Higgs and the electroweak precision observables in the MRSSM

Wojciech Kotlarski* University of Warsaw

Corfu, 8 September 2014

*in collaboration with P. Dießner, J. Kalinowski and D. Stöckinger [arXiv:1409.XXX]

Plan of this talk

- Really short motivation
- How to build an R-symmetric SUSY
 - 1) what is an R-Symmetry
 - 2) what is allowed and what not
 - 3) different possible R-symmetric models
- The Higgs sector
- Prediction for the W-boson mass
- Some checks of our benchmark points

Motivation

- Supersymmetry is still one of the most promising candidates for physics beyond the SM although
 - no direct SUSY signal at Run I of the LHC
 - direct searches still allow for TeV SUSY but indirect ones push minimal SUSY into uncomfortable parameter region
 - □ 125 GeV Higgs requires \ge 1 TeV stops (\ge 3 if we neglect mixing)
 - □ flavour physics suggests even larger SUSY scale (within the MSSM)

Motivation

- Supersymmetry is still one of the most promising candidates for physics beyond the SM although
 - no SUSY at Run I of the LHC
 - direct searches still allow for TeV SUSY but indirect ones push minimal SUSY into uncomfortable parameter region
 - □ 125 GeV Higgs requires \ge 1 TeV stops (\ge 3 if we neglect mixing)
 - a flavour physics suggests even larger SUSY scale (within the MSSM)

Strong motivation to go beyond the MSSM!

- Here MRSSM **since**:
 - ĭ ameliorates the flavour problem of the MSSM − Kribs, Poppitz, Weiner (2008)
 - gives correct W and Higgs mass at (possibly very) light stop masses this talk
 - ☑ N=2 SUSY as possible UV completion (although might be hard to realise in practice)

R-symmetry

- additional symmetry of the SUSY algebra allowed by the Haag -Łopuszański - Sohnius theorem
- for N=1 it is a global $U_R(1)$ symmetry under which the SUSY generators are charged
 - implies that the spinorial coordinates are also charged

$$Q_R(\theta) = 1, \ \theta \to e^{i\alpha}\theta$$

- Lagrangian invariance
- Kähler potential invariant if R-charge of vector super field is 0
- R-charge of the superpotential must be 2
- soft-breaking terms must have R-charge 0

R-symmetry realisation

R charges of component fields Q_R scalarvectorfermionicvector superfield0-01chiral superfieldQQ-Q-1

- freedom in the choice of chiral superfield charge, choose SM fields with R=0
- \blacksquare Higgs superfields $\,Q=0$, lepton and quark superfields have Q=1
- R-symmetry forbids
 - o $\mu \hat{H}_u \hat{H}_d$
 - $\Box \ \lambda \hat{E} \hat{L} \hat{L}, \kappa \hat{U} \hat{D} \hat{D}, e \hat{H} \hat{L}$

Flavour problem ameliorated but now gauginos are massless!

Majorana masses and flavour changing A-terms

One way to fix it: <u>Dirac masses</u> Minimal R-Symmetric Supersymmetric Standardmodel (MRSSM) Kribs et.al. arXiv:0712.2039

			<i>SU</i> (3) _C	$SU(2)_L$	$U(1)_Y$	<i>U</i> (1) _R
Additional fields:	Singlet	Ŝ	1	1	0	0
	Triplet	Ť	1	3	0	0
	Octet	Ô	8	1	0	0
	R-Higgses	Â _u	1	2	-1/2	2
		Â _d	1	2	1/2	2

other realisations:

Davies, March-Russell, McCullough (2011) Lee, Raby, Ratz, Schieren, Schmidt-Hoberg, Vaudrevange (2011) Frugiuele, Gregoire (2012)

MRSSM in a nutshell

Additional fields:			<i>SU</i> (3) _C	$SU(2)_L$	$U(1)_Y$	<i>U</i> (1) _R
	Singlet	Ŝ	1	1	0	0
	Triplet Octet	Ť	1	3	0	0
		Ô	8	1	0	0
	R-Higgses	Â _u	1	2	-1/2	2
		Â _d	1	2	1/2	2

Superpotential – Choi, Choudhury, Freitas, Kalinowski, Zerwas (2011)

$$W = \mu_d \hat{R}_d \hat{H}_d + \mu_u \hat{R}_u \hat{H}_u$$
$$+ \Lambda_d \hat{R}_d \hat{T} \hat{H}_d + \Lambda_u \hat{R}_u \hat{T} \hat{H}_u + \lambda_d \hat{S} \hat{R}_d \hat{H}_d + \lambda_u \hat{S} \hat{R}_u \hat{H}_u$$
$$- Y_d \hat{d} \hat{q} \hat{H}_d - Y_e \hat{e} \hat{l} \hat{H}_d + Y_u \hat{u} \hat{q} \hat{H}_u$$

- R-Higgses needed to construct mu-type terms and (Lagrangian) quartic-Higgs couplings
- Soft SUSY breaking terms
 - \Box conventional MSSM B_{μ} term allowed
 - Dirac mass terms for gauginos
 - Pragmatic approach study low energy phenomenology

Particles content of the MRSSM

Field	Superfield		Boson		Fermion	
Gauge Vector	\hat{g},\hat{W},\hat{B}	0	g, W, B	0	$ ilde{g}, ilde{W} ilde{B}$	+1
Matter	\hat{l},\hat{e}	+1	\tilde{l}, \tilde{e}_R^*	+1	l, e_R^*	0
	\hat{q},\hat{d},\hat{u}	+1	$\tilde{q}, \tilde{d}_R^*, \tilde{u}_R^*$	+1	q, d_R^st, u_R^st	0
$H ext{-Higgs}$	$\hat{H}_{d,u}$	0	$H_{d,u}$	0	$ ilde{H}_{d,u}$	-1
$R ext{-Higgs}$	$\hat{R}_{d,u}$	+2	$R_{d,u}$	+2	$ ilde{R}_{d,u}$	+1
Adjoint Chiral	$\hat{\mathcal{O}},\hat{T},\hat{S}$	0	O, T, S	0	$ ilde{O}, ilde{T}, ilde{S}$	-1

- real parts of the neutral, scalar, component of chiral multiplets \hat{H}_d , \hat{H}_u , \hat{S} , \hat{T} mix to give 4 scalar Higgs bosons
- imaginary parts of the neutral, scalar, component of the same chiral multiplets mix to give 3 pseudo-scalar Higgs bosons and one Goldstone boson
- charged, scalar, component of the same chiral multiplets mix to give 3 charged Higgs bosons and one Goldstone boson
- 4 Dirac neutralinos, 4 Dirac charginos, 2 (complex) neutral and 2 charged R-Higgses

Scalar Higgs sector

- 4 scalar degrees of freedom $\{h_d, h_u, s, t\}$ mix to form 4 physical scalar Higgs bosons
- An approximate formula can be given for the lightest Higgs mass at the tree-level
 - one uses, as in the MSSM, mixing α angle to diagonalise the $\{h_d, h_u\}$ submatrix

a for large
$$m_A^2$$
 when $lpha=eta-\pi/2$

 $for simplicity \lambda = \lambda_u = -\lambda_d, \Lambda = \Lambda_u = \Lambda_d, v_S \approx v_T \approx 0$

$$m_{h,\text{approx}}^2 = M_Z^2 \cos^2 2\beta - v^2 \left(\frac{\left(g_1 M_D^B + \sqrt{2\lambda\mu}\right)^2}{4(M_D^B)^2 + m_S^2} + \frac{\left(g_2 M_D^W + \Lambda\mu\right)^2}{4(M_D^W)^2 + m_T^2} \right) \cos^2 2\beta$$

Tree-level mass of the lightest state always lower than in the MSSM

Lightest Higgs mass — tree level analysis

$$m_{h,\text{approx}}^2 = M_Z^2 \cos^2 2\beta - v^2 \left(\frac{\left(g_1 M_D^B + \sqrt{2\lambda\mu}\right)^2}{4(M_D^B)^2 + m_S^2} + \frac{\left(g_2 M_D^W + \Lambda\mu\right)^2}{4(M_D^W)^2 + m_T^2} \right) \cos^2 2\beta$$

Lightest Higgs mass — effective potential approach

Effective potential approximation (cf. approximate tree level result)

$$\begin{split} \Delta m_h^2 &= \frac{2v^2}{16\pi^2} \left[\frac{4\lambda^4 + 4\lambda^2\Lambda^2 + 5\Lambda^4}{8} \log \frac{m_{R_u}^2}{Q^2} \right. + \tan\beta \to \infty \\ &+ \left(\frac{\lambda^4}{2} - \frac{\lambda^2\Lambda^2}{2} \frac{m_S^2}{m_T^2 - m_S^2} \right) \log \frac{m_S^2}{Q^2} \\ &+ \left(\frac{5}{8}\Lambda^4 + \frac{\lambda^2\Lambda^2}{2} \frac{m_T^2}{m_T^2 - m_S^2} \right) \log \frac{m_T^2}{Q^2} \\ &- \left(\frac{5}{4}\Lambda^4 - \lambda^2\Lambda^2 \frac{(M_B^D)^2}{(M_B^D)^2 - (M_W^D)^2} \right) \log \frac{(M_W^D)^2}{Q^2} \\ &- \left(\lambda^4 + \lambda^2\Lambda^2 \frac{(M_B^D)^2}{(M_B^D)^2 - (M_W^D)^2} \right) \log \frac{(M_B^D)^2}{Q^2} \\ &+ \frac{\Lambda^2\lambda^2}{2} \right] \end{split}$$

 Calculate also by Bertuzzo, Frugiuele, Gregoire, Ponton (2014), although with somewhat different result (*under investigation*)

Lightest Higgs mass — full 1loop analysis

- large tree-level enhancement of Higgs mass, with ~1 TeV stops and no LR mixing (plots), from new states
- large contributions from Higgs and R-Higgs sectors
- 0.5 TeV stops would work also fine but hard to avoid direct detection limits
- few GeV downward difference compared to effective potential result

- MRSSM contains a Y=0 Higgs triplet \Rightarrow tree level contribution to \mathcal{M}_W
- EW-gauge sector is described at tree-level in terms of 4 parameters

 $\{g_1, g_2, v, v_T\}$

Trade 3 of them for input, "low energy", observables

$$\{g_1, g_2, v, v_T\} \to \{\alpha_{EM}, G_\mu, m_Z, v_T\}$$

Define quantity

$$\hat{\rho} = \frac{m_W^2}{m_Z^2 \hat{c}_W^2} \neq 1 \Rightarrow \hat{c}_W^2 = \frac{m_W^2}{\hat{\rho} \, m_Z^2}$$

Calculate muon decay constant at the tree-level

$$\frac{G_{\mu}}{\sqrt{2}} = \frac{\pi \alpha_{EM}}{2m_W^2 \hat{s}^2} = \frac{\pi \alpha_{EM}}{2m_W^2 \left(1 - \frac{m_W^2}{\hat{\rho}m_Z^2}\right)}$$

m_W master formula at one-loop

beyond the tree-level there are quantum corrections to the muon decay constant

$$\frac{G_{\mu}}{\sqrt{2}} = \frac{\pi \hat{\alpha}_{EM}}{2m_W^2 \left(1 - \frac{m_W^2}{\hat{\rho}m_Z^2}\right)} \left(1 + \Delta \hat{r}_W\right)$$

where

$$\hat{\rho} = \frac{c^2}{\hat{c}^2} = \hat{\rho}_0 \frac{1 + \frac{\hat{\Pi}_{ZZ}^T(m_Z^2)}{m_Z^2}}{1 + \frac{\hat{\Pi}_{WW}^T(m_W^2)}{m_W^2}}$$

 $\Delta \hat{r}_W$ contains: "oblique" and vertex- and box-corrections as well as term that translates pole mW to running one

• solve for m_W $m_W^2 = \frac{1}{2} m_Z^2 \hat{\rho} \left[1 + \sqrt{1 - \frac{4\pi \hat{\alpha}_{EM}^{\overline{\text{DR}},\text{MRSSM}}(m_Z)}{\sqrt{2}G_\mu m_Z^2 \hat{\rho}(1 - \Delta \hat{r}_W)}} \right]$

Two effects in m_W increase

loop corrections to Π_{WW}, Π_{ZZ}

Benchmark points properties

- 3 distinct parameter points with $\tan \beta = 3, 10, 40$
- within $1 2\sigma$ from experimentally measured W-boson mass (less if you add theoretical uncertainty)

$$m_W^{\text{exp}} = 80.385 \pm 0.015 \text{ GeV}$$

- lightest Higgs mass around 125 GeV
- points in agreement with direct Higgs measurements [HiggsBounds, HiggsSignals]
- Due to the lack of A-terms R-symmetric models are generally safe as far as colourand charge-breaking minima are concerned — Casas, Lleyda, Muñoz (1996)
 - absolute vacuum stability [disclaimer: within the scope of application of Vevacious]
 - reasonable TeV range mass spectra

$m_h - m_W$ interdependence for $\tan \beta = 40$

$m_h - m_W$ interdependence for low $\tan \beta$

 \square to see dependence on down-type parameters one needs to reduce aneta

 \Box even for an eta = 3 dependence in very mild

Conclusions and outlook

- I presented a viable R-symmetric realisation of SUSY which
 - ✓ is in agreement with PEWO and flavour-physics constrains
 - ✓ predicts stable vacuum
 - ✓ has interesting collider phenomenology to be explored
 - ✓ has Dirac type neutralino as a candidate for dark matter Buckley, Hooper, Kumar (2013)
- We took the low energy model without discussing its UV completion
- Still a lot to do.... Consequences for 14 TeV LHC?

Back-up slides

Benchmark points

	BMP1	BMP2	BMP3			
aneta	3	10	40			
B_{μ}	500^{2}	300^{2}	200^{2}			
(λ_d,λ_u)	(1.0, -0.8)	(1.1, -1.1)	(0.15, -0.15)			
(Λ_d,Λ_u)	(-1.0, -1.2)	(-1.0, -1.0)	(-1.0, -1.15)			
M_D^B	600	1000	250			
$m_{R_u}^2$	2000^{2}	1000^{2}	1000^{2}			
(μ_d,μ_u)		(400, 400)				
M_D^W		500				
M_D^O	1500					
(m_T^2,m_S^2)	$(3000^2, 2000^2)$					
$(m_{Q;1,2}^2, m_{Q;3}^2)$	$(2500^2, 1000^2)$					
$(m^2_{D:1.2},m^2_{D:3})$	$(2500^2, 1000^2)$					
$(m^2_{U;1,2}, m^2_{U;3})$	$(2500^2, 1000^2)$					
(m_L^2, m_E^2, m_O^2)	1000^{2}					
$m_{R_d}^2$	700^{2}					

Particle spectra

- Model implemented in SARAH
- Numerical analysis done within **SARAH**'s generated **SPheno**-like code
- Cross checked with analytic calculation with FeynArts/FormCalc
- Higgs sector checked with HiggsBounds and HiggsSignals
- Vacuum stability checked with **Vevacious**

$$\beta_{g_3}^{(1)} = 0$$

$$\beta_{g_3}^{(2)} = \frac{1}{5}g_3^3 \left(11g_1^2 - 20\text{Tr}\left(Y_d Y_d^\dagger\right) - 20\text{Tr}\left(Y_u Y_u^\dagger\right) + 340g_3^2 + 45g_2^2\right)$$