Two-Higgs Doublet Models with Scalar Singlet Dark Matter

Bohdan Grzadkowski University of Warsaw

"Summer School and Workshop on the Standard Model and Beyond", Corfu, September 9th 2014

Outline:

- 2HDMS Model
- Motivations
- Strategy
- Resulting Constraints on the parameter space
- Direct DM detection constraints
- New Higgs physics at the LHC?
- Summary

2HDM: B. Dumont, J. Gunion, S. Kraml, Y. Jiang, arXiv:1405.3584

2HDMS: A. Drozd, B. Grzadkowski, J. F. Gunion and Y. Jiang, "Extending two-Higgs-doublet models by a singlet scalar field - the Case for Dark Matter", arXiv:1408.2106.

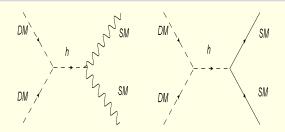
2HDMS model

2HDMS - Yukawa Interactions

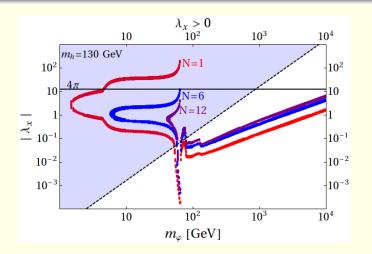
- Type I (only H₂ couples to fermions)
- Type II (H_2 couples to up-type fermions, H_1 other)

Symmetry: $Z_2: H_1 \to -H_1$, other scalar fields Z_2 -even $Z_2': S \to -S$, other fields Z_2' -even

$$\begin{split} \mathcal{V} = & m_{11}^2 H_1^{\dagger} H_1 + m_{22}^2 H_2^{\dagger} H_2 - \left[m_{12}^2 H_1^{\dagger} H_2 + \text{h.c.} \right] + \frac{\lambda_1}{2} \left(H_1^{\dagger} H_1 \right)^2 + \frac{\lambda_2}{2} \left(H_2^{\dagger} H_2 \right)^2 \\ & + \lambda_3 \left(H_1^{\dagger} H_1 \right) \left(H_2^{\dagger} H_2 \right) + \lambda_4 \left(H_1^{\dagger} H_2 \right) \left(H_2^{\dagger} H_1 \right) + \left\{ \frac{\lambda_5}{2} \left(H_1^{\dagger} H_2 \right)^2 + \text{h.c.} \right\} \\ & + \frac{m_0^2}{2} S^2 + \frac{\lambda_S}{4!} S^4 + \kappa_1 S^2 \left(H_1^{\dagger} H_1 \right) + \kappa_2 S^2 \left(H_2^{\dagger} H_2 \right) \end{split}$$


EWSB: Z_2' unbroken \rightarrow NO VEV FOR S

$$H_{1,2} = \begin{pmatrix} \varphi_{1,2}^+ \\ (v_{1,2} + \rho_{1,2} + i\eta_{1,2})/\sqrt{2} \end{pmatrix} \quad \tan \beta \equiv \frac{v_2}{v_1}, \qquad v_1^2 + v_2^2 = (246 \, \text{GeV})^2$$


Motivations

2HDMS

- An attempt to provide both extra CP violation and DM candidate -2HDMS minimal model,
- 2HDM provides an interesting "low-mass" new physics accessible at the LHC,
- To have a chance for $M_{DM} < m_h/2$

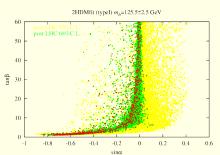
Motivations

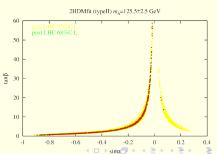
$$BR(h o \varphi \varphi) \propto \lambda_X^2$$
 for $V(H, \varphi) = \cdots + \lambda_X H^\dagger H \varphi^2$

5 mass eigenstates: h, H, A, H^{\pm}, S

• 10 parameters in the potential, various basis possible

General Basis:

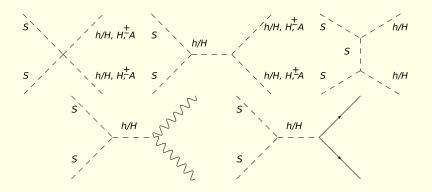

- $\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5$
- m_{12}^2 , tan β
- *m*_S, κ₁, κ₂


Physical Basis:

- $m_h, m_H, m_A, m_{H^{\pm}}, sin\alpha$
- m_{12}^2 , $\tan \beta$
- m_S , λ_h , λ_H
- 2 types of Yukawa interaction

2HDM: Dumont, Gunion, Jiang, Kraml

- theoretical constraints (perturbativity, vacuum stability, perturbative unitarity)
- experimental constraints
 - B/LEP limits H⁺
 - STU
 - heavy Higgs search
 - LHC fit at 68% CL

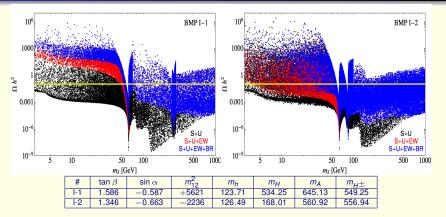

2HDM

Take good 2HDM points

Scalar Singlet parameter scan:

- m_S ∈ [1 GeV, 1 TeV]
- $\lambda_h, \lambda_H \in [-4\pi, 4\pi]$
- theoretical constraints (perturbativity, vacuum stability, perturbative unitarity, EWSB)
- with $BR(h \rightarrow DM, DM) < 10\%$
- WMAP/Planck
- direct DM detection

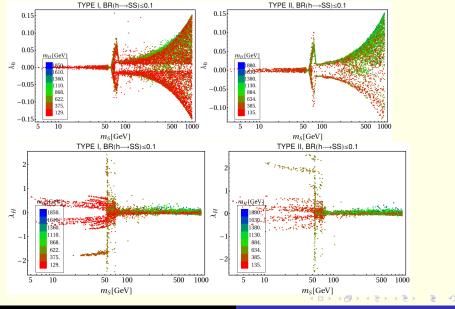


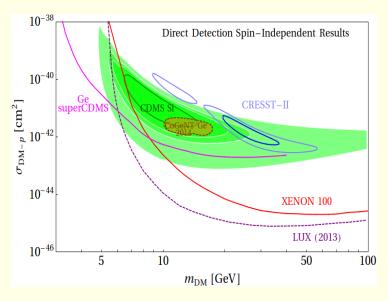

Calculation of DM relic abundance Ω :

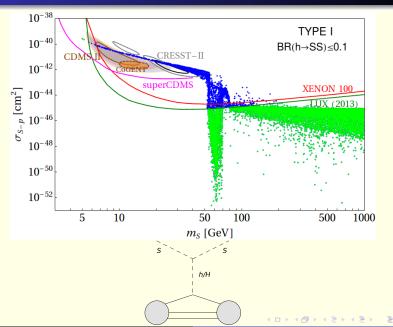
MicrOmegas by G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, arXiv:0803.2360

$$\Omega^{\textit{WMAP/Planck}} = 0.1187 \pm 0.0017$$

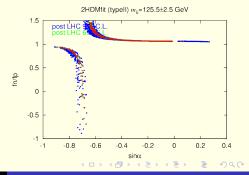
Resulting Constraints on the parameter space




$$BR(h \rightarrow SS) = ???$$


- ullet Ω_{DM} requires sufficiently strong SM DM coupling
- search λ_h, λ_H give appropriate $BR(h \to SS)$ i Ω_{DM}
- H responsible for DM production!

Resulting Constraints on the parameter space

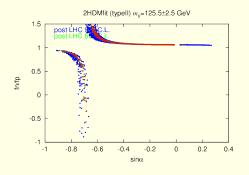

TYPE II

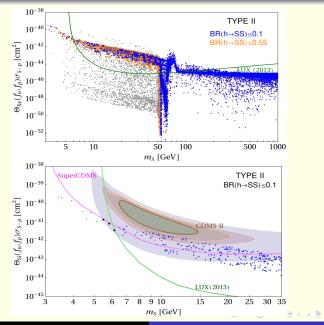
$$\begin{split} \sigma_{DM-N} &= \frac{4\mu_{Z_A}^2}{\pi} f_p^2 \left[Z + \frac{f_n}{f_p} (A - Z) \right]^2 \\ BR(h \to SS) &\leq 0.1 \Rightarrow \lambda_h < 0.015 \end{split}$$

$$\frac{f_n}{f_p} = \frac{m_n}{m_p} \frac{\sum_q \left[\left(\frac{\lambda_h}{\lambda_H} \xi_h^q + \left(\frac{m_h}{m_H} \right)^2 \xi_H^q \right) f_n^q \right]}{\sum_q \left[\left(\frac{\lambda_h}{\lambda_H} \xi_h^q + \left(\frac{m_h}{m_H} \right)^2 \xi_H^q \right) f_p^q \right]} \longrightarrow \frac{m_n}{m_p} \frac{\sum_q \left[\left(\xi_h^q + \xi_H^q \right) f_n^q \right]}{\sum_q \left[\left(\xi_h^q + \xi_H^q \right) f_p^q \right]}$$
(S indep.)

Table: Yukawa couplings of up and down type quarks to light and heavy Higgs bosons h, H in Type I/II models. The Yukawa Lagrangian is normalised as follows: $\mathcal{L}^{Yukawa} = \frac{m_q}{v} \xi_h^a \bar{q} q h + \frac{m_q}{v} \xi_H^a \bar{q} q H$

	Type I	Type II
ξ_h^u	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$
ξ_h^d	$\cos \alpha / \sin \beta$	$-\sin \alpha/\cos \beta$
ξ_H^u	$\sin \alpha / \sin \beta$	$\sin \alpha / \sin \beta$
ξ_H^d	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$

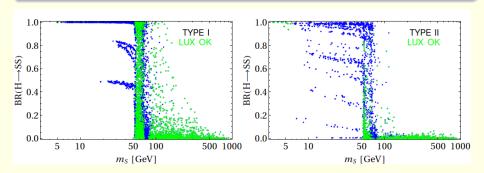

TYPE II


$$\sigma_{DM-N} = \frac{4\mu_{Z_A}^2}{\pi} f_p^2 \left[Z + \frac{f_n}{f_p} (A - Z) \right]^2 \qquad \sigma_{DM-p}^{EXP} \ge \sigma_{DM-p}^{THEO} \Theta^{EXP}(f_n, f_p)$$

$$\Theta^{EXP}(f_n, f_p) = \sum_{l} \mu_l \left(\frac{Z_l}{A_l} + \frac{f_n}{f_p} \frac{A_l - Z_l}{A_l} \right)^2$$

Table: Yukawa couplings of up and down type quarks to light and heavy Higgs bosons h, H in Type I/II models. The Yukawa Lagrangian is normalised as follows: $\mathcal{L}^{Yukawa} = \frac{m_q}{v} \xi_h^q \bar{q} q h + \frac{m_q}{v} \xi_H^q \bar{q} q H$

	Type I	Type II
ξ_h^u	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$
ξ_h^d	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$
ξ_H^u	$\sin \alpha / \sin \beta$	$\sin \alpha / \sin \beta$
ξ_H^d	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$



$\tan \beta$	$\sin lpha$	m_H	m_A	$m_{H^{\pm}}$	m_{12}^2	m_S
2.092	-0.41	138	451	399	-12642	3.44; 3.56; 3.95
3.121	-0.282	187	546	571	8943	4.82; 5.48
2.192	-0.394	209	488	503	7518	5.40
1.728	-0.476	177	318	389	9382	5.16
1.789	-0.461	198	420	430	-6594	4.44; 5.15
1.488	-0.528	157	553	576	-10094	4.61
2.375	-0.363	259	260	339	15899	5.83

Table: Summary of the properties of the 2HDM Type II points which make it possible to realize $m_{\rm S} < 50$ GeV in agreement with within 99% CL for CDMS II imposing the full set of constraints including the LUX and SuperCDMS bounds and. All masses are given in GeV units.

New Higgs physics at the LHC?

Conclusions

- 2HDM is allowed by current collider limits, even in the non-decoupling regime
- 2HDMS provides a viable DM candidate and an opportunity for extra CP-violation
- 2HDMS is allowed by current collider and Ω limits
- LUX requires $m_S \gtrsim$ 50 GeV (TYPE I, II) or together with SuperCDMS $m_S \lesssim$ 6 GeV (TYPE II)
- CDMS II reqiures $|\lambda_h| <$ 0.05, $|\lambda_H| >$ 0.1, and implies large $BR(H \to SS)$ (TYPE I, II)
- A fit of 2HDMS to LUX, superCDMS and CDMS II is only possible within 99% CL for CDMS II, for TYPE II model,then $m_s \sim 3.4-5.8$ GeV. For those points $BR(H \to SS) \gtrsim 90\%$

Theoretical constraints - Vacuum stability

2HDM Tree Level Vacuum Stability Constraints

- $\lambda_1, \lambda_2 > 0$
- $\lambda_3 > -\sqrt{\lambda_1 \lambda_2}$
- $\bullet \ \lambda_3 + \lambda_4 |\lambda_5| > -\sqrt{\lambda_1 \lambda_2}$
- $\lambda_3 > -\sqrt{\lambda_1 \lambda_2}$

Scalar Singlet Tree Level Vacuum Stability Constraints

- $\lambda_S > 0$
- $\kappa_1 > -\sqrt{\frac{1}{12}}\lambda_1\lambda_S$
- $\kappa_2 > -\sqrt{\frac{1}{12}\lambda_2\lambda_S}$
- if $\kappa_1 < 0$ or $\kappa_2 < 0$ then
 - $\bullet \ -2\kappa_1\kappa_2 + \frac{1}{6}\lambda_S\lambda_3 > -\sqrt{4(\frac{1}{12}\lambda_1\lambda_S \kappa_1^2)(\frac{1}{12}\lambda_2\lambda_S \kappa_2^2)}$
 - $-2\kappa_1\kappa_2 + \frac{1}{6}\lambda_S(\lambda_3 + \lambda_4 |\lambda_5|) > -\sqrt{4(\frac{1}{12}\lambda_1\lambda_S \kappa_1^2)(\frac{1}{12}\lambda_2\lambda_S \kappa_2^2)}$

Decoupling limit of 2HDM

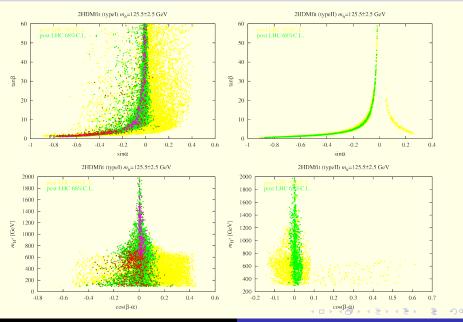
$$m_h^2 o \mathcal{O}(v^2) \ m_{A,H,H^\pm}^2 o \mathcal{O}(|m_{12}^2|) \ \cos(\beta - \alpha) o \mathcal{O}(v^2/m_{12}^2)$$

$$m_{A}^{2} = \frac{m_{12}^{2}}{s_{\beta}c_{\beta}} - \frac{1}{2}v^{2}(2\lambda_{5} + \lambda_{6}t_{\beta}^{-1} + \lambda_{7}t_{\beta}),$$

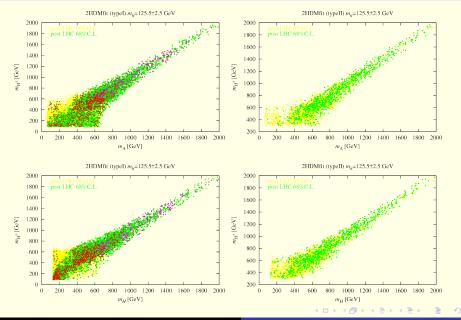
$$m_{H^{\pm}}^{2} = m_{A^{0}}^{2} + \frac{1}{2}v^{2}(\lambda_{5} - \lambda_{4}).$$

$$\mathcal{B}^{2} \equiv v^{2} \begin{pmatrix} \lambda_{1}c_{\beta}^{2} + 2\lambda_{6}s_{\beta}c_{\beta} + \lambda_{5}s_{\beta}^{2} & (\lambda_{3} + \lambda_{4})s_{\beta}c_{\beta} + \lambda_{6}c_{\beta}^{2} + \lambda_{7}s_{\beta}^{2} \\ (\lambda_{3} + \lambda_{4})s_{\beta}c_{\beta} + \lambda_{6}c_{\beta}^{2} + \lambda_{7}s_{\beta}^{2} & \lambda_{2}s_{\beta}^{2} + 2\lambda_{7}s_{\beta}c_{\beta} + \lambda_{5}c_{\beta}^{2} \end{pmatrix}$$

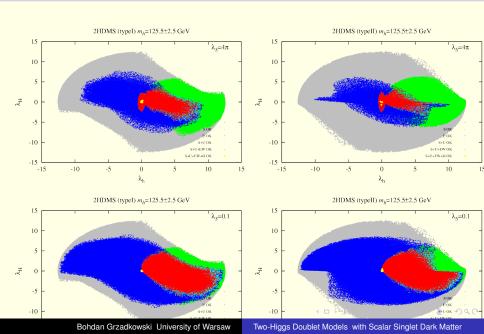
SM-like light Higgs ($\alpha=\beta-\pi/2$) (Yukawa couplings are like in the SM and VVh as well) with other scalars heavy



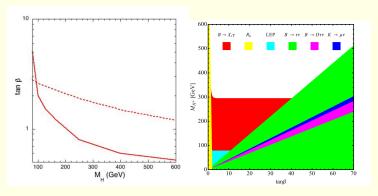
2HDM project (Dumont, Gunion, Jiang, Kraml)


2HDM Input:

- Yukawa type I/II
- m_h ∈ [123 GeV, 128 GeV]
- m_H ∈ [128 GeV, 2 TeV], m_A ∈ [5 GeV, 2 TeV]
- *m*_{H±} ∈ [*, 2 TeV]
- $\sin \alpha \in [-\pi/2, \pi/2]$, $\tan \beta \in [5,60]$, $m_{12}^2 \in [-(2\text{TeV})^2, (2\text{TeV})^2]$

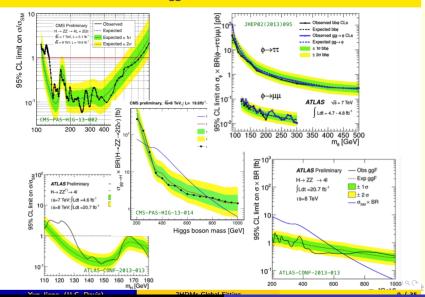

2HDM preliminiary results Dumont, Gunion, Jiang, Kraml

2HDM preliminiary results Dumont, Gunion, Jiang, Kraml


Theoretical constraints

2HDM constraints by Dumont, Gunion, Jiang, Kraml

Experimental Constraints:


- precision electroweak data: S,T,U constraints
- bounds in the $(m_{H^{\pm}}, \tan \beta)$ plane from various B-physics constraints for the type I/II (0805.2141, 1006.0470, 0912.0267)

LEFT: solid line: bounds from $Z \to b\bar{b}$, ϵ_K , Δ_{B_S} ; dashed: bounds from $B \to \gamma X_S$ RIGHT: bounds from various B-physics constraints for the typell model

2HDM constraints by Dumont, Gunion, Jiang, Kraml

Search limits on the heavier Higgs bosons

