Higgs Physics in ATLAS

ummer School and Workshop on the Standard Model and Beyond Corfu, Greece 9/2014

Dimitris Fassouliotis University of Athens on behalf of the ATLAS Collaboration

European Union

MINISTRY OF EDUCATION & RELIGIOUS AFFAIRS M A N A G I N G A U T H O R I T Y

Contents

- Introduction
- ATLAS performance
- Search for SM Higgs The discovery of a new boson
- Brief description of search channels
- Study of the properties
- Signal strength
- Mass
- Couplings
- Spin
- Width
- Search for additional Higgs bosons

https://twiki.cern.ch/twiki/bin/view/AtlasPublic

Higgs physics in ATLAS: Introduction

Despite SM being extremely successful,

- Renormalisability
- Mass of particles

Mechanism of spontaneous electroweak symmetry breaking

Presence of Higgs Boson

Before the start of LHC

Direct searches at LEP and Tevatron $\rightarrow m_{\rm H}$ >114.4 GeV @ 95%CL

Global fit of all available electroweak data

Higgs physics in ATLAS: Introduction - Higgs production and decays at LHC

m _н 125 GeV @ 8TeV	mн	125	GeV	@	8TeV	
-------------------------------	----	-----	-----	---	------	--

Prod. mechanism	Cross section [pb]	Percentage [%]
ggF	19.3	87
VBF	1.6	7
WH	0.7	3
ZH	0.4	2
tt(bb)H	0.3	1

Some of the decays though, suffer from huge backgrounds (i.e. bbar) and cannot be searched for in the bare ggF production mode.

Higgs physics in ATLAS: Introduction LHC

Collisions at LHC

Higgs physics in ATLAS: Detector Requirements

pile-up

Additional interactions per bunch crossing apart from the primary

Higgs physics in ATLAS: The Detector

Higgs physics in ATLAS: Detector Performance

Excellent ATLAS performance in harsh conditions

95% of recorded events (90% of delivered events) available for analysis

- 4.57 fb-1 @ \sqrt{s} = 7 TeV (2011)
- 20.3 fb-1 @ √s = 8 TeV (2012)

Standard candles are used to calibrate the detector $9x10^{6} Z \rightarrow \mu^{+}\mu^{-}, 6x10^{6} J/\psi \rightarrow \mu^{+}\mu^{-}$ $6.6 \times 10^{6} \text{ Z} \rightarrow e^{+}e^{-}, 0.3 \times 10^{6} \text{ J}/\psi \rightarrow e^{+}e^{-}, 0.2 \times 10^{6} \text{ Z} \rightarrow ||^{+} \text{ I}^{-}\gamma$ used for detector calibration

Run I corresponds >600 times the luminosity of the plot

Higgs physics in ATLAS: Muon Reconstruction

ATLAS-CONF-2013-088

Higgs physics in ATLAS: Electron-Photon Reconstruction

12

Channels studied in the context of SM Higgs Boson search:

➢ Bosonic Decays:
H → ZZ(*) → 4I
H → $\gamma\gamma$ H → WW(*) → IvIvH → $Z\gamma$

► Fermionic Decays:
H → ττ (VBF, boosted)
VH→ Vbb, ttH →ttbb
H → μμ

Sensitive mostly to high masses: $H \rightarrow ZZ \rightarrow IIqq$ $H \rightarrow ZZ \rightarrow IIvv$ $H \rightarrow WW \rightarrow Ivqq$

Higgs physics in ATLAS: $H \rightarrow ZZ(*) \rightarrow 4I$ - Early days

Phys.Lett. B705 (2011) 435-451

Four Isolated leptons

Narrow resonance on top of small background Background Composition: ZZ(*) - Z+jets, ttbar

First data were used to:

•Estimate lepton reco/id efficiencies

•Define methods to control the reducible backgrounds

Estimate the efficiency of the selection criteriaInvestigate high sensitivity regions

Higgs physics in ATLAS: The discovery

Phys. Lett. B 716 (2012) 1-29

Trigger (eff 97-100%):

Single lepton 24 GeV Di-lepton 12-12 (13-13, 18-8) GeV e-mu 12-8 GeV Selection:

2 SFOS lepton pairs p_T> 20,15,10,7(6) GeV $50 < m_{12} < 106 \text{ GeV}, 12-50 < m_{34} < 115 \text{ GeV}$ Isolation - Originate from the primary vertex Efficiency: 39-27-20 % **Categorization:** lepton flavour

Excellent mass resolution

Data driven background estimation

GeV

Use of BDT:

 $\mathsf{ME}, \mathsf{P}_{\mathsf{T}}^{\mathsf{4l}}, \eta^{\mathsf{4l}}$

arXiv:1408.5191

Higgs physics in ATLAS: *H → ZZ(*) → 4I*

Mass $m_H = 124.51 \pm 0.52(stat) \pm 0.06(syst)$

Signal strength at combined mass

 $\mu = 1.44^{+0.34}_{-0.31}(stat)^{+0.21}_{-0.11}(syst)$

Signal Strength:

Observed signal rate / Expected SM rate

Higgs physics in ATLAS: H→ ZZ(*)→4I

$H\!\rightarrow\! Z\!Z(^*)\!\rightarrow\! 4\mu$

Higgs physics in ATLAS: $H \rightarrow \gamma \gamma$

arXiv:1408.7084

Reducible y-jet(~20%), jet-jet(~3%)

Trigger (eff >99%):

Diphoton 35-25 GeV Selection (eff 30-40%): Two photons $E_T/m_{vv} \ge 0.35, 0.25$ Isolation, Photon pointing Categorization:

Converted – Unconverted n region, E_{τ} region

Higgs physics in ATLAS: *H* → *γγ*

arXiv:1406.3827, arXiv:1408.7084

Higgs physics in ATLAS: H -> yy

 $H \rightarrow \gamma \gamma$

Higgs physics in ATLAS: $H \rightarrow WW \rightarrow IvIv$

Two isolated leptons + Missing E_T

 Full reconstruction not possible but excellent rate
 Background Composition:

WW, ttbar, Drell-Yan, W+jets

Trigger: As in H \rightarrow ZZ \rightarrow 4l Selection: 2 OS isolated leptons p_T> 25,15 GeV Large missing E_T (>20 GeV) criteria on $\Delta \phi_{\parallel}$, m_{||}, p_{T||} Categorization: Number of jets – lepton flavour – m_{||} Discriminant: m_T

Higgs physics in ATLAS: H→ WW → IvIv

m_T [GeV]

ATLAS-CONF-2013-030

Higgs physics in ATLAS: $H \rightarrow WW \rightarrow IvIv$

$H \rightarrow \mu v e v$

Higgs physics in ATLAS: $H \rightarrow Z(II) \gamma$

Two isolated leptons + photon

 Narrow resonance on top of a continuous background
 Background Composition: Z+y, Z+jets

Selection:

Well reconstructed Z candidates (±10 GeV from the Z pole) accompanied by a photon ($E_T > 15$ GeV)

Higgs physics in ATLAS: V*H*→ Vbb

ATLAS-CONF-2013-079

2 b-jets + ll or lv or vv

➢ Broad peak (σ≈10%) Background Composition:

W+jets, Z+jets, top, diboson

Trigger:

Single lepton, di-lepton, missing E_T Selection:

leptons (p_T >25 GeV) 0, 1 or 2 and E_T^{miss} requirement accordingly

Isolation

Two jets b-tagged, p_T> 45,20 GeV

Categorization:

According to V decay, # of jets, p_T^V

Analysis results on VZ(Z→bb) µ_{vz}=0.9±0.2

Signal strength $\mu = 0.2 \pm 0.5(stat) \pm 0.4(syst)$

110 115 120 125 130 135 140

145

150

Higgs physics in ATLAS: ttH→ ttbb

ATLAS-CONF-2014-011

28

> Two isolated taus, two jets

Full reconstruction not possible
 Background Composition:

 $Z \rightarrow \tau \tau$, $Z \rightarrow II$, W+jets, top, diboson

Trigger:

Single lepton, di-lepton, tau-had Selection:

 $p_T^{e}>15 \text{ GeV}, p_T^{\mu}>10 \text{ GeV}$ BDT tau, $p_T^{\tau}>20 \text{ GeV}$ (eff 55-60%) $E_{mis}^{\tau}>20 - 40 \text{ GeV}, p_T^{jet}>30 \text{ GeV}$ Categorization (BDT for each):

τ decay (II,Ih,hh) jet config (VBF, Boosted) $Z \rightarrow \tau \tau$ τ-embedded $Z \rightarrow \mu \mu$

 $H \rightarrow \tau^+ \tau^-$

Two isolated muons

Narrow resonance on top of DY **Background Composition:**

Mainly DY

Trigger:

Single muon 24 GeV Di-muon 13-13, 18-8 GeV Selection: 2 isolated muons $p_T>25$ (15) GeV **Categorization:**

 $p_{\tau}^{\mu\mu}$, η^{μ} , VBF

BR(H→µµ)<1.5x10⁻³ @ 95% CL

Higgs physics in ATLAS: Higgs Mass

arXiv:1406.3827

Several Improvements:

- analyses
- muon momentum scale (uncert)
- electron photon energy scale (improved calibration and uncert) arXiv:1407.5063

 $m_H = 125.36 \pm 0.37(stat) \pm 0.18(syst)$

To be updated soon...

$$\mu = 1.30 \pm 0.12(stat)_{-0.11}^{+0.14}(syst)$$

$$\mu^{bb\tau\tau} = 1.09 \pm 0.24(stat)^{+0.27}_{-0.21}(syst)$$

 3.7σ evidence for fermionic couplings

Higgs physics in ATLAS: Higgs Couplings

ATLAS-CONF-2014-009, Phys. Lett. B 734 (2014),406

To be updated soon...

 $\frac{\mu_{VBF}}{\mu_{\alpha\alpha}} = 1.4^{+0.5}_{-0.4} (stat)^{+0.4}_{-0.3} (syst)$

 4.1σ evidence for VBF production

ATLAS-CONF-2014-043

Channel	Discriminants
H→ZZ*→4I	BDT: five production/decay angles
Н→үү	cosθ* the polar angle between γγ at their rest frame
H→WW*→lvlv	BDT: m _{ll} , p _T ^{ll} , Δφ _{ll} , m _T

Data favors the SM JP=0+ > 0⁻ is excluded at 97.8% CL $(H \rightarrow ZZ(*) \rightarrow 4I)$ > 1⁺ and 1⁻ are excluded at 99.7% CL $(H \rightarrow ZZ(*) \rightarrow 4I$ and $H \rightarrow WW(*) \rightarrow |v|v|$) > 2⁺_m is excluded at >99.9% CL $(H \rightarrow ZZ(*) \rightarrow 4I, H \rightarrow \gamma\gamma, H \rightarrow WW(*) \rightarrow |v|v)$

Higgs physics in ATLAS: Higgs Width

- > Sizeable negative interference $gg \rightarrow H \rightarrow ZZ$ and $gg \rightarrow ZZ$
- > Interference proportional $\sqrt{\mu_{off-shell}}$
- > ZZ \rightarrow 4l (cut-based and MVA) and ZZ \rightarrow 2l2v (cut-based) channels used

Higgs physics in ATLAS: $ZH(H \rightarrow Invisible)$

Phys.Rev.Lett. 112, 201802 (2014)

> Z→II + Missing E_T

Background Composition: ZZ, WZ, WW

Trigger:

Single lepton, di-lepton Selection:

2 SFOS leptons (p_T >20 GeV) Isolation, 76< m_{II} <106 GeV $\Delta \phi_{II}$, $\Delta \phi(II, E_{miss}^T)$ Discriminant: E_T^{miss}

 Higgs physics in ATLAS: Search for other Higgs-like bosons
 Phys.Lett. B 717 (2012) 29-48 , arXiv:1407.6583, ATLAS-CONF-2013-012, ATLAS-CONF-2013-067

Higgs physics in ATLAS: Search for other Higgs-like bosons Phys.Lett. B 717 (2012) 29-48, arXiv:1407.6583, ATLAS-CONF-2013-012, ATLAS-CONF-2013-067

42

Higgs physics in ATLAS: MSSM Higgs bosons

Phys.Rev. D 89, 032002 (2014), ATLAS-CONF-2013-090 ATLAS-CONF-2013-090, Eur. Phys. J. C, 73 6 (2013) 2465

$t^{b}(b)H^{+} \rightarrow [qq^{b}b^{b}](b)[\tau^{+}v_{\tau}]$

$tt^b \rightarrow H^+ bW^- b^b \rightarrow [\tau^+ v_\tau b][qq^b b^b]$

Summary

Run-1

- Discovery of a new Higgs-like boson
- > All studies up to now show consistency with the SM Higgs boson
- ATLAS Run-1 Higgs studies (a huge amount of effort) being finalized (concerning both SM and BSM results)

Run-2

- with ~2.5 times higher cross sections
- > Will give the opportunity for more precise measurements
- Study more rare channels
- … and may offer a new discovery

This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: THALES. Investing in knowledge society through the European Social Fund. 9/1/2014 44

Back up slides

Stanual				∫≁ ut [fb ⁻¹]	Reference
pp total	$\sigma = 95.35 \pm 0.38 \pm 1.3 \text{ hackb (data)} \\ \text{COMPETE RRpl2u 2002 (theory)}$	Q	4	8×10 ⁻⁸	ATLAS-CONF-2014-040
Jets R=0.4	$\sigma = 563.9 \pm 1.5 + 55.4 - 51.4 ~\rm{hb}~(data) \\ \rm NLOJet++,~CT10~(theory)$	0.1 < p _T < 2 TeV	•	4.5	ATLAS-STDM-2013-11
Dijets R=0.4 y <3.0, y*<3.0	$\sigma=86.87\pm0.26+7.26+7.2$ hb (data) NLOJet++, CT10 (theory)	0.3 < m _{jj} < 5 TeV		4.5	JHEP 05, 059 (2014)
W total	$\sigma = 94.51 \pm 0.194 \pm 3.726 ~\rm{hb}~(data) \\ \rm{FEWZ+HERA1.5~NNLO}~(theory)$	4	•	0.035	PRD 85, 072004 (2012)
Z total	$\sigma = 27.94 \pm 0.178 \pm 1.096 ~\rm{nb}~(data) \\ \rm{FEWZ+HERA1.5~NNLO}~(theory)$	\$	4	0.035	PRD 85, 072004 (2012)
+Ŧ	$\sigma = 182.9 \pm 3.1 \pm 6.4 \text{ pb (data)}$ top++ NNLO+NNLL (theory)	¢	•	4.6	arXiv:1406.5375 [hep-ex]
LL total	$\sigma = 242.4 \pm 1.7 \pm 10.2 \text{ pb (data)}$ top++ NNLO+NNLL (theory)	4	4	20.3	arXiv:1406.5375 [hep-ex]
t	$\sigma = 68.0 \pm 2.0 \pm 8.0$ pb (data) NLO+NLL (theory)	<u>م</u>	0	4.6	arXiv:1406.7844 [hep-ex]
total	$\sigma = 82.6 \pm 1.2 \pm 12.0 \text{ pb (data)}$ NLO+NLL (theory)	4	4	20.3	ATLAS-CONF-2014-007
	$\sigma = 72.0 \pm 9.0 \pm 19.8 \text{ pb} \text{ (data)} \\ \text{MCFM (theory)}$	ATLAS Preliminary	•	4.7	ATLAS-CONF-2012-157
۱۸/۱۸/	$\sigma = 51.9 \pm 2.0 \pm 4.4 \text{ pb (data)}$		0	4.6	PRD 87, 112001 (2013)
total	$\sigma = 71.4 \pm 1.2 + 5.5 - 4.9 \text{ pb} (\text{data})$ MCFM (theory)	Run 1 $\sqrt{s} = 7, 8$ lev		20.3	ATLAS-CONF-2014-033
H.	$\sigma = 19.0 + 6.2 - 6.0 + 2.6 - 1.9 \text{ pb} (\text{data})$ LHC-HXSWG (theory)		0	4.8	ATL-PHYS-PUB-2014-00
∎∎ggF total	$\sigma = 25.4 + 3.6 - 3.5 + 2.9 - 2.3 \text{ pb} (\text{data})$ LHC-HXSWG (theory)			20.3	ATL-PHYS-PUB-2014-00
\٨/+	$\sigma = 16.8 \pm 2.9 \pm 3.9 \text{ pb (data)}$			2.0	PLB 716, 142-159 (2012
total	$\sigma = 27.2 \pm 2.8 \pm 5.4 \text{ pb (data)}$	Theory		20.3	ATLAS-CONF-2013-100
	$\sigma = 19.0 + 1.4 - 1.3 \pm 1.0$ pb (data)	Ò Data		4.6	EPJC 72, 2173 (2012)
total	$\sigma = 20.3 + 0.8 - 0.7 + 1.4 - 1.3 \text{ pb} (\text{data})$	stat		13.0	ATLAS-CONF-2013-021
77	$\sigma = 6.7 \pm 0.7 + 0.5 - 0.4 \text{ pb} (\text{data})$	ō		4.6	JHEP 03, 128 (2013)
total	$\sigma = 7.1 + 0.5 - 0.4 \pm 0.4 \text{ pb (data)}$			20.3	ATLAS-CONF-2013-020
H VBF	$\sigma = 2.6 \pm 0.6 \pm 0.5 - 0.4 \text{ pb} \text{ (data)} \\ \text{LHC-HXSWG (theory)} $	Theory	▲	20.3	ATL-PHYS-PUB-2014-00
tītW total	$\sigma = 300.0 + 120.0 - 100.0 + 70.0 - 40.0 \text{ fb (data)} \\ \text{MCFM (theory)} \\ \hline \label{eq:stars}$	Data stat		20.3	ATLAS-CONF-2014-038
ttZ total	$\sigma = 150.0 + 55.0 - 50.0 \pm 21.0 \text{ (b (data)}$ HELAC-NLO (theory)			20.3	ATLAS-CONF-2014-038
	$10^{-5} \ 10^{-4} \ 10^{-3} \ 10^{-2} \ 10^{-1} \ 1$	$10^1 \ 10^2 \ 10^3 \ 10^4 \ 10^5 \ 10^6 \ 10^1$	0.5 1 1.5 2		
		[].			
		σ [dd] σ	uala/ineory		

Higgs physics in ATLAS: Electron Reconstruction

ATLAS-CONF-2014-032

47

Higgs physics in ATLAS: Photon Reconstruction

ATLAS-CONF-2012-123

Fig. 1 Schematic overview of the procedure used to calibrate the energy response of electrons and photons in ATLAS.

Higgs physics in ATLAS: Electron-Photon Reconstruction

arXiv:1407.5063

Higgs physics in ATLAS: H→4I

FSR recovery in $Z \rightarrow II$ events

arXiv:1408.5191

arXiv:1408.5191

-4e

-4μ

- Combined

--- No syst. unc

2σ

1σ

4

3.5

m_H=125 GeV

3

Higgs physics in ATLAS: H→ZZ(*)→41

0^L

-0.6

-0.2

0.2

0.6

BDT_{VBF} output

-0.6

-0.2

0.2

0.6

BDT_{77*} output

0

Higgs physics in ATLAS: *H → ZZ(*) → 4I*

$H \rightarrow ZZ(*) \rightarrow 4e$

Higgs physics in ATLAS: H -> YY

arXiv:1408.7084, arXiv:1406.3827

55

Samples of distributions at pre-selection level

Higgs physics in ATLAS: V*H→ Vbb*

ATLAS-CONF-2013-079

Object	0-lepton 1-lepton 2-lepton						
Lantons	0 loose leptons	1 tight lepton	1 medium lepton				
Leptons		+ 0 loose leptons	+ 1 loose lepton				
		2 b-tags					
Jets	$p_{\rm T}^{\rm jet_1} > 45 { m ~GeV}$						
0000	$p_{\mathrm{T}}^{\mathrm{jet}_2} > 20~\mathrm{GeV}$						
	$+ \le 1$ extra jets						
Missing F_{π}	$E_{\rm T}^{\rm miss} > 120 { m ~GeV}$	$E_{\rm T}^{\rm miss} > 25 { m Gev}$	$E_{\rm T}^{\rm miss} < 60 { m ~GeV}$				
Wilsong L	$p_{\rm T}^{\rm miss} > 30 { m ~GeV}$						
	$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, p_{\mathrm{T}}^{\mathrm{miss}}) < \pi/2$						
	$\min[\Delta \phi(E_{T}^{\text{miss}}, \text{jet})] > 1.5$						
	$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, b\bar{b}) > 2.8$						
Vector Boson	-	$m_{\rm T}^W < 120 { m GeV}$	$83 < m_{\ell\ell} < 99 \text{ GeV}$				

Table 1: The basic event selection for the three channels.

Samples of m_{bb} distributions for the different categories

Two isolated taus

Full reconstruction not possible Background Composition:

 $Z \rightarrow \tau \tau$, $Z \rightarrow II$, W+jets, top, diboson

Samples of kinematic distributions for different categories

Trigger	p _T threshold(s) [GeV]	$\tau_{\rm lep}\tau_{\rm lep}$	$\tau_{\mathrm{lep}} \tau_{\mathrm{had}}$	$ au_{ ext{had}} au_{ ext{had}}$
Electron	24	•	•	
Muon	24		•	
Di-electron	12 ; 12	•		
Di-muon	18;8	•		
Electron + Muon	12;8	•		
Electron + τ_{had}	18 ; 20		•	
Muon + τ_{had}	15 ; 20		•	
$Di-\tau_{had}$	29;20			•

Category	Selection	$\tau_{\rm lep} \tau_{\rm lep}$	$\tau_{ m lep} \tau_{ m had}$	$ au_{ ext{had}} au_{ ext{had}}$
	$p_{\mathrm{T}}(j_1)$ (GeV)	40	50	50
	$p_{\mathrm{T}}(j_2)$ (GeV)	30	30	30/35
VBF	$\Delta \eta(j_1, j_2)$	2.2	3.0	2.0
	b -jet veto for jet $p_{\rm T}$ (GeV)	25	30	-
	p_{T}^{H} (GeV)	-	-	40
	$p_{\rm T}(j_1)$ (GeV)	40	-	-
Boosted	$p_{\rm T}^H$ (GeV)	100	100	100
	b -jet veto for jet $p_{\rm T}$ (GeV)	25	30	-

Variable		VBF		Boosted		
variable	$\tau_{\rm lep} \tau_{\rm lep}$	$ au_{ m lep} au_{ m had}$	$\tau_{\rm had}\tau_{\rm had}$	$\tau_{\rm lep} \tau_{\rm lep}$	$\tau_{\mathrm{lep}} \tau_{\mathrm{had}}$	$ au_{ m had} au_{ m had}$
$m_{\tau\tau}^{MMC}$	•	٠	٠	•	٠	٠
$\Delta R(\tau, \tau)$	•	٠	٠		٠	•
$\Delta \eta(j_1, j_2)$	•	•	٠			
m_{j_1, j_2}	•	•	٠			
$\eta_{j_1} \times \eta_{j_2}$		٠	٠			
$p_{\mathrm{T}}^{\mathrm{Total}}$		•	٠			
sum $p_{\rm T}$					٠	•
$p_{\mathrm{T}}(\tau_1)/p_{\mathrm{T}}(\tau_2)$					٠	•
$E_{\rm T}^{\rm miss}\phi$ centrality		٠	٠	•	٠	•
$x_{\tau 1}$ and $x_{\tau 2}$						٠
$m_{\tau\tau,j_1}$				•		
m_{ℓ_1,ℓ_2}				•		
$\Delta \phi_{\ell_1,\ell_2}$				•		
sphericity				•		
$p_{\mathrm{T}}^{\ell_1}$				•		
$p_{\mathrm{T}}^{j_1}$				•		
$E_{\mathrm{T}}^{\mathrm{miss}}/p_{\mathrm{T}}^{\ell_2}$				•		
m _T		٠			٠	
$\min(\Delta \eta_{\ell_1 \ell_2, \text{jets}})$	•					
$j_3 \eta$ centrality	•					
$\ell_1 \times \ell_2 \eta$ centrality	•					
$\ell \eta$ centrality		•				
$\tau_{1,2} \eta$ centrality			•			

Higgs physics in ATLAS: tt*H→ ttbb*

Variable	Definition
Centrality	Sum of the $p_{\rm T}$ divided by sum of the <i>E</i> for all jets and the lepton
H1	Second Fox-Wolfram moment computed using all jets and the lepton
$m_{ m bb}^{ m min\ \Delta R}$	Mass of the combination of two <i>b</i> -tagged jets with the smallest ΔR
$N_{40}^{ m jet}$	Number of jets with $p_{\rm T} \ge 40 \text{ GeV}$
$\Delta R_{ m bb}^{ m avg}$	Average ΔR for all <i>b</i> -tagged jet pairs
$m_{ii}^{\max p_T}$	Mass of the combination of any two jets with the largest vector sum $p_{\rm T}$
Aplanarity _{b-jet}	1.5 λ_2 , where λ_2 is the second eigenvalue of the momentum tensor built with only <i>b</i> -tagged jets
$H_{ m T}^{ m had}$	Scalar sum of jet $p_{\rm T}$
$m_{ m ij}^{ m min \ \Delta R}$	Mass of the combination of any two jets with the smallest ΔR
$\Delta R_{\rm lep-bb}^{\rm min \ \Delta R}$	ΔR between the lepton and the combination of two <i>b</i> -tagged jets with the smallest ΔR
$m_{ m bj}^{ m min\ }\Delta m R$	Mass of the combination of a <i>b</i> -tagged jet and any jet with the smallest ΔR
$m_{\rm bj}^{\rm max \ p_{\rm T}}$	Mass of the combination of a <i>b</i> -tagged jet and any jet with the largest vector sum $p_{\rm T}$
$m_{\rm uu}^{\rm min \ \Delta R}$	Mass of the combination of two untagged jets with the smallest ΔR
$p_{\mathrm{T}}^{\mathrm{jet5}}$	Fifth leading jet $p_{\rm T}$
$\Delta R_{ m bb}^{ m max \ p_T}$	ΔR between two <i>b</i> -tagged jets with the largest vector sum $p_{\rm T}$
$m_{ m bb}^{ m max m}$	Mass of the combination of two b-tagged jets with the largest invariant mass
$p_{T,\mathrm{uu}}^{\mathrm{min}\;\Delta\mathrm{R}}$	Scalar sum of the $p_{\rm T}$'s of the pair of untagged jets with the smallest ΔR
<i>m</i> _{jjj}	Mass of the jet triplet with the largest vector sum $p_{\rm T}$
$\Delta R_{\rm uu}^{\rm min \ \Delta R}$	Minimum ΔR between two untagged jets
$m_{ m bb}^{ m max \ p_T}$	Mass of the combination of two <i>b</i> -tagged jets with the largest vector sum $p_{\rm T}$

Table 4: List of variables used in the NN in the single lepton channel in at least one region. From the list, 10 variables are chosen in each region. 9/1/2014

. .

Systematic	Uncertainty on m_H [MeV]
LAr syst on material before presampler (barrel)	70
LAr syst on material after presampler (barrel)	20
LAr cell non-linearity (layer 2)	60
LAr cell non-linearity (layer 1)	30
LAr layer calibration (barrel)	50
Lateral shower shape (conv)	50
Lateral shower shape (unconv)	40
Presampler energy scale (barrel)	20
ID material model ($ \eta < 1.1$)	50
$H \rightarrow \gamma \gamma$ background model (unconv rest low p_{Tt})	40
$Z \rightarrow ee$ calibration	50
Primary vertex effect on mass scale	20
Muon momentum scale	10
Remaining systematic uncertainties	70
Total	180

$$\kappa_{\rm V} = 1.15 \pm 0.08$$

 $\kappa_{\rm F} = 0.99^{+0.17}_{-0.15}$

 $\lambda_{\rm FV} = 0.86^{+0.14}_{-0.12}$ $\kappa_{\rm VV} = 1.28^{+0.16}_{-0.15}$

Higgs physics in ATLAS: Higgs Couplings- interpretation

	Model	Coupling Parameter	Description	Measurement
	MCIINA	μ_h	Overall signal strength	1.30+0.18
1	EW singlet	$\kappa = \sqrt{\mu h}$	Universal coupling	$1.14^{+0.09}_{-0.08}$
A MCHM5,		ĸv	Vector boson (W, Z) coupling	1.15 ± 0.08
2	2HDM Type I	ĸ _F	Fermion $(t, b, \tau,)$ coupling	0.99 ^{+0.17} -0.15
		$\lambda_{Vu} = \kappa_V / \kappa_u$	Ratio of vector boson & up-type fermion $(t, c,)$ couplings	$1.21^{+0.24}_{-0.26}$
3	2HDM Type II,	$\kappa_{uu} = \kappa_u^2/\kappa_h$	Ratio of squared up-type fermion coupling & total width scale factor	$0.86^{+0.41}_{-0.21}$
MSSM		$\lambda_{du} = \kappa_d / \kappa_u$	Ratio of down-type fermion $(b, \tau,)$ & up-type fermion couplings	[−1.24, −0.81] ∪ [0.78, 1.15]
		$\lambda_{Vq} = \kappa_V/\kappa_q$	Ratio of vector boson & quark (t, b,) couplings	$1.27^{+0.23}_{-0.20}$
4	2HDM Type III	$\kappa_{qq} = \kappa_q^2/\kappa_h$	Ratio of squared quark coupling & total width scale factor	$0.82^{+0.23}_{-0.19}$
		$\lambda_{lq} = \kappa_l / \kappa_q$	Ratio of lepton (τ, μ, e) & quark couplings	[−1.48, −0.99] ∪ [0.99, 1.50]
		ĸZ	Z boson coupling	0.95+0.24
	Mass scaling	ĸw	W boson coupling	$0.68^{+0.30}_{-0.14}$
5	parametrization	ĸ	t quark coupling	$[-0.80, -0.50] \cup [0.61, 0.80]$
I I		ĸb	b quark coupling	[-0.7, 0.7]
		KT	τ lepton coupling	$[-1.15, -0.67] \cup [0.67, 1.14]$
	Higgs portal	ĸg	Gluon effective coupling	$1.00^{+0.23}_{-0.16}$
6	(without	κγ	Photon effective coupling	$1.17^{+0.16}_{-0.13}$
	$Zh \rightarrow \ell\ell + E_{\rm T}^{\rm adds})$	BRi	Invisible branching ratio	$-0.16^{+0.29}_{-0.30}$
	Higgs portal	Kq	Gluon effective coupling	_
7	(with	κγ	Photon effective coupling	-
	$Zh \rightarrow \ell\ell + E_{\rm T}^{\rm miss})$	BRi	Invisible branching ratio	-0.02 ± 0.20

ATLAS-CONF-2013-075

Selection:

3 or 4 isolated lepton $p_T > 25$ (leading), 15 GeV $E_T^{miss} > 25$ (40) GeV b-jet veto di-lepton mass cut $|m_{II}-m_z| > 25$ GeV $\Delta R_{I0I1} < 2$ Categorization: Z-enriched or depleted

Signal strength

$$\mu = 3.7^{+1.9}_{-2.0}$$

arXiv: 1407.4222

Higgs physics in ATLAS: Fiducial-differencial cross-sections $H \rightarrow \gamma \gamma$

Source	Uı	icertainty of	n fiducial cr	coss section	(%)	Diphoton baseline	ATLAS Η→γγ, √s = 8 TeV	
	Baseline	$N_{\rm jets} \ge 1$	$N_{\rm jets} \ge 2$	$N_{ m jets} \ge 3$	VBF-	$N_{\text{iets}} \ge 1$	$\int L dt = 20.3 \text{fb}^{-1}$	_
					enhanced	J010	data syst. unc.	
Signal extraction (stat.)	± 22	± 25	± 30	± 33	± 34	N _{jets} ≥2		■ ● _
Signal extraction (syst.)	± 6.5	± 7.4	± 7.1	± 6.5	± 9.0	$N_{ m jets} \ge 3$		
Photon efficiency	± 1.5	± 2.1	± 3.1	± 4.2	± 2.3			LHC-XS + XH
Jet energy scale/resolution	_	+6.2	+11	+15	+12	VBF-ennanced		- HRes 2.2 + XH
JVF/pileup-jet	-	$^{-5.8}_{\pm 1.3}$	$^{-10}_{\pm 2.2}$	$^{-13}_{\pm 3.3}$	$^{-11}_{\pm 0.5}$	$N_{ m leptons} \ge 1$		
Theoretical modelling	$^{+3.3}_{-1.0}$	$^{+5.0}_{-2.6}$	± 4.1	$^{+6.3}_{-4.9}$	$^{+2.2}_{-3.2}$	E_{T}^{miss} > 80 GeV	-	
Luminosity	± 2.8	± 2.8	± 2.8	± 2.8	± 2.8			
<i>u</i>						J 1() ⁻¹ 2×10 ⁻¹ 1 2	$3 4 5 10 20 30 10^2$

 $\sigma_{\text{fid}} ~ \text{[fb]}$

arXiv: 1408.3226

Higgs physics in ATLAS: Search for HH yybb, bbbb

bbbb

Bkgd Systematics

1800

1400

68 m_{G*} [GeV]

1600

1800 2000 m_{4i} [GeV]

