0 is the typical scale in M]

$$\begin{split} m_{e} &\approx \lambda^{t_{1}+s_{1}} v \quad m_{1} \approx \lambda^{2s_{1}} v^{2} / M_{0} \\ m_{\mu} &\approx \lambda^{t_{2}+s_{2}} v \quad m_{2} \approx \lambda^{2s_{2}} v^{2} / M_{0} \\ m_{\tau} &\approx \lambda^{t_{3}+s_{3}} v \quad m_{3} \approx \lambda^{2s_{3}} v^{2} / M_{0} \end{split} \qquad \begin{aligned} U_{PMNS} &\approx \begin{pmatrix} 1 & \lambda^{s_{1}-s_{2}} & \lambda^{s_{1}-s_{3}} \\ \lambda^{s_{1}-s_{2}} & 1 & \lambda^{s_{2}-s_{3}} \\ \lambda^{s_{1}-s_{3}} & \lambda^{s_{2}-s_{3}} & 1 \end{pmatrix} \end{split}$$

PMNS angles and neutrino masses only depend on s_i

charge choice [example]

almost all mass ratios and mixing angles correctly reproduced at the level of orders of magnitudes quarks and leptons treated on the same footing

weak point: large number of unknown O(1) parameters $Y_{u,d,e}$, (M/M₀) not constrained by the U(1)_{FN} symmetry impossible to go beyond the order-of-magnitude level impossible to make a precision test of the idea

embedding in [SUSY] SU(5) GUT

constraint

q = (3,2,+1/6) $u^{c} = (\overline{3},1,-2/3)$ $e^{c} = (1,1,1)$ $\sim 10 \text{ of } SU(5)$

$$d^{c} = (\overline{3}, 1, 1/3) \\ l = (1, 2, -1/2) \end{cases} \sim \overline{5} \text{ of } SU(5)$$

S

$$p = q = t$$
 $r =$

we found

$$(p_1, p_2, p_3) = (3,2,0)$$

 $(q_1, q_2, q_3) = (4,2,0)$
 $(t_1, t_2, t_3) = (4,2,0)$

$$(r_1, r_2, r_3) = (1+r_3, r_3, r_3)$$

 $(s_1, s_2, s_3) = (1+s_3, s_3, s_3)$

not bad. If we take $r_3=s_3$ and $p_1=q_1=t_1=(3 \text{ or } 4)$ we can reproduce the data up to another moderate tuning in the O(1) parameters

two new predictions

$$\frac{m_c}{m_t} \approx V_{cb}^2 \qquad \frac{m_u}{m_t} \approx V_{ub}^2 \qquad \text{close to the date}$$

[a "minimal" Yukawa coupling to Higgses in 5 and 5 of SU(5) would imply $m_e = m_d$ $m_u = m_s$ $m_{_{d}} = m_b$ the 1st two relations are wrong but remedies are well known]

embedding in [SUSY] SO(10) GUT?

$$16 = (q, u^c, e^c, l, d^c, v^c)$$

a whole SM fermion generation plus a right-handed neutrino in a unique multiplet

$$p = q = t = r = s$$

it does not seem possible

previous framework cannot explain special features

ϑ_{23} maximal ?

today most precise single determination of ϑ_{23} is from T2K (P_{uu}) [1403.1532]

> well compatible with ϑ_{23} maximal

 ϑ_{23} maximal difficult to attribute to pure chance ...

 9_{23} cannot be made maximal by RGE evolution [barring tuning of b.c. and/or thresold corrections]

when a flavour symmetry is present, ϑ_{23} is determined entirely by breaking effects [no maximal 9_{23} from an exact symmetry]

broken abelian symmetries do not work ____ we are left with broken [not a theorem but no counterexamples]

non-abelian symmetries

2

3

```
\delta_{CP} = -\pi/2?
```

 $\sin^2 \vartheta_{23} = \begin{cases} 0.514^{+0.055}_{-0.056} \text{ (NH)} \\ 0.511^{+0.055}_{-0.055} \text{ (IH)} \end{cases}$

discrete non-abelian symmetries? see G. Altarelli lectures

generalizations

largest possible flavour symmetry G_f is obtained in the limit $\mathcal{Y} = 0$

$$G_{MFV} = U(3)^5$$

[more on this later on...]

[symmetry of kinetic terms with SM particle content]

observed fermion masses and mixing angles (and the anomaly) break G_{MFV} completely (up to the hypercharge and, possibly, B-L)

 $G_{\!_{M\!FV}}\supseteq G_{\!_f} \twoheadrightarrow H_{\!_f} \ \, {\rm for \ any \ realistic \ flavour \ symmetry}$

in most predictive models the breaking is spontaneous, by a set of <scalar fields>

 $\theta \! \rightarrow \! \theta_{g} \! = \! \rho(g) \theta$

under G_{f}

<0> determined by minimizing an energy functional V(θ) invariant under G_f

$$V\!\left(\theta_{g}\right) \!=\! V\!\left(\theta\right)$$

<0>, absolute minimum of V(0), breaks $G_{\rm f}$ down to $H_{\rm f}$

Yukawas promoted to dynamical variables

$${f \gamma}ig(heta\,/\,\Lambda_{_f}ig)$$

observed Yukawa couplings

$$\mathbf{y} \left(< \theta > / \Lambda_{f} \right)$$

huge number of possibilities: choice of G_f (global, local, continuous, discrete,...) choice of representations for scalars φ and fermions

Lecture II hierarchies without symmetries

previous result

$$(y_u)_{ij} = \lambda^{q_i + p_j} Y_u^{ij} \qquad (y_d)_{ij} = \lambda^{r_i + p_j} Y_d^{ij}$$

can be rewritten as

undetermined by $U(1)_{FN}$

 $Y_{u,d} \approx O(1)$

$$y_{u} = F_{u^{c}}Y_{u}F_{q}$$
$$y_{d} = F_{d^{c}}Y_{d}F_{q}$$
$$F_{X} = \begin{pmatrix} \lambda^{FN(X_{1})} \\ 0 \\ 0 \end{pmatrix}$$

FN(X_i) are U(1)_{FN} charges $(X = q, u^c, d^c)$

can we obtain this from other frameworks?

 $\begin{array}{ccc} 0 & 0 \\ \lambda^{FN(X_2)} & 0 \\ 0 & \lambda^{FN(X_3)} \end{array} & FN(q) = (p_1, p_2, p_3) \\ FN(u^c) = (q_1, q_2, q_3) \\ FN(d^c) = (r_1, r_2, r_3) \end{array}$

hierarchies from Extra Dimensions [see Antoniadis lectures]

original hope [Kaluza 1921, Klein 1926]: unification of all - gravity and electromagnetism - fundamental interactions

in 5D the metric tensor contains the electromagnetic field

$$g_{MN} = \begin{pmatrix} g_{\mu\nu} + \dots & -\varphi & A_{\nu} \\ -\varphi & A_{\mu} & -\varphi \end{pmatrix} \text{ if } y = x^{4} \text{ is compactified on a circle of radius R the U(1) gauge invariance is part of the invariance under general coordinate transformations}$$
$$y \rightarrow y + \xi(x) \text{ induces } A_{\mu}(x) \rightarrow A_{\mu}(x) + \partial_{\mu}\xi(x) \quad x^{M} = (x, y)$$

the original KK idea [gauge group=isometry group of the compact space K] does not work since in the reduction from D>4 to 4D it is not possible to generate chiral fermions

of the invariance

=(x,y)

the chirality problem

in a vector-like theory all fermions can be given gauge invariant mass terms

in a chiral theory there are fermions that cannot be given gauge invariant mass terms

vector-like theories are automatically free from gauge anomalies. In chiral theories the requirement of gauge anomaly cancellation is, in general, a constraint on the representation content in the fermion sector the SM is an anomaly-free chiral gauge theory

in 1985 Witten proved that in the dimensional reduction [a truncation of the full theory where only the zero modes are kept] of any KK theory where the gauge fields are embedded in the metric g_{MN} there are no 4D chiral fermions

ways out

in string theory there are also ``external'' gauge fields, that cannot be identified with component of the metric

in QFT with no gravity + some special ingredient [here a toy model in 5D] ED can be relevant to the flavour puzzle

$$\mathcal{L} = i \,\overline{\Psi} \Gamma^M D_M \Psi = i \,\overline{\Psi} (\Gamma^\mu D_\mu + \Gamma^i D_i) \Psi$$

(index i running over the EDs)

if the ED are compactified on a space K with characteristic length R, with 1/R>> EW scale, in first approximation SM fermions can be thought as 4D zero modes fermions are also

fermions are also zero modes of the Dirac operator ($\Gamma^i D_i$) in the compact space

the number of zero modes of ($\Gamma^i D_i$) depends on the features of the compact space K, opening the possibility of predicting N_q

the zero modes of $(\Gamma^i D_i)$ can be localized in specific region of the compact space. Since 4D Yukawa couplings are determined by the overlaps of the zero-mode profiles in K, their size can be explained in terms of geometrical properties

a toy model in 5D [D.E. Kaplan, Tait 0110126; Arkani-Hamed, Schmaltz 9902417]

$$\varphi(x, y + 2\pi R) = \varphi(x, y)$$
 $\varphi(x, -y) = \pm \varphi(x, y)$

free field expansion

$$\varphi(x,-y) = +\varphi(x,y) \qquad \varphi(x,y) = \sum_{n=0}^{+\infty} \frac{1}{\sqrt{(1+\delta_{n0})\pi R}} \varphi^{(n)}(x) \cos\frac{ny}{R}$$
$$\varphi(x,-y) = -\varphi(x,y) \qquad \varphi(x,y) = \sum_{n=1}^{+\infty} \frac{1}{\sqrt{\pi R}} \varphi^{(n)}(x) \sin\frac{ny}{R}$$

$$m_n^2 = \left(\frac{n}{R}\right)^2$$

only even fields have zero modes consider the SM with $g=g_s=0$ and $g'\neq 0$ and focus on the charge lepton sector

$$\Psi = \begin{pmatrix} e \\ \overline{E}^c \end{pmatrix} \qquad \Psi' = \begin{pmatrix} E \\ \overline{e}^c \end{pmatrix} \qquad Y(e, e^c) = (-1/2, +1) \qquad \text{SM states}$$
$$Y(E, E^c) = (-1, +1/2) \qquad \text{additional states}$$

smallest spinor in 5D has 4 components

4D chiral components

$$\Psi_{L} = \begin{pmatrix} e \\ 0 \end{pmatrix} \qquad \Psi_{R} = \begin{pmatrix} 0 \\ \overline{E}^{c} \end{pmatrix}$$

and similarly for Ψ'

have

-modes

unwanted zero-modes eliminated by Z_2 parity assignment

$$\begin{aligned} \Psi_{L}(x,-y) &= \Psi_{L}(x,y) & \Psi_{R}(x,-y) &= -\Psi_{R}(x,y) \\ \Psi'_{L}(x,-y) &= -\Psi'_{L}(x,y) & \Psi'_{R}(x,-y) &= \Psi'_{R}(x,y) \end{aligned} \ \left(e,e^{c} \right) \ \ \frac{dec}{dec} \end{aligned}$$

the reduction from 5D to 4D is a chiral theory with the desired particle content

adding mass terms M_j and M'_i to our lagrangian, we get zero modes

$$\Psi_{j}(x,y) = \sqrt{\frac{2M_{j}}{1 - e^{-2M_{j}\pi R}}} e^{-M_{j}|y|} \begin{pmatrix} e_{j}(x) \\ 0 \end{pmatrix} + \dots$$

$$\Psi'_{i}(x,y) = \sqrt{\frac{2M'_{i}}{1 - e^{-2M'_{i}\pi R}}} e^{-M'_{i}|y|} \begin{pmatrix} 0\\ \overline{e}_{i}^{c}(x) \end{pmatrix} + \dots$$

after EW symmetry breaking the Yukawa interaction reads

$$\mathcal{L}_{Y} = -\frac{\delta(y)}{\Lambda} \overline{\Psi'}_{i} Y_{e}^{ij} \Psi_{j} \frac{v}{\sqrt{2}} + \dots$$

$$\mathcal{L}^{(4)} = \int_{y=0}^{2\pi R} \mathcal{L}_{y} dy = -\frac{1}{\Lambda} \overline{\Psi}'_{i}(x,0) Y_{e}^{ij} \Psi_{j}(x,0) \frac{v}{\sqrt{2}} + \dots$$

after integrating over y [exercise]

$$y_e = F_{e^c} Y_e F_l$$

same pattern as from U(1)_{FN}

$$F_{e_{i}^{c}} = \sqrt{\frac{2M'_{i}/\Lambda}{1 - e^{-2M'_{i}\pi R}}}$$

$$F_i \propto \sqrt{\frac{\xi_i}{1 - e^{-\xi_i}}} \approx \begin{cases} \sqrt{\xi_i} & \xi_i >> 1\\ 1 & \xi_i \approx 0\\ e^{\xi_i/2} & \xi_i << -1 \end{cases}$$

no symmetry: now hierarchy comes from geometry

 $\xi_i = 2M_i \pi R$

dictionary		
ED	$\mu_{_i}$	ρ
Flat $[0, \pi R]$	$M_{_i}$ / Λ	$\Lambda \pi R$
Warped [R,R']	$1/2 - M_i R$	$\log R'/R$

 M_i = bulk mass of fermion X_i

Y_{u,d} = O(1) Yukawa couplings between bulk fermions and a Higgs localized at one brane

can be extended to neutrinos and to the quark sector

compatible with SU(5) and SO(10) GUTs

[Kitano-Li Phys. Rev. D67 (2003) 116004] [F, Patel, Vicino 1407.2913]

Lecture II (continue) the flavour problem

New Physics: effective lagrangian approach

$$L = L_{SM} + \sum_{i} c_{i}^{5} \frac{O_{i}^{5}}{\Lambda} + \sum_{i} c_{i}^{6} \frac{O_{i}^{6}}{\Lambda^{2}} + \dots$$

O^d_i gauge invariant operators of dimension d

here: constraints from flavour physics on $|\Delta F|=2$ d=6 operators

Operator	Bounds on A	A in TeV $(c_{ij} = 1)$	Bounds on c_{ij} ($\Lambda = 1$ TeV)		Observables
	Re	Im	Re	Im	
$(\bar{s}_L \gamma^\mu d_L)^2$	$9.8 imes 10^2$	1.6×10^4	$9.0 imes 10^{-7}$	$3.4 imes 10^{-9}$	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	$1.8 imes 10^4$	3.2×10^5	$6.9 imes 10^{-9}$	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	$5.6 imes 10^{-7}$	$1.0 imes 10^{-7}$	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	$6.2 imes 10^3$	1.5×10^4	$5.7 imes 10^{-8}$	$1.1 imes 10^{-8}$	$\Delta m_D; q/p , \phi_D$
$(\bar{b}_L \gamma^\mu d_L)^2$	5.1×10^2	$9.3 imes 10^2$	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	$1.9 imes 10^3$	3.6×10^3	$5.6 imes 10^{-7}$	$1.7 imes 10^{-7}$	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_L \gamma^\mu s_L)^2$	1.1×10^2		7.6×10^{-5}		Δm_{B_s}
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	3.	7×10^2	1.3×10^{-5}		Δm_{B_s}

TABLE I: Bounds on representative dimension-six $\Delta F = 2$ operators. Bounds on Λ are quoted assuming an effective coupling $1/\Lambda^2$, or, alternatively, the bounds on the respective c_{ij} 's assuming $\Lambda = 1$ TeV. Observables related to CPV are separated from the CP conserving ones with semicolons. In the B_s system we only quote a bound on the modulo of the NP amplitude derived from Δm_{B_s} (see text). For the definition of the CPV observables in the D system see Ref. [15].

Minimal Flavour Violation

either the scale of new physics is very large or flavour violation from New Physics is highly non-generic. Useful benchmark: a framework where the only source of flavour violation beyond the SM are the Yukawa coupling

in the limit $y_u = y_d = 0$, the SM lagrangian is invariant under a U(3)³ flavour symmetry

$$G_{q} = SU(3)_{u^{c}} \times SU(3)_{d^{c}} \times SU(3)_{q} \times \dots$$
$$q = (1,1,3) u^{c} = (\overline{3},1,1) d^{c} = (1,\overline{3},1)$$

if the Yukawa couplings y_u and y_d are promoted to non-dynamical fields (spurions) transforming conveniently, the SM lagrangian remains formally invariant under the flavour group G_q

$$L_{SM} = \dots - d^{c} y_{d} (\Phi^{+}q) - u^{c} y_{u} (\tilde{\Phi}^{+}q) + h.c$$

$$y_{u} = (3,1,\overline{3}) \qquad y_{d} = (1,3,\overline{3})$$

MFV assumes that new operators coming from New Physics do not involve any additional field/spurions and that they are still invariant under G_q [additional assumption: no additional sources of CPV other than those in $y_{u,d}$]

Example: leading operator with $\Delta F=2$ in MFV

choose, e.g. the basis where

$$y_d = y_d^{Diag}$$
 $y_u = y_u^{Diag} V_{CKM}$

we can form the MFV invariant [exercise]

$$\overline{q}_{Li}\gamma^{\mu}(y_{u}^{\dagger}y_{u})_{ij}q_{Lj}\overline{q}_{Lk}\gamma_{\mu}(y_{u}^{\dagger}y_{u})_{kl}q_{Ll}$$

looking at the down quark sector and selecting i=k=d,s and j=l=b we get the MFV operator contributing to $\Delta B=2$

$$O_{MFV}(|\Delta B| = 2) = \frac{c}{\Lambda_{NP}^2} y_t^4 (V_{tb} V_{tq}^*)^2 \,\overline{q}_L \gamma^{\mu} b_L \,\overline{q}_L \gamma_{\mu} b_L \qquad (q = d, s) \quad \text{where we used} \quad y_u^{Diag} \approx \text{diag}(0, 0, y_t)$$

 $y_{u,d}^{Diag}$

diagonal

same CKM suppression as in the SM. Now the bound on the scale of New Physics reads

$$\Lambda_{NP} \approx \frac{\Lambda_{NP}}{4\pi} \approx \frac{4\pi}{g} \Lambda_{NP}$$

$$\Delta_{q} \equiv \frac{M_{12}^{q}}{M_{12}^{q,SM}} \qquad (q=d,s) \qquad [O_{MFV} \text{ modify } M_{12} \text{ for } B_{d} \text{ and } B_{s} \text{ in the same way}$$

$$i.e \Delta_{d} \text{ and } \Delta_{s} \text{ are identical and real in MFV}]$$

bound on the scale of New Physics in MFV

Operator	Bound on Λ	Observables
$H^{\dagger}\left(\overline{D}_{R}Y^{d\dagger}Y^{u}Y^{u\dagger}\sigma_{\mu\nu}Q_{L}\right)\left(eF_{\mu\nu}\right)$	$6.1 { m TeV}$	$B \to X_s \gamma, \ B \to X_s \ell^+ \ell^-$
$\frac{1}{2} (\overline{Q}_L Y^u Y^{u\dagger} \gamma_\mu Q_L)^2$	$5.9 { m TeV}$	$\epsilon_K, \Delta m_{B_d}, \Delta m_{B_s}$
$H_D^{\dagger} \left(\overline{D}_R Y^{d\dagger} Y^u Y^{u\dagger} \sigma_{\mu\nu} T^a Q_L \right) \left(g_s G^a_{\mu\nu} \right)$	$3.4 { m TeV}$	$B \to X_s \gamma, \ B \to X_s \ell^+ \ell^-$
$\left(\overline{Q}_L Y^u Y^{u\dagger} \gamma_\mu Q_L\right) \left(\overline{E}_R \gamma_\mu E_R\right)$	$2.7~{\rm TeV}$	$B \to X_s \ell^+ \ell^-, \ B_s \to \mu^+ \mu^-$
$i\left(\overline{Q}_L Y^u Y^{u\dagger} \gamma_\mu Q_L\right) H_U^{\dagger} D_\mu H_U$	$2.3 { m TeV}$	$B \to X_s \ell^+ \ell^-, \ B_s \to \mu^+ \mu^-$
$\left(\overline{Q}_L Y^u Y^{u\dagger} \gamma_\mu Q_L\right) \left(\overline{L}_L \gamma_\mu L_L\right)$	$1.7 { m TeV}$	$B \to X_s \ell^+ \ell^-, \ B_s \to \mu^+ \mu^-$
$\left(\overline{Q}_L Y^u Y^{u\dagger} \gamma_\mu Q_L\right) \left(e D_\mu F_{\mu\nu}\right)$	$1.5 { m TeV}$	$B \to X_s \ell^+ \ell^-$

TABLE II: Bounds on the scale of new physics (at 95% C.L.) for some representative $\Delta F = 1$ [27] and $\Delta F = 2$ [12] MFV operators (assuming effective coupling $\pm 1/\Lambda^2$), and corresponding observables used to set the bounds. [Isidori, Nir, Perez, 2010]

Lepton Flavour Violation and MFV

relevant operators

$$i\frac{e}{\Lambda^2}e^c(\sigma^{\mu\nu}F_{\mu\nu})\mathcal{Z}(\Phi^+l) + \frac{1}{\Lambda^2}$$
[4-fermion] + h.c. + ...

a matrix in flavour space

$$L_{y} = -e^{c} y_{e}(\Phi^{+}l) + h.c. + ...$$

$$BR(\mu \to e\gamma) < 5.7 \times 10^{-13}$$

$$\frac{-\mu e}{\Lambda^2} < 2 \times 10^{-9} \text{ TeV}^{-2}$$

7.

$$\Lambda > 2 \times 10^4 \left[\sqrt{\mathcal{Z}_{\mu e}} \right] TeV$$

extension of MFV to leptons is ambiguous: we can describe neutrino masses in several ways

one neat prediction: in the limit of vanishing neutrino masses, the only available spurion is

$$y_e = y_e^{Diag}$$

no LFV when $m_v = 0$

LFV in the limit of vanishing neutrino masses

previous conclusion can be evaded in several models of fermion masses e.g. in partial compositeness where elementary fermions acquire a mass through their mixing with a composite sector

a toy model

$$\begin{split} L_{Y} &= -e^{c} \Delta_{E} E - L^{c} \Delta_{L} l & \Leftrightarrow \text{ elementary-composite mixing} \\ &- E^{c} M E - L^{c} M L & \Leftrightarrow \text{ Dirac masses for composite fermions} \\ &- E^{c} Y (\Phi^{+} L) - (L^{c} \tilde{\Phi}^{+}) \tilde{Y} E + h.c. & \Leftrightarrow \text{ Yukawa coupling of composite fermions} \\ \end{split}$$
by integrating out the composite sector [exercise]
$$L_{Y} &= -e^{c} y_{e} (\Phi^{+} l) + h.c. & e^{c} \frac{\Delta_{E} \quad \forall \quad \Delta_{L}}{M^{-1} \quad i \quad M^{-1}} \\ y_{e} &= (\Delta_{E} M^{-1}) Y (M^{-1} \Delta_{L}) + \dots & \text{higher-orders in } (\Phi/M) \\ \end{aligned}$$
at the LO $y_{e} = F_{E^{c}} Y F_{L}$ $F_{E^{c}} = \Delta_{E} M^{-1} \quad F_{L} = M^{-1} \Delta_{L}$

so far neutrino are massless do we expect LFV in our toy model?

one-loop contribution to lepton dipole operator from Higgs exchange (assuming M proportional to identity)

$$\frac{Z}{\Lambda^2} \approx \frac{1}{16\pi^2 M^2} (\Delta_E M^{-1}) Y \tilde{Y} Y (M^{-1} \Delta_L) + \dots$$

in general these combinations
not diagonal in the same basis
$$e^{c} \frac{\Delta_E}{M^{-1}} \frac{Y}{M^{-1}} \frac{\tilde{Y}}{M^{-1}} \frac{\tilde{Y}}{M^{-1}} \frac{\tilde{Y}}{M^{-1}} \frac{\tilde{Y}}{M^{-1}}$$

LFV not suppressed by neutrino masses and unrelated to (B-L) breaking scale

rough estimate

$$\frac{Z_{\mu e}}{\Lambda^2} < 2 \times 10^{-9} \text{ TeV}^{-2}$$

