Four lepton signals of new physics at large colliders

Francisco del Águila M. Chala, J. Santiago and Y. Yamamoto

Corfu 2014, September 10

Outline: a phenomenological approach only

- Introduction: New Physics (NP) searches at the LHC benefit of smaller backgrounds when larger the number of leptons in the final state, *u*, *uu*, ... [Fermion Number is conserved, as it is Lepton Number (LN) to a high degree.]
- Popular Standard Model (SM) extensions can manifest in these modes: new gauge interactions (Z', W), supersymmetric extensions (*sleptons*), etc. ALTHOUGH no NP signal has been detected -neither in other channels, nor indirectly-, yet. This seems to indicate that any departure from the SM (NP) must be (have a) **small** (**cross-section**) and hence, can only show up in samples with small SM backgrounds, being *W* a prime example. For instance, *SUSY*.
- We want to address two questions: Will some room for discovery (or for more precise measurements) at the ILC be left after the LHC program is over ? Does any NP mediated by new particles with relatively large couplings and small masses have a small enough cross-section to have avoided detection at the LHC up to now ? -Obviously, you can never exclude that NP is around the corner, and it has not been observed because the couplings are too small or the masses too large.
- <u>Summary</u>

Standard Model Production Cross Section Measurements Status: July 2014

- We do not have any other physical motivation: hierarchy problem -fine tuning-, etc. This would come later.
- *ll, lll*, what is equivalent to W (ATLAS at Run I ~ 5×10^3 pb) or Z (ATLAS at Run I ~ 5×10^2 pb) production, or WW (~ 60 pb), WZ (~ 20 pb), ZZ (~ 7 pb) production
- An alternative is NP coupling only to leptons (*LEPTOPHILIC*) and maybe also to electro-weak (EW) bosons. We will discuss the lowest order realization of the first alternative -which provides another example of the **complementarity** of LHC and ILC- and an example of NP naturally/effectively **suppressed** and based on the only physics beyond the SM observed up to now, neutrino masses: *LN Violation*.

In preparation CAFPE-183/14, UG-FT-313/14

A resonance coupled to two SM lepton multiplets: Higgs quantum numbers -and we are not interested in- or neutral if LN conserving. But then it must be a vector boson to have a non-renormalizable coupling -otherwise, chirally suppressed-. [If LN ≠ 0, a doubly-charged scalar component.]

$$(g_{\rm L}^{\prime ij}\overline{L}_{{\rm L}i}\gamma^{\mu}L_{{\rm L}j} + g_{\rm R}^{\prime ij}\overline{l}_{{\rm R}i}\gamma^{\mu}l_{{\rm R}j})Z_{\mu}^{\prime}$$

• Even for leptophilic interactions, only the *couplings to muons and taus* can be large enough to be observable at the LHC (LFV, LEP).

Multiplet
$$L_{L\mu} = \begin{pmatrix} \nu_{L\mu} \\ \mu_L \end{pmatrix}$$
 μ_R $L_{L\tau} = \begin{pmatrix} \nu_{L\tau} \\ \tau_L \end{pmatrix}$ τ_R
anomaly free Z' Charge11-1-1R.Foot, X.G. He, H. Lew and R.R. Volkas, PR D50 (1994) 4571 [hep-ph/9401250]V

MADGRAPH (UFO model) parton level

http://cafpe.ugr.es/index.php/pages/other/software PYTHIA radiation DELPHES fast detector simulation FAST JET reconstruction MAD ANALYSIS

Background: Main irreducible:VV, scaled to SM estimates byATLAS, for instanceATLAS-CONF-2013-035 (charginos and neutralinos)
ATLAS-CONF-2013-070 (new phenomena)

Basic cuts	$p_{\mathrm{T}}^{\ell} > 10$ GeV, $\eta_{\ell} < 2.47, \Delta R(j\ell) > 0.4$
Number of muons	$N_{\mu}=3$ (4)
Z veto	$ m_{\mu^+\mu^-} - m_Z > 10 \text{ GeV}$
Mass window	$ m_{\mu^+\mu^-} - m_{Z'} < 0.1 m_{Z'}$
Missing $p_{\rm T}$	$p_{\mathrm{T}}^{miss} > 100 \text{ GeV} (NO)$

 $3\mu 1
u_{\mu}$ $2\mu 2
u_{\mu}$ No sensitivity

 $\begin{array}{l} \text{Depends on the Weinberg angle} \\ (\text{u and } \mu \text{ couplings}) \\ \sigma_{Z'}(pp \to 4\mu) \approx f_{4\mu}^{\gamma+Z}(M_{Z'})g_{\mathrm{L}}^{\prime 2}(2.5+\xi^2) \frac{g_{\mathrm{L}}^{\prime 2}(1+\xi^2)}{g_{\mathrm{L}}^{\prime 2}(2+\xi^2)+W^{i\neq\mu}} \\ \\ \sigma_{Z'}(pp \to 3\mu+p_{\mathrm{T}}^{\mathrm{miss}}) \approx f_{3\mu+p_{\mathrm{T}}^{\mathrm{miss}}}^{W}(M_{Z'})g_{\mathrm{L}}^{\prime 2} \frac{g_{\mathrm{L}}^{\prime 2}(1+\xi^2)}{g_{\mathrm{L}}^{\prime 2}(2+\xi^2)+W^{i\neq\mu}} \end{array}$

$$\frac{\sigma_{Z'}(pp \to 3\mu + p_{\rm T}^{\rm miss})}{\sigma_{Z'}(pp \to 4\mu)} \approx \frac{9.4}{2.5 + \xi^2}$$

$(g_{\rm L}^{\prime ij}\overline{L}_{{\rm L}i}\gamma^{\mu}L_{{\rm L}j} + g_{\rm R}^{\prime ij}\overline{l}_{{\rm R}i}\gamma^{\mu}l_{{\rm R}j})Z_{\mu}^{\prime}$

 $2\mu 2
u_{\mu}$ $2\mu 2 au_{
m h}$ $2\mu 2\nu_{\mu,\tau}$

$$(\text{depends on the value} of the Weinberg angle}) \sigma_{Z'}(e^+e^- \to 4\mu) \approx f_{4\mu}^{\prime\gamma+Z}(M_{Z'})g_{L}^{\prime 2}(1.15 + \xi^2) \frac{g_{L}^{\prime 2}(1 + \xi^2)}{g_{L}^{\prime 2}(2 + \xi^2) + W^{i \neq \mu}} \sigma_{Z' \to \bar{\mu}\mu}(e^+e^- \to 2\mu + p^{\text{miss}}) \approx f_{2\mu+p^{\text{miss}}}^{\prime\gamma+Z}(M_{Z'})(g_{L}^{\prime 2} + g_{L}^{\prime\tau2}) \frac{g_{L}^{\prime 2}(1 + \xi^2)}{g_{L}^{\prime 2}(2 + \xi^2) + W^{i \neq \mu}} \sigma_{Z' \to \bar{\nu}\nu}(e^+e^- \to 2\mu + p^{\text{miss}}) \approx f_{2\mu+p^{\text{miss}}}^{\prime\prime\gamma+Z}(M_{Z'})g_{L}^{\prime 2}(1.15 + \xi^2) \frac{g_{L}^{\prime 2} + g_{L}^{\prime\tau2}}{g_{L}^{\prime 2}(2 + \xi^2) + W^{i \neq \mu}}$$
rather similar

$$\sigma_{Z'}(e^+e^- \to 2\mu + 2\tau_{\rm h}) \approx f_{2\mu+2\tau_{\rm h}}^{\prime\gamma+Z}(M_{Z'})g_{\rm L}^{\prime\tau^2}(1.15 + \xi_{\tau}^2) \frac{g_{\rm L}^{\prime 2}(1+\xi^2)}{g_{\rm L}^{\prime 2}(2+\xi^2) + W^{i\neq\mu}}$$

An arbitrary set of Z' couplings will generate a ZZ' mixing δ , except for the muon minus tau combination

F. del Aguila, G.D. Coughlan and M. Quirós, NP B307 (1988) 633
B. Holdom PLB 259 (1991) 329
F. del Aguila, M. Masip and M. Pérez-Victoria, NP B456 (1995) 531

Although small (δ is squared in the cross-section $\sim \delta^2$) several orders of magnitude in precision give for relatively small values, too: Look in Drell-Yan for a relatively light Z' coupling only to muons with a coupling apparently quite small

$$(\mathcal{O}_{LL}^{(1)})_{\mu\mu\mu\mu} = \frac{1}{2} (\overline{L_{L\mu}} \gamma_{\alpha} L_{L\mu}) (\overline{L_{L\mu}} \gamma^{\alpha} L_{L\mu}) (\mathcal{O}_{LL}^{(1)})_{\mu\mu\tau\tau} = \frac{1}{2} (\overline{L_{L\mu}} \gamma_{\alpha} L_{L\mu}) (\overline{L_{L\tau}} \gamma^{\alpha} L_{L\tau}) (\mathcal{O}_{LL}^{(1)})_{\mu\tau\mu\tau} = \frac{1}{2} (\overline{L_{L\tau}} \gamma_{\alpha} L_{L\tau}) (\overline{L_{L\mu}} \gamma^{\alpha} L_{L\tau}) (\mathcal{O}_{LL}^{(1)})_{\tau\tau\tau\tau} = \frac{1}{2} (\overline{L_{L\tau}} \gamma_{\alpha} L_{L\tau}) (\overline{L_{L\tau}} \gamma^{\alpha} L_{L\tau}) (\mathcal{O}_{U})_{\mu\mu\mu\mu} = \frac{1}{2} (\overline{\mu_R} \gamma_{\alpha} \mu_R) (\overline{\mu_R} \gamma^{\alpha} \mu_R) (\mathcal{O}_{U})_{\mu\mu\mu\tau\tau} = \frac{1}{2} (\overline{\mu_R} \gamma_{\alpha} \mu_R) (\overline{\mu_R} \gamma^{\alpha} \tau_R) (\mathcal{O}_{U})_{\mu\tau\mu\tau} = \frac{1}{2} (\overline{\mu_R} \gamma_{\alpha} \tau_R) (\overline{\mu_R} \gamma^{\alpha} \tau_R) (\mathcal{O}_{U})_{\tau\tau\tau\tau} = \frac{1}{2} (\overline{\tau_R} \gamma_{\alpha} \tau_R) (\overline{\tau_R} \gamma^{\alpha} \tau_R) (\mathcal{O}_{Ll})_{\mu\mu\mu\mu} = (\overline{L_{L\mu}} \mu_R) (\overline{\mu_R} L_{L\mu}) (\mathcal{O}_{Ll})_{\mu\mu\tau\tau} = (\overline{L_{L\mu}} \tau_R) (\overline{\mu_R} L_{L\tau}) (\mathcal{O}_{Ll})_{\mu\tau\tau\mu} = (\overline{L_{L\mu}} \tau_R) (\overline{\tau_R} L_{L\mu}) (\mathcal{O}_{Ll})_{\tau\mu\mu\tau} = (\overline{L_{L\mu}} \tau_R) (\overline{\mu_R} L_{L\tau}) (\mathcal{O}_{Ll})_{\tau\mu\mu\tau} = (\overline{L_{L\mu}} \tau_R) (\overline{\mu_R} L_{L\tau}) (\mathcal{O}_{Ll})_{\tau\tau\tau\tau} = (\overline{L_{L\tau}} \tau_R) (\overline{\tau_R} L_{L\tau})$$

19 more with electrons

weakly coupled resonance interpretation $\Lambda \sim M_{Z'}$ but phenomenological limits can be derived (although less stringent because the events do not accumulate around the new particle mass)

Once we allow for other new physics contributing to four-lepton operators, the other (resonant) possibility is a particle (which can be reconstructed) coupling to the doubly-charged channel (|LN| = 2) F. del Aguila, M. Chala, A. Santamaría and J. Wudka, PLB 725 (2013) 310

miércoles 10 de septiembre de 2014

σ (pb)

When one allows for couplings to EW gauge bosons there are many other SM extensions with processes producing 4 leptons in the final state: mixing heavy neutrino (SUSY: sleptons, RPV, ...)

Fig. 2. Left: $pp \rightarrow W_R \rightarrow lN$ cross section at LHC. Right: N decay branching ratio to W_R^* and SM bosons (see the text).

Fig. 3. Left: Discovery limits for 30 fb⁻¹ as a function of M_{W_R} and m_N , assuming that N only decays into $l^{\pm}W_R^* \rightarrow ljj$, from Ref. [11]. Right: The same, assuming that N decays into SM bosons.

F. del Aguila, J.A. Aguilar-Saavedra and J. de Blas, Acta Phys. Polon. B 40 (2009) 2901 [arXiv:0910.2720 [hep-ph]]

miércoles 10 de septiembre de 2014

Summary

- The excellent agreement of the LHC data with the SM predictions indicates that any NP waiting for being discovered can not produce large departures from these predictions, implying that the new processes must have relatively small cross sections. What is always possible reducing the couplings or increasing the masses of the new spectrum.
- One may then wonder if there are SM additions involving new particles with small cross sections at the LHC but large couplings and low masses. A candidate is NP coupling only to leptons (*LEPTOPHILIC*), and maybe also to electro-weak (EW) bosons. The cross sections in this case are at most of few fb, with coupling order 1 and masses several hundreds of GeV.
- For the same token we can ask if such a NP can be better explored at the ILC. In this case processes involving taus can emerge from the background only at the ILC -which provides another example, besides the Higgs boson, of the **complementarity** of LHC and ILC- but the reach is only comparable to the LHC for new particles with low masses.

EISA European Institute for Sciences and Their Applications

Corfu Summer Institute

14th Hellenic School and Warkshops on Elementary Particle Physics and Gravity Corfu, Greece 2014

Thank for your attention

See-saw mechanisms (messengers of type I, II, III)

The three mechanisms must violate Lepton Number (LN) for they are assumed to generate Majorana masses. I and III involve fermions: singlets N (I) or triplets Σ (III), and II scalar triplets: Δ .

TeV signatures of see-saw messengers: Multilepton signals

miércoles 10 de septiembre de 2014

S.N. Gninenko, M.M. Kirsanov, N.V. Krasnikov and V.A. Matveev, Phys. Atom. Nucl. 70 (2007) 441

Fig. 2. Left: $pp \rightarrow W_R \rightarrow lN$ cross section at LHC. Right: N decay branching ratio to W_R^* and SM bosons (see the text).

Fig. 3. Left: Discovery limits for 30 fb⁻¹ as a function of M_{W_R} and m_N , assuming that N only decays into $l^{\pm}W_R^* \rightarrow ljj$, from Ref. [11]. Right: The same, assuming that N decays into SM bosons.

F. del Aguila, J.A. Aguilar-Saavedra and J. de Blas, Acta Phys. Polon. B 40 (2009) 2901 [arXiv:0910.2720 [hep-ph]] CMS and ATLAS have set stringent limits on doubly-charged scalars $H^{\pm\pm}$ decaying into two same-sign leptons ~ 400 GeV with only 5 fb⁻¹ at 7 TeV.

But they very much depend on the assumed di-leptonic branching ratios, in particular, into Ts, and especially into gauge bosons. For instance, if the new scalar muliplet has a neutral component getting a v.e.v., through the gauge coupling $g^2 < H^0 > H^{++}W^-W^-$. On the other hand, if both $H^{\pm\pm}$ decays are observed, pp $\rightarrow H^{++}H^{--} \rightarrow I^+I^+W^-W^-$, LN will have been proved to be violated at the LHC.

•The most popular Standard Model extension of this class is the see-saw of type II with a heavy scalar triplet (
$$\Delta^{++} \Delta^+ \Delta^0$$
) giving Majorana masses to neutrinos.
•Present limits on di-lepton decays can be easily extrapolated to LNV processes.
•But H++ can be a component of a generic scalar multiplet with $T^H \ge T_3^{H++} = 2 - \Upsilon^H$
•What can be determined sampling appropriately 4 and 3 isolated lepton signals because their production rate does depend on T and Y.

No t decays G. Aad et al. [ATLAS Collaboration], Eur. Phys. J. C 72 (2012) 2244 [arXiv:1210.5070 [hep-ex]]

- H⁺⁺⁺ K.S. Babu, S. Nandi and Z. Tavartkiladze, Phys. Rev. D 80, 071702 (2009) [arXiv:0905.2710 [hep-ph]]
- F⁺⁺ K.L. McDonald, arXiv:1310.0609 [hep-ph]

	6ℓ	5ℓ	$\ell^\pm\ell^\pm\ell^\pm\ell^\mp$	$\ell^+\ell^+\ell^-\ell^-$	$\ell^\pm\ell^\pm\ell^\pm$	$\ell^\pm\ell^\pm\ell^\mp$	$\ell^{\pm}\ell^{\pm}$	$\ell^+\ell^-$	ℓ^{\pm}
Σ (M)	0.6	10.6	17.4	55.7	10.2	110.3	177.8	178.7	232.4
Σ (D)	1.9	21.4	9.1	173.4	2.9	194.4	4.4	607.0	314.9
${ m SM}$ Bkg	0.0	0.9	2.5	14.3	1.9	15.9	19.5	548.3	1328

Table 2: Number of events with 30 fb⁻¹ for the fermion triplet signals with Majorana (M) and Dirac (D) neutrinos, and SM background in different final states.

F. del Aguila and J.A. Aguilar-Saavedra, Phys. Lett. B 672 (2009) 158 [arXiv:0809.2096 [hep-ph]]

LHC reach (30 fb⁻¹ and 14 TeV):

 Σ : 750 (700) GeV for Majorana (Dirac) coupling to e or μ

Δ BR's into leptons are a high energy window to neutrino masses and mixings, and may even allow for reconstructing the PMNS matrix.

They depend on the neutrino masses and mixings, being the main dependance on α_2 (in the plots $\beta_2 - \beta_3$ and β_2 , respectively). $r_{e\mu} \equiv \operatorname{Br}(\Delta^{\pm\pm} \to e^{\pm}e^{\pm}/\mu^{\pm}\mu^{\pm}/e^{\pm}\mu^{\pm})$

--- K.S. Babu, Phys. Lett. B 203 (1988) 132 --- F.A., A. Aparici, S. Bhattacharya, A. Santamaria and J. Wudka, JHEP 1205 (2012) 133 [arXiv:1111.6960 [hep-ph]] --- K.S. Babu, S. Nandi and Z. Tavartkiladze, Phys. Rev. D 80, 071702 (2009) [arXiv:0905.2710 [hep-ph]] Y: $1/2 \rightarrow 3/2 \Rightarrow$ NC: coupling \rightarrow doublet, CC: $\sqrt{3/2} \rightarrow \sqrt{2}$ Observed CL_s limit e and μ only Singlet Doublet · 0.1 Expected limit (pair-production) 10^{-1} Triplet Observed limit (pair-production) Quadruplet Quintuplet [qd] 10⁻² cg i 10⁻³ Pair-production cross section σ [pb] 0.01 5 fb⁻¹, 7 TeV 0.001 10^{-4} 0.0001 200250300 350400450500150200 300 400 500 600 700 Mass of $\Phi^{\pm\pm}$ [GeV] m_{H⁺⁺} [GeV] S. Chatrchyan et al. [CMS Collaboration] Eur. Phys. J. C 72 (2012) 2189 [arXiv:1207.2666 [hep-ex]] Observed CL_s limit Singlet Doublet ...

No t decays G. Aad et al. [ATLAS Collaboration], Eur. Phys. J. C 72 (2012) 2244 [arXiv:1210.5070 [hep-ex]] $\frac{1}{5}$ 0.01

S. Chatrchyan et al. [CMS Collaboration] Eur. Phys. J. C 72 (2012) 2189 [arXiv:1207.2666[hep-ex]]

miércoles 10 de septiembre de 2014

$$\mathcal{L}_{\gamma}^{\mathbf{H}^{\pm\pm}} = ieQ(\partial^{\mu}\mathbf{H}^{--})\mathbf{H}^{++}A_{\mu} + \text{h.c.}, \qquad \qquad \mathcal{L}_{W}^{\mathbf{H}^{\pm\pm}} = \frac{ig}{\sqrt{2}}\sqrt{(T - T_{3} + 1)(T + T_{3})}[\mathbf{H}^{++}(\partial^{\mu}\mathbf{H}^{-}) - (\partial^{\mu}\mathbf{H}^{++})\mathbf{H}^{-}]W_{\mu}^{-} + \text{h.c.}$$

$$\mathcal{L}_{Z}^{\mathbf{H}^{\pm\pm}} = \frac{ig}{c_{W}}(T_{3} - Qs_{W}^{2})(\partial^{\mu}\mathbf{H}^{--})\mathbf{H}^{++}Z_{\mu} + \text{h.c.}$$

γγ contribution T. Han, B. Mukhopadyaya, Z. Si and K. Wang, Phys. Rev. D76 (2007) 075013 [arXiv:0706.0441]

			(1, 0	, 0)	$(\frac{1}{2},$	$\frac{1}{2}, 0)$	$(\frac{1}{2})$	$, 0, \frac{1}{2})$	$(\frac{1}{3}, \frac{1}{3})$	$(\frac{1}{3})$	
Quintuple	$\int (l^{\pm}l^{\pm})l^{\mp}l^{\mp}p$	$\int (l^{\pm}l^{\pm})l^{\mp}l^{\mp}p_T^{miss}$		1307 ± 38		501 ± 25		362 ± 22		238 ± 19	
	$\left(l^{\pm}l^{\pm} \right) (l^{\mp}l^{\mp})$	$\int (l^{\pm}l^{\pm})(l^{\mp}l^{\mp})$		1046 ± 32		261 ± 16		261 ± 16		± 11	
Quadrup	$\int (l^{\pm}l^{\pm})l^{\mp}l^{\mp}p$	$\int (l^{\pm}l^{\pm})l^{\mp}l^{\mp}p_T^{miss}$		765 ± 30		293 ± 20		212 ± 18		139 ± 16	
Quadrup	$\left(l^{\pm}l^{\pm} \right) (l^{\mp}l^{\mp})$	$\left(l^{\pm}l^{\pm})(l^{\mp}l^{\mp}) \right)$		612 ± 24		153 ± 12		153 ± 12		68 ± 8	
Triplet	$\int (l^{\pm}l^{\pm})l^{\mp}l^{\mp}p$	$\int (l^{\pm}l^{\pm})l^{\mp}l^{\mp}p_T^{miss}$		383 ± 22		147 ± 16		106 ± 15		70 ± 13	
Inplet	$\left((l^{\pm}l^{\pm})(l^{\mp}l^{\mp}) \right)$	$\left((l^{\pm}l^{\pm})(l^{\mp}l^{\mp}) \right)$			77 ± 9		77 ± 9		34 :	± 6	
Doublet	$\int (l^{\pm}l^{\pm})l^{\mp}l^{\mp}p$	$\int (l^{\pm}l^{\pm})l^{\mp}l^{\mp}p_T^{miss}$		189 ± 17		73 ± 14		53 ± 13		= 12	
	$\left((l^{\pm}l^{\pm})(l^{\mp}l^{\mp}) \right)$	$\int (l^{\pm}l^{\pm})(l^{\mp}l^{\mp})$			38 ± 6		38 ± 6		17 :	± 4	
Singlet	$\int (l^{\pm}l^{\pm})l^{\mp}l^{\mp}p$	$\int (l^{\pm}l^{\pm})l^{\mp}l^{\mp}p_T^{miss}$		168 ± 17		64 ± 13		47 ± 13		= 12	
	$\left((l^{\pm}l^{\pm})(l^{\mp}l^{\mp}) \right)$		135 ± 12		34 ± 6		34 ± 6		15 ± 4		
	$\begin{array}{c c} (l^{\pm}l^{\pm})(l^{\mp}p_T^{miss}) & (1) \\ \hline \\ \text{Quintuplet} & 10 \\ \hline \\ \text{Quadruplet} & 59 \\ \hline \end{array}$		$(\frac{1}{2}, 0, 0)$		$\frac{1}{2}, 0) \left (\frac{1}{2}, 0) \right $		$(\frac{1}{2})$ $(\frac{1}{3}, \frac{1}{3})$		$,\frac{1}{3})$		
			11 ± 34 283		±21 261		± 20 130 =		± 17		
			92 ± 27 1		± 18	153 ± 17		76 ± 15			
	Triplet 2		96 ± 21	83	± 15	77 =	± 15 38 =		: 14		

 146 ± 17 41 ± 13 38 ± 14

 0 ± 12

 0 ± 12

 19 ± 13

 0 ± 12

 0 ± 12

Doublet

Singlet

$$\sigma_{lla} \equiv 2\sigma z_{ll} z_a, a \neq ll$$

$$\sigma_{llllp_T^{miss}} = \sigma_{llll} + 2\sum_{a=l\tau,\tau\tau,WW} \sigma z_{ll} z_a Br(a \to ll + p_T^{miss})$$
How well can we measure the total cross-section ?
$$\sigma = \left(\sigma_{llll} + \frac{1}{2}\sum_{a\neq ll} \sigma_{lla}\right)^2 / \sigma_{llll}$$

$$1 = \sum_{a=ll,l\tau,\tau\tau,WW} z_a, z_a \equiv Br(H \to a)$$

It is enough to group the sample with four charged leptons in three sub-sets:

$$(z_{ll}, z_{l\tau}, z_{\tau\tau} + z_{WW})$$

Summary

- LNV processes are rare (m_v~0) and require a physical enhancement (cancelling contributions to m_v or rather slow decays) and an efficient reconstruction to be observable at the LHC.
- Present limits on doubly-charged scalar masses mediating the seesaw of type II (triplet) and decaying into leptons only can be extended to more general multiplets and decays.
- If observed in the same-sign charged di-lepton channel, the type of multiplet can be determined using events with four and three isolated leptons, independently of the size of LNV.

F. del Aguila, M. Chala, A. Santamaría and J. Wudka, PLB 725 (2013) 310 F. del Aguila and M. Chala, JHEP 1403 (2014) 027

proton - (anti)proton cross sections