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SM E↵ective potential

Standard Model E↵ective potential
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For large field values m2 << �2 and µ = � the potential is very well
approximated by

VSM (�) ⇡ �4

(
�

4

+

1

64⇡2


6

 
g2
2

4

!
2

 
ln

 
g2
2

4

!
�

5

6

!
+ 3

 
g2
1

+ g2
2

4

!
2

 
ln

 
g2
1

+ g2
2

4

!
�

5

6

!

�12

 
y2t

2

!
2

 
ln

 
y2t

2

!
�

3

2

!
+

✓
3�

2

◆
2

✓
ln

✓
3�

2

◆
�

3

2

◆
+ 3

✓
�

2

◆
2

✓
ln

✓
�

2

◆
�

3

2

◆ �)

VSM (�) ⇡
�e↵ (�)

4

�4



4

SM Metastability

�e↵ < 0 =) Metastability

D. Buttazzo, et al. [arXiv:1307.3536].

G. Degrassi, et al. [arXiv:1205.6497].

See lectures by G. Degrassi Corfu 2014



Tunneling

Standard semiclassical formalism

S. R. Coleman, Phys. Rev. D 15 (1977) 2929.
C. G. Callan, Jr. and S. R. Coleman, Phys. Rev. D 16 (1977) 1762.

O(4) symmetric solution to euclidean equation of motion

�̈+ 3

s �̇ = @V (�)
@� ,

s =
q
~x2 + x2

4

.

with

�̇(s = 0) = 0 at the true vacuum

�(s = 1) = �min at the false vacuum

5



6

Tunneling

Action of the bounce solution

SE =

Z
d4x
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allows us to calculate decay probability dp of a volume d3x

dp = dtd3x
S2

E

4⇡2
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det 0[�@2 + V 00(�)]

det[�@2 + V 00(�
0

)]

����
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e�SE .

Simplifying

normalisation factor replaced with width of the barrier / �
0

size of the universe is TU = 1010yr

we can calculate the lifetime of the false vacuum (p(⌧) = 1)
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Analytical solution

Analytical solutions for simple potentials

K. M. Lee and E. J. Weinberg, Nucl. Phys. B 267 (1986) 181.

Quartic potential:

V (�) = �
4

�4 =) SE = 8⇡2

3|�|

for � < 0.

Quartic and linear potential :

V⌘(�) =

(
�
4

�4 , � 6 ⌘
�
4

⌘4 � K (�� ⌘) , � > ⌘
, =)

SE = 8⇡2

3|�| (1� (� + 1)4)

� = |�|⌘3

K

for � < 0 and �1 < � < 0
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Standard Model

Approximating by a quartic potential:

⌧

TU
=

1

�4(�min)T 4

U

e
8⇡2

3|�min| ⇡ 10540.

lifetime is minimal for � that minimizes �e↵ (�).
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Numerical calculations

Equation we need to solve

�̈+
3

s
�̇ =

@V (�)

@�
,

is an equation of motion of a particle in potential �V (�) with a ”time”
dependent friction 3

s �̇.

We will use a simple Overshot Undershot algorithm
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Gauge dependence of the tunneling rate

It is well known that the e↵ective potential, and in general the e↵ective action,

are gauge-dependent objects

However, the statement about the spontaneous breaking of gauge symmetry is
gauge invariant (N. K. Nielsen 1975)

The gauge invariant ”observables” are the values of the e↵ective potential at

the extrema, and the tunneling rate between di↵erent minima

When one computes the SM e↵ective potential in a straightforward manner (say
naively), nothing looks gauge independent - neither the value of the e↵ective
potential at the extrema (see L. Di Luzio and L. Mihaila 2014) nor the tunneling
rate (ML,PO,ZL)
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This is due to the fact that the new extrema are created radiatively and already

one loop e↵ective potential, even in the RGE improved version, contains gauge-

dependent terms

V 1,⇠
= � 1

256⇡2�h4
h
⇠Bg21

⇣
log

�h4(⇠Bg2
1+⇠W g2

2)
4µ4 � 3

⌘
(1)

+ ⇠W g22

⇣
log

�3h12⇠2W g4
2(⇠

2
Bg2

1+⇠W g2
2)

64µ12 � 9

⌘i

As pointed out by A. Andreassen, W. Frost and M. Schwartz 2014, who followed

E. Weinberg and D. Metaxas 1996 and S. Coleman and E. Weinberg 1973, the

key to save in the calculations the gauge independence of the potantial at the

extrema is to realize, that to create extrema radiatively, loop corrections have

to cancel between themselves or the tree-level contributions

� ⇠ ~e4
16⇡2

In CW model



12

Hence � is formally of the order ~ and gives higher than one-loop order contri-
bution

It has been shown that that taking this relation into account in counting radia-
tive contributions in the SM makes the value of the potential at the extrema
gauge independent at LO and NLO (in powers of ~)

� =

~
256⇡2


g41 + 2g21g

2
2 + 3g42 � 48h4

t � 3(g21 + g22)
2
log

g21 + g22
4

� 6g42 log
g22
4

+ 48y4t log
y2t
2

�

In the SM the equivalent condition is

which holds at the extrema h = µ
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In general, the tunneling rate has the form

� = Ae�B

Weinberg and Mataxas managed to show that if the reordering of the radiative
corrections used above holds everywhere, not only near the minima, then indeed
the exponent B shall be gauge independent at the NLO.

SM is more complicated. The assumption that the required relation between

couplings holds at each scale between the EW minimum and the radiative min-

imum is not so well justified
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4 SM – SM – modification in running of modification in running of Z Z 

due to gauge dependencedue to gauge dependence

12/13

Contributes to:
● 1-loop potential
● γ function of the scalar field

● More important.
● One needs to remember that kinetic 

contribution to the action is muliplied by Z.

Luca Di Luzio and Luminita Mihaila: arXiv:1404.7450v1

The leading gauge dependence comes from the gauge-dependent anomalous

rescaling of the field

L. Di Luzio, L. Mihaila 1404.7450
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Observation, which allows one to ease the problem, is that once one includes in
the euclidean action which is used to compute the bounce the renormalization
factor in the 2-derivative term, and treats it consistently as a field dependent
quantity, then one can go over to the new field variable h !

p
Z(h)h in terms

of which the whole action becomes gauge independent at the modified leading
order (that is assuming � ⇠ ~), and only mildly gauge dependent in the more
standard expression, through small logarithmic terms.

Beyond the leading order one needs yet to find proper, possibly non-local, ex-

pansion of the action to demonstrate the cancellation of gauge-dependent con-

tributions.

The LO procedure leading to gauge independent estimate the tunneling rate can
easily be extended to the analysis of the role of the e↵ective nonrenormalisable
operators, and the results shown correspond to such a case.
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RGE improved nearly scale invariant SM

V (�,�) = e4�/fVSM (⇠2(µ̄)�̃†�̃; µ(µ̄),�(µ̄); µ)

where �̃ = e��/f�, µ̄ = e�/fµ and ⇠(µ) = e�
R µ dµ0

µ0 �(µ0)

E↵ect of field rescaling becomes real in nearly scale invariant version of the SM

(with noninvariant dilaton kinetic term)

The e↵ect comes mostly from the field renormalisation factor ⇠e�z
= ⇠e��/f

which becomes large for negative z
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More negative values of lambda result in shorter lifetimes for negative z
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E↵ective potential with nonrenormalisable interactions

We add new nonrenormalisable couplings
(similar to V. Branchina and E. Messina, [arXiv:1307.5193].)

V ⇡ �e↵ (�)
4

�4 +
�
6

6!
�6

M2

p
+

�
8

8!
�8

M4

p
.

That modify the potential around the Planck scale:

Figure: e↵ective potential with �
6

= �1 and �
8

= 1.

log

✓
⌧

TU

◆
= �189.6

New Physics at !
Planck scale
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Numerical vs Analytical

Figure: Decimal logatihm of lifetime of the universe in units of TU as a
function of the nonrenormalisable �

6

and �
8

couplings, calculated
numerically (left panel) and analytically (right panel).
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RG improvement

The correction to the running of the quatric Higgs coupling is of the form

��� =
�
6

16⇡2

m2

M2

p
.

One-loop beta functions of new couplings take the form

16⇡2��
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� 3y 2
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◆
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Figure: Example solution with �
6

(Mp) = �1 and �
8

(Mp) = �0.1.



26

Numerical vs Analytical again

Figure: Decimal logatihm of lifetime of the universe in units of TU as a
function of the nonrenormalisable �

6

(Mp) and �
8

(Mp) couplings,
calculated numerically (left panel) and analytically (right panel).
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Comparison

Figure: Contours corresponding to metastability boundary (⌧ = Tu)
obtained using four di↵erent methods.
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SM phase diagram
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Magnitude of the suppression scale

Approximate lifetime:

⌧

TU
=

1

µ4(�min)T 4

U

e
8⇡2

3|�min| .

Positive �
6

and �
8

! stabilizing the potential

Figure: Scale dependence of �e↵
4

= V
�4

with �
6

= �
8

= 1 for di↵erent values of
suppression scale M. The lifetimes corresponding to suppression scales
M = 108, 1012, 1016 are, respectively, log

10

( ⌧
TU

) = 1, 1302, 581 while for the

Standard Model log
10

( ⌧
TU

) = 540.

New Physics at the scale M 
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Magnitude of the suppression scale

Positive �
8

and negative �
6

! New Minimum

Figure: Scale dependence of �e↵
4

= V
�4

with �
6

= �1 and �
8

= 1 for
di↵erent values of suppression scale M. The lifetimes corresponding to
suppression scales M = 108, 1012, 1016, are, respectively,
log

10

( ⌧
TU

) = �45,�90,�110 while for the Standard Model

log
10

( ⌧
TU

) = 540.
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Derivative terms

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2
-0.10

-0.05

0.00

0.05

0.10

l6

c 1

l8=1, log
t

TU

â

0

200

400

600

-6-4-20246

@2
s�+

3

s
@s� =

@V

@�
! (1 + c1�

2/M2) (@2
s�+

3

s
@s�) ⇡

@V

@�

Z(�)@µ�@
µ�+ @µ�@

µ�

✓
c1

�2

M2
+ c2

�4

M4
+ ...

◆

Lifetime of the EW vacuum

doesn’t change until negative �6

fources the bounce to go up to M
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Summary

• SM vacuum can be stabilized by nonrenormalisable interactions  if they 
appear at suffciently low energy scale 	


• SM vacuum lifetime can be dramatically shortened by 
nonrenormalisable interactions for any suppression scale	


• RG improvement stabilizes  significant parts of the parameter space	


• Higher-order terms with derivatives can destabilize metastable vacua	


• Beyond the leading order one needs yet to find proper expansion of 
the action to demonstrate perturbatively the cancellation of gauge-
dependent contributions.	


!

!

1010 � 1011 GeV


