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flavour problem 2 

Energy 0 e.w. scale 1 TeV 

W, Z, t 

new particle threshold favored by  
known solutions to the gauge hierarchy problem 

less urgent? no evidence for a new threshold so far 

how to keep at an acceptable level the  
contributions to FCNC and CP violation  
from new flavoured particles at the TeV scale 

Premise  

flavour puzzle 

several aspects  

origin of Y 
1 

origin of the 22 (20 if B-L is conserved) 
parameters Y needed to describe fermion masses 
and mixing angles in the SM, minimally extended 
to accommodate massive neutrinos. 



this two lectures: main focus on 1 + few comments on 2 
 
-- not a review of the existing models, but rather a 
 
-- reappraisal of old ideas, by stressing the conceptual 
    points by means of simple examples 



Approaches to the flavour puzzle 

1    Y should be deduced  
from first principles 

fundamental theory 

[symmetry and/or  
dynamical principle] 

Y 

most striking fact: nothing approaching a  
standard theory of Y, despite decades of  
experimental progress and theoretical efforts 

2    Y are due to chance 
many variants 
bottom-up: anarchy, FN models, fermions in ED, partial compositness 
top-down: fundamental theory with a landscape of ground states  
observed Y are environmental  
and cannot be fully predicted  

relative sizes of solar  
planetary orbits 

relevant questions 
how typical are the Y  
we observe? 
which is the statistical distribution 
of Y in the fundamental theory? 

knowledge of statistical distribution 
of Y in the fundamental theory 

the observed Y are typical 

assumptions 

[any anthropic selection?] 

    



Lecture I 
broken flavour symmetries 



short review of SM and surroundings   

€ 

qL = (3,2,+1/6) uR = (3,1,+2 /3) dR = (3,1,−1/3)
lL = (1,2,−1/2) eR = (1,1,−1)

3 copies of fermions with the same quantum numbers distinguishable  
only by their masses. Each copy, or generations, consists 
of 5 independent multiplets of the gauge group G=SU(3)xSU(2)xU(1)  

€ 

LY = −d R yd (Φ+qL ) − u R yu( ˜ Φ +qL ) − e R ye (Φ+lL ) + h.c.

fermion masses and mixing angles described by 

€ 

L = −
1
4
FµνF

µν + i Ψ γ µDµΨ

+ DµΦ
+DµΦ−V (Φ)

+ (Ψ YΦΨ+ h.c.)
+ LNP

gauge sector 

symmetry breaking sector 

 flavour sector 



so far neutrinos are massless 
an appealing extension of the SM to accommodate massive neutrinos is 
obtained by adding 3 copies of right-handed neutrinos, full singlets under  
G=SU(3)xSU(2)xU(1) 

ν c ≡ (1,1,0)    

mass term for right-handed  
neutrinos: G invariant, violates 
(B-L) by two units. 

LY → LY − ν c yν ( Φ
+l)+ 1

2
ν cMν c + h.c.

$

%
&

'

(
)

yf are diagonalized by 
 

U f
+ y fVf = y f

diag  yf
diag diagonal,  

real, positive 

fL -> VffL   
fR

 -> UffR 

mf =
y f
diag

2
v         f = u,d ,e

Uf and Vf unitary 

the charged current interaction becomes 

−
g
2
Wµ

+ uLγ
µVu

+Vd dL + ...( )+ h.c.

€ 

VCKM =Vu
+Vd

mixing matrix 
3 angles and 1 phase 

[much more on this in Guido Altarelli lectures] 



mν is diagonalized by 

Uν
TmνUν =mν

diagνL ->UννL 
Uν unitary 

the charged current interaction becomes 

−
g
2
Wµ

− eLγ
µVe

+Uνν L + ...( )+ h.c. UPMNS =Ve
+Uν

mixing matrix, depending on  
3 mixing angles and 3 phases 

Leff (l) =
1
2
( Φ+l) yν

TM −1yν#
$

%
&( Φ

+l)+ h.c.+ ...

the new mass parameter M is independent from the electroweak breaking 
scale v. If M>>v, we might be interested in an effective description valid 
for energies much smaller than M. This is obtained by “integrating out’’ the 
field νc  

terms suppressed by more 
powers of M-1 

[This particular mechanism is called (type I) see-saw.]  

mν =mD
T M −1 mD mD =

yν
2
v smallness of neutrino 

masses due to largeness of M 

[exercise] 



Exercise: count the number of physical parameters in the type I see-saw model 
                distinguish between moduli and phases  

ye, yν and M depend on (18+18+12)=48 parameters, 24 moduli and 24 phases 

we are free to choose any basis leaving the kinetic terms canonical 
(and the gauge interactions unchange)  

ec →Ω
ec
ec ν c →Ω

ν c
vc l→Ωll [U (3)3]

so that we can remove 27 parameters from ye, yν and M   

we remain with 21 parameters: 15 moduli and 6 phases 
the moduli are 9 physical masses and 6 mixing angles 

these transformations contain 27 parameters (9 angles and 18 phases) 
and effectively modify ye, yν and M  

ye →Ω
ec
T yeΩl yν →Ω

ν c
T yνΩl M →Ω

ν c
T MΩ

ν c

the same count in the quark sector would give a total of 9 moduli 
(6 masses amd 3 mixing angles) and 0 phases  <-  wrong 
how the above argument should be modified, in general? 

[exercise] 



a look to the data 
charged lepton masses 

me = 0.510 998 928±0.000 000 011 MeV
mµ =105.658 3715±0.000 0035 MeV

m τ =1776.82±0.16 MeV

quark masses 

__ 

mu = 2.3−0.5
+0.7 MeV

md = 4.8−0.3
+0.5 MeV

ms = 95±5 MeV
mc =1.275±0.025 GeV
mb = 4.18±0.03 GeV
mt =173.2±0.9 GeV

[MS masses except for the top quark 
µ=2 GeV for u, d , s 
μ=mf for f=c,b] 

VCKM =
1−λ 2 / 2 λ A λ3(ρ − iη)
−λ 1−λ 2 / 2 A λ 2

A λ3(1− ρ − iη) −A λ 2 1

"
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+O(λ 4 )

λ = 0.225 35±0.000 65
A= 0.811

−0.012
+0.022

ρ = 0.131
−0.013
+0.026 ≈ ρ

η = 0.345
−0.014
+0.013 ≈η

quark mixing 



21 mm <

][ 222
jiij mmm −≡Δ 2

31
2
32

2
21 , mmm ΔΔ<Δ

i.e. 1 and 2 are,  
by definition,  
the closest levels 

two possibilities: 
normal 
hierarchy inverted  

hierarchy 
1 
2 

3 

3 

2 
1 

€ 

UPMNS =

c12 c13 s12 c13 s13 e
iδ

−s12c23 − c12 s13 s23 e
− iδ c12c23 − s12 s13 s23 e

− iδ c13 s23
−c12 s13 c23 e

− iδ + s12 s23 −s12 s13 c23 e
−iδ − c12 s23 c13c23
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β

α

i

i

e
e
00

00
001

,...cos 1212 ϑ≡c
three mixing angles 

three phases (in the most general case) 

€ 

ϑ12 , ϑ13 , ϑ 23

€ 

δ
  

€ 

α , β
do not enter
   

€ 

Pff ' = P(ν f →ν f ' )oscillations can only test 6 combinations 

€ 

Δm21
2 ,Δm32

2 , € 

ϑ12 , ϑ13 , ϑ 23

€ 

δ

neutrino conventions 



Δmsol
2 ≡ Δm21

2 = (7.55
−0.17
+0.18 )×10−5  eV2

Δmatm
2 ≡

Δm31
2 = (2.462±0.033)×10−3  eV2 NO

Δm32
2 = −(2.453±0.047)×10−3  eV2 IO

%
&
'
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sign [Δmatm
2 ]    unknown  

sin2ϑ12 = 0.311−0.012
+0.013

sin2ϑ 23 = [0.451−0.020
+0.026 ]⊕ [0.580

−0.039
+0.024 ]

sin2ϑ13 = 0.0223−0.0010
+0.0011 unknown    ,, βαδ

[ordering 
(either normal or inverted 
hierarchy) not known] 

[CP violation in lepton  
sector not yet established] 

violation of individual lepton number 
implied by neutrino oscillations 

violation of total lepton number 
not yet established 

€ 

mν < 2.2 eV (95% CL) absolute neutrino mass 
scale is unknown 
[but well-constrained!] 

€ 

mi < 0.2 ÷1 eV
i
∑

(lab) 

(cosmo) 

Summary of unkowns 

δCP = (259−69
+76 )

[G.-Garcia, Maltoni, Salvado, Schwetz  1209.3023 
http://www.nu-fit.org] 

neutrinos 



comments 
masses span several order of magnitudes: 5-6 in the charged sector 
12 if we also include neutrinos 

leaving neutrino aside, the mass spread within each generation is much 
smaller 

useful book-keeping  
(masses renormalized at the common scale mZ) 

me
mτ

≈ λ5.4

md
mb

≈ λ 4.3

mu
mt

≈ λ7.4

mµ

mτ

≈ λ1.9

ms
mb

≈ λ 2.3

mc
mt

≈ λ3.6

Vud ≈1 Vus ≈ λ Vcb ≈ λ
2 Vub ≈ λ

4 ÷λ3

neutrino sector 

|U fi |≈O(1) except |Ue3 |≈O(λ)
Δm21

2

|Δm31
2 |
≈ λ 2.3



    questions 

why Ng=3? 

origin of the hierarchies in the charged fermion sector 

origin of mixing angles 

why neutrino masses are much smaller than charged fermion masses ? 

why lepton mixing is different from quark mixing? 

     

     

     

     

     
[see Guido Altarelli lectures] 



   spontaneously broken flavour symmetries [Froggatt-Nielsen 1979] 
tailored to explain small parameters 

example: 
QED  ξ =

me
Λ
<<1why  ? some cut-off scale 

e.g. MPl 

idea: easier to explain why ξ = 0 
the ξ = 0 limit corresponds to  
the U(1)A axial symmetry 

eL → eiαeL
eR → e−iαeR

#
$
%

&%
U (1)A

U(1)A approximate symmetry of the real world, broken by  ξ ≠ 0  

bonus: 
stability under radiative corrections δξ ∝ξ

since in the  
symmetry limit 
δξ=0  

ξ small is natural in the ‘t Hooft sense: 
 by sending ξ to zero the symmetry of the theory is enhanced 

     

     



   SM [the quark sector] 

mass ratios and mixing angles are small breaking terms of an approximate  
symmetry Gf 

simplest candidate Gf=U(1)FN 

1<<<<
t

c

t

u

m
m

m
m 1<<<<

b

s

b

d

m
m

m
m

1<≡<<<< λuscbub VVV

ψR → (ψR )
c = (ψ c )L

[change of notation 
such that all fermions are  
left-handed] 

introduce a new abelian  
symmetry U(1)FN 

q uc d c

1st gen p1 q1 r1
2nd gen p2 q2 r2
3rd gen p3 q3 r3

assume all charges p, q, r 
non-negative and ordered 
such that p1 ≥ p2 ≥ p3 , etc… 

take FN(Φ)=0 and consider the choice: p3 = q3 = 0 and (other charges) > 0 

FN 
charges 



only one term is allowed  
in the Yukawa lagrangian −tc Yu

33 Φ+ t
b
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(+ h.c.

mt =Yu
33 v
2

mu =mc =md =ms =mb = 0

mu =
0 0 0
0 0 0
0 0 Yu

33

!

"

#
#
#

$
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v
2

md =
0 0 0
0 0 0
0 0 0

!

"

#
#
#

$
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v
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zeros can be replaced by small quantities if U(1)FN is broken, 
for instance spontaneously through the VEV of a scalar field θ

such that FN(θ)=-1 

LY = −ui
cYu

ij Φ+qj
θ
Λ

$
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)

qi+p j

− di
cYd

ijΦ+qj
θ
Λ

$

%
&

'

(
)

ri+p j

+ h.c.



λ =
θ

Λ

when θ takes a VEV, the vanishing entries  
in mu and md are replaced by powers of the  
symmetry breaking parameter    

(yu )ij = λ
qi+pjYu

ij (yd )ij = λ
ri+pjYd

ij

if λ < 1, for instance  λ≈0.2, then we do not need hierarchical Yukawa  
couplings Yu,d . We can take Yu,d = O(1) and appropriate charges p, q, r 

at the LO in an expansion in powers of λ we have 
[omitting all O(1) coefficients Yu,d ] 

mu ≈ λ
q1+p1v md ≈ λ

r1+p1v

mc ≈ λ
q2+p2v ms ≈ λ

r2+p2v

mt ≈ λ
q3+p3v mb ≈ λ

r3+p3v

VCKM ≈

1 λ p1−p2 λ p1−p3

λ p1−p2 1 λ p2−p3

λ p1−p3 λ p2−p3 1

#

$
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%
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(

CKM angles only depend on pi 

[exercise] 



correct orders of magnitude of Vij  
reproduced by e.g. 
correct orders of magnitude of  
quark mass ratios reproduced by e.g. (q1, q2, q3) = (4,2,0)   

(p1, p2, p3) = (3,2,0)  

to match mb ≈ λ
r3v

we would need r3 ≈ 2, unless there are two Higgs 
doublets such that mu ≈ vu and md ≈ vd 
if vd/vu ≈ λ2 then we can take r3 = 0 

(r1, r2, r3) = (1+r3, r3, r3) 

md
mb

≈ λ 4
ms
mb

≈ λ 2

mu
mt

≈ λ7
mc
mt

≈ λ 4

Vud ≈1 Vus ≈ λ Vcb ≈ λ
2 Vub ≈ λ

3

results 

successful: 
compare with previous empirical 
bookeeping λ≈0.22 

     

€ 

Vud ≈Vcs ≈Vtb ≈O(1)
Vub ≈Vtd ≈Vus ×Vcb

[O.K. within 
 a factor of 2] 

one prediction 
independent from the  
specific charge choice 

[exercise] 



extension to the lepton sector 
l ec ν c

1st gen s1 t1 u1
2nd gen s2 t2 u2
3rd gen s3 t3 u3

FN 
charges 

assume all charges s, t, u 
non-negative and ordered 
such that s1 ≥ s2 ≥ s3 , etc… 

LY = −ei
cYd

ijΦ+l j
θ
Λ

$
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(
)

ti+s j

+
1
2
( Φ+li ) yν

TM −1yν*
+

,
-ij
( Φ+l j )

θ
Λ

$

%
&

'

(
)

si+s j

+ h.c.

no dependence on right-handed neutrino charges ui at low energies [for ui ≥ 0] 

at the LO in an expansion in powers of λ we have 
[omitting all O(1) coefficients; M0 is the typical scale in M] 

me ≈ λ
t1+s1v m1 ≈ λ

2s1v2 /M0

mµ ≈ λ
t2+s2v m2 ≈ λ

2s2v2 /M0

mτ ≈ λ
t3+s3v m3 ≈ λ

2s3v2 /M0

UPMNS ≈

1 λ s1−s2 λ s1−s3

λ s1−s2 1 λ s2−s3

λ s1−s3 λ s2−s3 1

#

$

%
%
%
%

&

'

(
(
(
(

PMNS angles and neutrino masses only depend on si 



(t1, t2, t3) = (4,2,0)   (s1, s2, s3) = (1+s3,s3,s3)  

me
mτ

≈ λ5
mµ

mτ

≈ λ 2

m1
m3

≈ λ
m2
m3

≈O(1)

ϑ 23 ≈O(1) ϑ13 ≈ λ ϑ12 ≈ λ

leads to 

 charge choice [example] 

Δmsol
2

Δmatm
2
≈O(1) ϑ12 ≈ λ

Δmsol
2

Δmatm
2
≈ λ 2 ϑ12 ≈1

if accidentally 
det(23) ≈ O(λ) in mν 

 
 
 

almost all mass ratios and mixing angles correctly reproduced 
at the level of orders of magnitudes 
quarks and leptons treated on the same footing 
weak point: large number of unknown O(1) parameters Yu,d,e , (M/M0)  
not constrained by the U(1)FN symmetry 
impossible to go beyond the order-of-magnitude level 
impossible to make a precision test of the idea 

[exercise] 



  embedding in [SUSY] SU(5) GUT 
q = (3,2,+1/ 6)
uc = (3,1,−2 / 3)
ec = (1,1,1)

"

#
$

%
$
~10 of SU (5) d c = (3,1,1/ 3)

l = (1,2,−1/ 2)

"
#
$
~ 5 of SU (5)

constraint p = q = t r = s

(q1, q2, q3) = (4,2,0)   

(p1, p2, p3) = (3,2,0)  (r1, r2, r3) = (1+r3, r3, r3) 

(t1, t2, t3) = (4,2,0)   

(s1, s2, s3) = (1+s3,s3,s3)  

we found 

not bad. If we take r3=s3 and p1=q1=t1=(3 or 4) we can reproduce 
the data up to another moderate tuning in the O(1) parameters 

[a “minimal” Yukawa coupling to Higgses in 5 and 5 of SU(5) 
would imply                                                   
the 1st two relations are wrong but remedies are well known] 

me =md mµ =ms mτ =mb

mc
mt

≈Vcb
2 mu

mt
≈Vub

2two new predictions close to the data 



  embedding in [SUSY] SO(10) GUT ? 

16 = (q,uc ,ec ,l,d c ,ν c ) a whole SM fermion generation plus a  
right-handed neutrino in a unique multiplet 

constraint p = q = t = r = s

it does not seem possible…. 



ϑ23 maximal ? 1 

2 δCP = -π/2 ? 

UPMNS close to TB (BM,…) ? 3

today most precise single determination of ϑ23 is from T2K (Pμμ) 

sin2ϑ 23 =
0.514

−0.056
+0.055 (NH)

0.511
−0.055
+0.055 (IH)

"
#
$

%$

well compatible with 
ϑ23 maximal   

[1403.1532]  

 ϑ23 cannot be made maximal by RGE evolution 
[barring tuning of b.c. and/or thresold corrections] 
when a flavour symmetry is present, ϑ23 is  determined entirely by  
breaking effects [no maximal ϑ23 from an exact symmetry]   
broken abelian symmetries do not work  
[not a theorem but no counterexamples] 

we are left with broken  
non-abelian symmetries 

  previous framework cannot explain special features 

ϑ23 maximal difficult to attribute to pure chance … 

discrete non-abelian symmetries? 
see G. Altarelli lectures 



GMFV =U (3)
5 [symmetry of kinetic terms  

with SM particle content] 

observed fermion masses and mixing angles (and the anomaly) break  
GMFV completely (up to the hypercharge and, possibly, B-L) 

for any realistic flavour symmetry GMFV ⊇Gf → H f

θ→θg = ρ(g)θ under Gf 

largest possible flavour  
symmetry Gf is obtained in  
the limit Y = 0 

 
 
 
 
 
 
 
          

 
 
 
 
 
 
 
          

y θ / Λ f( )

Yukawas promoted to 
dynamical variables 

observed Yukawa couplings 

y <θ > /Λ f( )

<θ> determined by minimizing  
an energy functional V(θ)  
invariant under Gf 

V θg( ) =V θ( )
<θ>, absolute minimum 
of V(θ), breaks Gf down to Hf 

huge number of possibilities: choice of Gf (global, local, continuous, discrete,…) 
choice of representations for scalars φ and fermions   

in most predictive models  
the breaking is spontaneous, 
by a set of <scalar fields> 

   generalizations 
[more on this later on…] 



Lecture II 
hierarchies without symmetries 



previous result 

can be rewritten as 

yu = FucYu Fq
yd = FdcYd Fq

€ 

FX =

λFN (X1 ) 0 0
0 λFN(X 2 ) 0
0 0 λFN (X 3 )

# 

$ 

% 
% 
% 
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( 
( 
( 

(X = q,uc ,d c )

€ 

Yu,d ≈O(1) FN(Xi) are U(1)FN charges 
undetermined by U(1)FN 

FN (q) = ( p1, p2 , p3)

FN (uc ) = (q1,q2 ,q3)

FN (d c ) = (r1,r2 ,r3)

can we obtain this from other frameworks ? 

(yu )ij = λ
qi+pjYu

ij (yd )ij = λ
ri+pjYd

ij



  hierarchies from Extra Dimensions 

original hope [Kaluza 1921, Klein 1926]: unification of all - gravity and  
electromagnetism - fundamental interactions 

in 5D the metric tensor contains the electromagnetic field 

gMN =
gµν + ... −ϕ Aν
−ϕ Aµ −ϕ

"

#

$
$
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if y=x4 is compactified on a circle of radius R the  
U(1) gauge invariance is part of the invariance 
under general coordinate transformations 

y→ y +ξ (x) Aµ (x)→ Aµ (x)+∂µξ (x)induces xM = (x, y)

the original KK idea  
[gauge group=isometry group of the compact space K]  
does not work since in the reduction from D>4 to 4D it is not possible to  
generate chiral fermions 

[see Antoniadis lectures] 



in 1985 Witten proved that in the dimensional reduction [a truncation of the  
full theory where only the zero modes are kept] of any KK theory where the  
gauge fields are embedded in the metric gMN there are no 4D chiral fermions 

ways out 
in string theory there are also ``external ‘ ‘ gauge fields, that cannot be 
identified with component of the metric  

in QFT with no gravity + some special ingredient 
[here a toy model in 5D] 

in a vector-like theory all fermions can be given gauge invariant mass terms 
 
in a chiral theory there are fermions that cannot be given gauge invariant 
mass terms 

  the chirality problem 

vector-like theories are automatically free from gauge anomalies. 
In chiral theories the requirement of gauge anomaly cancellation is, in general, 
a constraint on the representation content in the fermion sector 
the SM is an anomaly-free chiral gauge theory 

     

     



fermions are also  
zero modes of the  
Dirac operator (Γi Di) 
in the compact space 

the number of zero modes of (Γi Di) depends on the features of the compact 
space K, opening the possibility of predicting Ng 

the zero modes of (Γi Di) can be localized in specific region of the compact  
space. Since 4D Yukawa couplings are determined by the overlaps of the  
zero-mode profiles in K, their size can be explained in terms of geometrical  
properties 

     

     

   ED can be relevant to the flavour puzzle 

L = iΨΓMDMΨ = iΨ(ΓµDµ +Γ
iDi )Ψ (index i running over the EDs) 

if the ED are compactified on a space K with characteristic length R, 
with 1/R>> EW scale, in first approximation SM fermions can be thought 
as 4D zero modes 

ΓµDµΨ = 0 ΓiDiΨ = 0



 a toy model in 5D [D.E. Kaplan, Tait 0110126; Arkani-Hamed, Schmaltz 9902417] 

consider a 5D space-time where the 5th dimension is an orbifold S1/Z2 

0 ±πR 

-y 

y 

Z2 y↔−y 0 +πR | | 

this poses some restriction on the type of allowed fields φ(x,y) 

ϕ(x, y + 2πR) =ϕ(x, y) ϕ(x,−y) = ±ϕ(x, y)

ϕ(x,−y) = +ϕ(x, y) ϕ(x, y) = 1

(1+δn0 )πR
ϕ (n) (x)cos ny

Rn=0

+∞

∑

ϕ(x,−y) = −ϕ(x, y) ϕ(x, y) = 1

πR
ϕ (n) (x)sin ny

Rn=1

+∞

∑

mn
2 =

n
R
!

"
#

$

%
&

2

only even fields 
have zero modes 

free field expansion 



consider the SM with g=gs=0 and g’≠0 and focus on the charge lepton sector 

Ψ = e
Ec

"

#
$$

%

&
'' Ψ ' = E

e c
"

#
$$

%

&
''
Y (e,ec ) = (−1/ 2,+1)
Y (E,Ec ) = (−1,+1/ 2)

SM states 

additional states 

smallest spinor in 5D has 4 components  

4D chiral components 

Ψ L =
e
0

"

#
$$

%

&
'' ΨR =

0
Ec

"

#
$$

%

&
''

and similarly for  Ψ '

unwanted zero-modes eliminated by Z2 parity assignment 

Ψ L (x,−y) =Ψ L (x, y) ΨR(x,−y) = −ΨR(x, y)
Ψ 'L (x,−y) = −Ψ 'L (x, y) Ψ 'R(x,−y) =Ψ 'R(x, y)

(e,ec ) only have  
zero-modes 

the reduction from 5D to 4D is a chiral theory with the desired particle content  



L = iΨΓM∂MΨ + ...= iΨγ µ∂µΨ−Ψγ5∂yΨ + ...

equation for the zero mode 

∂ye = 0 e(x, y) = 1
2πR

e(x)+ ... zero mode of e 
is constant in y 

the profile of the zero mode along y can be modified by 

L = iΨΓM∂MΨ +mΨΨ + ...= iΨγ µ∂µΨ−Ψγ5∂yΨ +mΨΨ + ...

m =M ε(y) to respect the parity Z2 

∂ye+M ε(y)e = 0

the equation for the zero mode becomes 

e(x, y) = 2M
1− e−2MπR

e−M |y| e(x)+ ...

localization of fermion zero modes 

M > 0    zero mode localized at y=0 
M < 0    zero mode localized at y=πR 

[M constant] 

[exercise] 

Y=0 Y=πR 



Ψ j (x, y) =
2M j

1− e−2M jπR
e−M j |y| e j (x)

0

#

$

%
%

&

'

(
(
+ ...

Ψ 'i (x, y) =
2M 'i

1− e−2M 'i πR
e−M 'i |y|

0
ei
c (x)

#

$
%
%

&

'
(
(+ ...

adding mass terms Mj and M’i to our lagrangian, we get zero modes 

Y=0 Y=πR 

Higgs 
lives here  

after EW symmetry breaking 
the Yukawa interaction reads 

assuming 

LY = −
δ(y)
Λ

Ψ 'i Ye
ij Ψ j

v
2
+ ...

L(4) = LYy=0

2πR
∫ dy = − 1

Λ
Ψ 'i (x, 0)Ye

ij Ψ j (x, 0)
v
2
+...



Fi ∝
ξi

1− e−ξi
≈

ξi ξi >>1
1 ξi ≈ 0

eξi /2 ξi << −1

$

%
&&

'
&
&

ye = FecYe Fl
Flj =

2M j / Λ

1− e−2M jπR

F
ei
c =

2M 'i / Λ
1− e−2M 'i πRsame pattern as 

from U(1)FN 

after integrating over y 

no symmetry: 
now hierarchy comes 
from geometry 

ξi = 2MiπR

[exercise] 



€ 

ds2 =
R
z

" 

# 
$ 

% 

& 
' 
2

ηµν dx
µdxν − dz2( )

€ 

MPl
−1 ≈ R ≤ z ≤ R'≈ (TeV )−1

FXi =
2µi

1− e−2µiρ
ED µi ρ

Flat [0,πR] Mi / Λ ΛπR

Warped [R,R '] 1/ 2−MiR log R '/ R

Mi   = bulk mass of fermion Xi  
Yu,d = O(1) Yukawa couplings between bulk fermions  
         and a Higgs localized at one brane 

it works also in a warped space UV IR 

R’ R 

Yu,d≈O(1) 

same suppression factors 

compatible with SU(5) and SO(10) GUTs  

dictionary 

can be extended to neutrinos and to the quark sector  

[Kitano-Li Phys. Rev. D67 (2003) 116004] 
[F, Patel, Vicino 1407.2913] 



Lecture II (continue) 
the flavour problem 



Operator Bounds on Λ in TeV (cij = 1) Bounds on cij (Λ = 1 TeV) Observables

Re Im Re Im

(s̄LγµdL)2 9.8 × 102 1.6 × 104 9.0 × 10−7 3.4 × 10−9 ∆mK ; εK

(s̄R dL)(s̄LdR) 1.8 × 104 3.2 × 105 6.9 × 10−9 2.6 × 10−11 ∆mK ; εK

(c̄LγµuL)2 1.2 × 103 2.9 × 103 5.6 × 10−7 1.0 × 10−7 ∆mD; |q/p|, φD

(c̄R uL)(c̄LuR) 6.2 × 103 1.5 × 104 5.7 × 10−8 1.1 × 10−8 ∆mD; |q/p|, φD

(b̄LγµdL)2 5.1 × 102 9.3 × 102 3.3 × 10−6 1.0 × 10−6 ∆mBd
; SψKS

(b̄R dL)(b̄LdR) 1.9 × 103 3.6 × 103 5.6 × 10−7 1.7 × 10−7 ∆mBd
; SψKS

(b̄LγµsL)2 1.1 × 102 7.6 × 10−5 ∆mBs

(b̄R sL)(b̄LsR) 3.7 × 102 1.3 × 10−5 ∆mBs

TABLE I: Bounds on representative dimension-six ∆F = 2 operators. Bounds on Λ are quoted assuming an

effective coupling 1/Λ2, or, alternatively, the bounds on the respective cij ’s assuming Λ = 1 TeV. Observables

related to CPV are separated from the CP conserving ones with semicolons. In the Bs system we only quote

a bound on the modulo of the NP amplitude derived from ∆mBs
(see text). For the definition of the CPV

observables in the D system see Ref. [15].

central value for the CP-violating phase, contrary to the SM expectation. The errors are, however,

still large and the disagreement with the SM is at about the 2σ level. If the disagreement persists,

becoming statistically significant, this would not only signal the presence of physics beyond the

SM, but would also rule out a whole subclass of MFV models (see Sect. IV).

(iv) In D − D̄ mixing we cannot estimate the SM contribution from first principles; however,

to a good accuracy this is CP conserving. As a result, strong bounds on possible non-standard

CP-violating contributions can still be set. The resulting constraints are only second to those from

εK , and unlike in the case of εK are controlled by experimental statistics and could possibly be

significantly improved in the near future.

A more detailed list of the bounds derived from ∆F = 2 observables is shown in Table I,

where we quote the bounds for two representative sets of dimension-six operators: the left-left

operators (present also in the SM) and operators with a different chirality, which arise in specific

SM extensions. The bounds on the latter are stronger, especially in the kaon case, because of the

larger hadronic matrix elements. The constraints related to CPV correspond to maximal phases,

and are subject to the requirement that the NP contributions are smaller than 30% (60%) of the

total contributions [9] in the Bd (K) system. Since the experimental status of CP violation in the

Bs system is not yet settled we simply require that the new physics contributions are smaller than

9

[Isidori, Nir, Perez, 2010] 

New Physics: effective lagrangian approach 

€ 

L = LSM + ci
5

i
∑ Oi

5

Λ
+ ci

6 Oi
6

Λ2i
∑ + ...

Od
i gauge invariant operators 

      of dimension d 

here: constraints from flavour physics on |ΔF|=2 d=6 operators 

F 
L 

A
 V

 O
 U

 R
   

P 
R 

O
 B

 L
 E

 M
 



Minimal Flavour Violation 
either the scale of new physics is very large or flavour violation from  
New Physics is highly non-generic. Useful benchmark: a framework where 
the only source of flavour violation beyond the SM are the Yukawa coupling 

in the limit yu = yd = 0, the SM lagrangian is invariant under a U(3)3 flavour  
symmetry  

Gq = SU (3)uc × SU (3)dc × SU (3)q × ...

€ 

yu = (3,1, 3 ) yd = (1,3, 3)

q = (1,1,3) uc = (3,1,1)d c = (1, 3,1)

MFV assumes that new operators coming from New Physics do not involve any 
additional field/spurions and that they are still invariant under Gq 
[additional assumption: no additional sources of CPV other than those in yu,d]   

if the Yukawa couplings yu and yd are promoted to non-dynamical fields  
(spurions) transforming conveniently, the SM lagrangian remains formally  
invariant under the flavour group Gq 

LSM = ...− d
c yd (Φ

+q)−uc yu ( Φ
+q)+ h.c.



Example: leading operator with ΔF=2 in MFV 

€ 

q Liγ
µ (yu

+yu)ij qLj q Lkγµ (yu
+yu)kl qLl

choose, e.g. the basis where 

€ 

yd = yd
Diag yu = yu

DiagVCKM   

€ 

yu,d
Diag   diagonal

we can form the MFV invariant 

looking at the down quark sector and selecting i=k=d,s and j=l=b  
we get the MFV operator contributing to ΔB=2 
 

  

€ 

yu
Diag ≈ diag(0,0,yt )

where we used 

€ 

OMFV (ΔB = 2) =
c
ΛNP
2 yt

4 (VtbVtq
* )2 q Lγ

µbL q LγµbL (q = d,s)

same CKM suppression as in the SM. Now the bound on the scale of  
New Physics reads  

€ 

ΛNP > 5.9 TeV

€ 

ΛNP ↔
ΛNP

4π
↔
4π
g
ΛNP

[OMFV modify M12 for Bd and Bs in the same way: 
 i.e Δd and Δs are identical and real in MFV] 

€ 

Δ q ≡
M12

q

M12
q,SM

(q=d,s) 

[exercise] 



Operator Bound on Λ Observables

H†
(
DRY d†Y uY u†σµνQL

)
(eFµν) 6.1 TeV B → Xsγ, B → Xs#+#−

1
2 (QLY uY u†γµQL)2 5.9 TeV εK , ∆mBd

, ∆mBs

H†
D

(
DRY d†Y uY u†σµνT aQL

)
(gsGa

µν) 3.4 TeV B → Xsγ, B → Xs#+#−

(
QLY uY u†γµQL

)
(ERγµER) 2.7 TeV B → Xs#+#−, Bs → µ+µ−

i
(
QLY uY u†γµQL

)
H†

UDµHU 2.3 TeV B → Xs#+#−, Bs → µ+µ−

(
QLY uY u†γµQL

)
(LLγµLL) 1.7 TeV B → Xs#+#−, Bs → µ+µ−

(
QLY uY u†γµQL

)
(eDµFµν) 1.5 TeV B → Xs#+#−

TABLE II: Bounds on the scale of new physics (at 95% C.L.) for some representative ∆F = 1 [27] and

∆F = 2 [12] MFV operators (assuming effective coupling ±1/Λ2), and corresponding observables used to

set the bounds.

of new physics not far from the TeV region. These bounds are very similar to the bounds on

flavor-conserving operators derived by precision electroweak tests. This observation reinforces the

conclusion that a deeper study of rare decays is definitely needed in order to clarify the flavor

problem: the experimental precision on the clean FCNC observables required to obtain bounds

more stringent than those derived from precision electroweak tests (and possibly discover new

physics) is typically in the 1% − 10% range.

Although MFV seems to be a natural solution to the flavor problem, it should be stressed that

(i) this is not a theory of flavor (there is no explanation for the observed hierarchical structure of

the Yukawas), and (ii) we are still far from having proved the validity of this hypothesis from data

(in the effective theory language we can say that there is still room for sizable new sources of flavor

symmetry breaking beside the SM Yukawa couplings [28]). A proof of the MFV hypothesis can be

achieved only with a positive evidence of physics beyond the SM exhibiting the flavor-universality

pattern (same relative correction in s → d, b → d, and b → s transitions of the same type) predicted

by the MFV assumption. While this goal is quite difficult to be achieved, the MFV framework is

quite predictive and thus could easily be falsified: in Table III we list some clean MFV predictions

which could be falsified by future experiments. Violations of these bounds would not only imply

physics beyond the SM, but also a clear signal of new sources of flavor symmetry breaking beyond

the Yukawa couplings.

The idea that the CKM matrix rules the strength of FCNC transitions also beyond the SM

has become a very popular concept in recent literature and has been implemented and discussed

in several works. It is worth stressing that the CKM matrix represents only one part of the

problem: a key role in determining the structure of FCNCs is also played by quark masses, or by
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bound on the scale of New Physics in MFV 



  Lepton Flavour Violation and MFV 

extension of MFV to leptons is ambiguous:  
we can describe neutrino masses in several ways  

i e
Λ2 e

c σ µνFµν( )Z (Φ+l) + 1
Λ2 [4-fermion] + h.c.+...

BR(µ→ eγ ) < 5.7×10−13

Λ > 2×104 Zµe
#
$%

&
'(TeV

Z µe

Λ2
< 2×10−9 TeV−2

Z ij a matrix in flavour space 

ye = ye
Diagone neat prediction:  

in the limit of vanishing neutrino  
masses, the only available spurion is no LFV when mν = 0 

relevant operators 

LY = −e
c ye (Φ

+l) + h.c.+ ...



LFV in the limit of vanishing neutrino masses 
previous conclusion can be evaded in several models of fermion masses 
e.g. in partial compositeness where elementary fermions acquire a mass 
through their mixing with a composite sector   
a toy model 

LY = −e
cΔEE − L

cΔLl

− EcM E − LcM L
− EcY (Φ+L)− (Lc Φ+ ) Y E + h.c.

elementary-composite mixing ⇔
⇔
⇔

Dirac masses for composite fermions 

Yukawa coupling of composite fermions 

by integrating out the composite sector 

LY = −e
c ye (Φ

+l)+ h.c.

ye = (ΔEM
−1)Y (M −1ΔL )+ ...

higher-orders in (Φ/M)  

ec l 
ΔE ΔL 

Φ+ 
M-1 M-1 

Y 

ye = FEcY FLat the LO F
Ec
= ΔEM

−1 FL =M
−1ΔL

[exercise] 



so far neutrino are massless 
do we expect LFV in our toy model?  

one-loop contribution to lepton dipole operator from Higgs exchange 
(assuming M proportional to identity) 

ec l 
ΔE ΔL 

Φ+ 

M-1 M-1 
Y Y 

M-1 M-1 

Y ~ 

Z
Λ2

≈
1

16π 2M 2
(ΔEM

−1)Y Y Y (M −1ΔL )+ ...

ye = (ΔEM
−1)Y (M −1ΔL )+ ...

in general these combinations  
not diagonal in the same basis 

LFV not suppressed by neutrino masses and unrelated to (B-L) breaking scale 

rough estimate ΔE ≈ ΔL

Δ f

M
≈
mf

v
Y ≈ Y ≈O(1)

Zµe
Λ2

< 2×10−9 TeV−2 M >10TeV


