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Plan of this talk
Really short motivation 

How to build an R-symmetric SUSY 

1) what is an R-Symmetry 

2) what is allowed and what not 

3) different possible R-symmetric models 

The Higgs sector 

Prediction for the W-boson mass 

Some checks of our benchmark points



Motivation
Supersymmetry is still one of the most promising candidates for physics beyond the SM although 

no direct SUSY signal at Run I of the LHC 

direct searches still allow for TeV SUSY but indirect ones push minimal SUSY into 
uncomfortable parameter region 

125 GeV Higgs requires ≳ 1 TeV stops (≳ 3 if we neglect mixing) 

flavour physics suggests even larger SUSY scale (within the MSSM) 

!

Here MRSSM since: 

it ameliorates the flavour problem of the MSSM — Kribs, Poppitz, Weiner, 2008 

gives correct W and Higgs mass at (possibly very) light stop masses — this talk 

N=2 SUSY as possible UV completion (although might be hard to realise in practice)

Strong motivation to go beyond the MSSM!
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R-symmetry
additional symmetry of the SUSY algebra allowed by the Haag - 
Łopuszański - Sohnius theorem 

for N=1 it is a global               symmetry under which the SUSY generators 
are charged 

implies that the spinorial coordinates are also charged  

Lagrangian invariance 

Kähler potential invariant if R-charge of vector super field is 0 

R-charge of the superpotential must be 2 

soft-breaking terms must have R-charge 0

UR(1)

[Fayet; Salam & Strathdee, ...]
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R-symmetry realisation

freedom in the choice of chiral superfield charge, choose SM fields with R=0 

Higgs superfields            , lepton and quark superfields have 

R-symmetry forbids 

                 

                              

Majorana masses and flavour changing A-terms

Q = 0 Q = 1

Flavour problem ameliorated 
but now gauginos are massless!

µĤuĤd

other realisations: 
… 

Davies, March-Russell, McCullough (2011) 
Lee, Raby, Ratz, Schieren, Schmidt-Hoberg, 

Vaudrevange (2011) 
Frugiuele, Gregoire (2012) 

…

�ÊL̂L̂,ÛD̂D̂, eĤL̂



MRSSM in a nutshell

Superpotential — Choi, Choudhury, Freitas, Kalinowski, Zerwas (2011) 

!

!

R-Higgses needed to construct mu-type terms and (Lagrangian) quartic-Higgs couplings 

Soft SUSY breaking terms 

conventional MSSM      -term allowed 

Dirac mass terms for gauginos 

Pragmatic approach — study low energy phenomenology

Bµ

W =µd R̂d Ĥd + µu R̂u Ĥu

+ ⇤d R̂d T̂ Ĥd + ⇤u R̂u T̂ Ĥu + �d Ŝ R̂d Ĥd + �u Ŝ R̂u Ĥu

� Yd d̂ q̂ Ĥd � Ye ê l̂ Ĥd + Yu û q̂ Ĥu



Particles content of the MRSSM

real parts of the neutral, scalar, component of chiral multiplets                      mix to give 4 
scalar Higgs bosons 

imaginary parts of the neutral, scalar, component of the same chiral multiplets mix to give 3 
pseudo-scalar Higgs bosons and one Goldstone boson 

charged, scalar, component of the same chiral multiplets mix to give 3 charged Higgs bosons 
and one Goldstone boson 

4 Dirac neutralinos, 4 Dirac charginos, 2 (complex) neutral and 2 charged R-Higgses

Ĥd, Ĥu, Ŝ, T̂

Field Superfield Boson Fermion

Gauge Vector ĝ, Ŵ , B̂ 0 g,W,B 0 g̃, W̃ B̃ +1

Matter l̂, ê +1 l̃, ẽ⇤R +1 l, e⇤R 0

q̂, d̂, û +1 q̃, d̃⇤R, ũ
⇤
R +1 q, d⇤R, u

⇤
R 0

H-Higgs Ĥd,u 0 Hd,u 0 H̃d,u �1

R-Higgs R̂d,u +2 Rd,u +2 R̃d,u +1

Adjoint Chiral Ô, T̂ , Ŝ 0 O, T, S 0 Õ, T̃ , S̃ �1



Scalar Higgs sector
4 scalar degrees of freedom                     mix to form 4 physical scalar 
Higgs bosons 

An approximate formula can be given for the lightest Higgs mass at the 
tree-level 

one uses, as in the MSSM, mixing     angle to diagonalise the  
submatrix                    

for large         when 

for simplicity 

!

Tree-level mass of the lightest state always lower than in the MSSM
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Lightest Higgs mass — tree level analysis
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Lightest Higgs mass — effective potential approach
Effective potential approximation (cf. approximate tree level result) 
 
 
 
 

!

!
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!

Calculate also by Bertuzzo, Frugiuele, Gregoire, Ponton (2014), although 
with somewhat different result (under investigation) 
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Lightest Higgs mass — full 1loop analysis
!

!

!

!

!

!

large tree-level enhancement of Higgs mass, with ~1 TeV stops and no LR mixing 
(plots), from new states 

large contributions from Higgs and R-Higgs sectors 

0.5 TeV stops would work also fine but hard to avoid direct detection limits 

few GeV downward difference compared to effective potential result



       at tree-level
MRSSM contains a Y=0 Higgs triplet      tree level contribution to  

EW-gauge sector is described at tree-level in terms of 4 parameters 

Trade 3 of them for input, „low energy”, observables  

Define quantity  

!

Calculate muon decay constant at the tree-level

{g1, g2, v, vT } ! {↵EM , Gµ,mZ , vT }
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       master formula at one-loop
beyond the tree-level there are quantum corrections to the muon decay 
constant 

!

where 

!

           contains: „oblique” and vertex- and box-corrections as well as 
term that translates pole mW to running one 

solve for 
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Two effects in        increase 

loop corrections to ⇧WW ,⇧ZZ
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Benchmark points properties
3 distinct parameter points with                              

within               from experimentally measured W-boson mass (less if you add 
theoretical uncertainty)  

lightest Higgs mass around 125 GeV 

points in agreement with direct Higgs measurements 
[HiggsBounds,HiggsSignals] 

Due to the lack of A-terms R-symmetric models are generally safe as far as colour- 
and charge-breaking minima are concerned — Casas, Lleyda, Muñoz (1996) 

absolute vacuum stability [disclaimer: within the scope of application of 
Vevacious] 

reasonable TeV range mass spectra

mexp

W = 80.385± 0.015 GeV

1� 2�

tan� = 3, 10, 40



	 	 	 	 interdependence for mh �mW

contours for  

colour gradient for  

    for benchmark point

mW

mh

tan� = 40

mh = 126± 8 GeV

mh = 126± 2 GeV



	 	 	 	 interdependence for low mh �mW

tan� = 3

tan�to see dependence on down-type parameters one needs to reduce  

even for                   dependence in very mild

tan�



Conclusions and outlook
I presented a viable R-symmetric realisation of SUSY which 

is in agreement with PEWO and flavour-physics constrains 

predicts stable vacuum 

 has interesting collider phenomenology to be explored 

has Dirac type neutralino as a candidate for dark matter — Buckley, 
Hooper, Kumar (2013) 

We took the low energy model without discussing its UV completion 

Still a lot to do…. Consequences for 14 TeV LHC?



Back-up slides



Benchmark points



Particle spectra
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Tools for numerical analysis

Model implemented in SARAH 

Numerical analysis done within SARAH’s generated SPheno-like code 

Cross checked with analytic calculation with FeynArts/FormCalc 

Higgs sector checked with HiggsBounds and HiggsSignals 

Vacuum stability checked with Vevacious



	 	 	  functionSU(3)�


