Noncommutative field theory on \mathbb{R}_{λ}^{3}

Patrizia Vitale

Dipartimento di Fisica Università di Napoli

Workshop on Noncommutative Field Theory and Gravity Corfu september 8-15 2013
with J.C. Wallet LPT Orsay JHEP 1304 (2013) 115

Outline

- Motivations

Outline

- Motivations
- The noncommutative algebra \mathbb{R}_{λ}^{3}

Outline

- Motivations
- The noncommutative algebra \mathbb{R}_{λ}^{3}
- The matrix base

Outline

- Motivations
- The noncommutative algebra \mathbb{R}_{λ}^{3}
- The matrix base
- Scalar actions

Outline

- Motivations
- The noncommutative algebra \mathbb{R}_{λ}^{3}
- The matrix base
- Scalar actions
- One loop calculations

Outline

- Motivations
- The noncommutative algebra \mathbb{R}_{λ}^{3}
- The matrix base
- Scalar actions
- One loop calculations
- Conclusions

Motivations

- We want to understand the dependence of typical features of NC field theories (for example the mixing UV/IR) on the specific kind of NC

Motivations

- We want to understand the dependence of typical features of NC field theories (for example the mixing UV/IR) on the specific kind of NC
- Mostly NCQFT with constant, Moyal type, non commutativity are studied.

Motivations

- We want to understand the dependence of typical features of NC field theories (for example the mixing UV/IR) on the specific kind of NC
- Mostly NCQFT with constant, Moyal type, non commutativity are studied.
- The first non-trivial step is to consider NC spaces with NC parameter which is linear in coordinates (Lie algebra type)

$$
\left[x_{a}, x_{b}\right]=c_{a b}^{c} x_{c}
$$

Motivations

- We want to understand the dependence of typical features of NC field theories (for example the mixing UV/IR) on the specific kind of NC
- Mostly NCQFT with constant, Moyal type, non commutativity are studied.
- The first non-trivial step is to consider NC spaces with NC parameter which is linear in coordinates (Lie algebra type)

$$
\left[x_{a}, x_{b}\right]=c_{a b}^{c} x_{c}
$$

- I will describe a procedure to explicitly construct many inequivalent star products with such a noncommutativity.

Motivations

- We want to understand the dependence of typical features of NC field theories (for example the mixing UV/IR) on the specific kind of NC
- Mostly NCQFT with constant, Moyal type, non commutativity are studied.
- The first non-trivial step is to consider NC spaces with NC parameter which is linear in coordinates (Lie algebra type)

$$
\left[x_{a}, x_{b}\right]=c_{a b}^{c} x_{c}
$$

- I will describe a procedure to explicitly construct many inequivalent star products with such a noncommutativity.
- The easiest one, which is considered here is the one mimicking $\mathfrak{s u}(2)$ algebra

The noncommutative algebra \mathbb{R}_{λ}^{3}
[Hammou,Lagraa,SheikhJabbari PRD 2002] [GraciaBondia, Lizzi, Marmo, Vitale JHEP 2002]
The noncommutative algebra \mathbb{R}_{λ}^{3}

The noncommutative algebra \mathbb{R}_{λ}^{3}

The noncommutative algebra \mathbb{R}_{λ}^{3}

- It is a subalgebra of the Wick-Voros algebra \mathbb{R}_{θ}^{4}, a variation of the Moyal algebra, which exploits the well known realization of three-dimensional Lie algebras as Poisson subalgebras of quadratic-linear functions on $\mathbb{R}^{4} \simeq \mathbb{C}^{2} \quad(\mathfrak{i s p}(4))$

The noncommutative algebra \mathbb{R}_{λ}^{3}

The noncommutative algebra \mathbb{R}_{λ}^{3}

- It is a subalgebra of the Wick-Voros algebra \mathbb{R}_{θ}^{4}, a variation of the Moyal algebra, which exploits the well known realization of three-dimensional Lie algebras as Poisson subalgebras of quadratic-linear functions on $\mathbb{R}^{4} \simeq \mathbb{C}^{2} \quad(i \mathfrak{i p}(4))$
- \mathbb{R}_{λ}^{3} is generated by coordinate functions x^{μ}

$$
\pi^{*}\left(x^{\mu}\right)=\frac{\lambda}{\theta} \bar{z}_{a} e_{a b}^{\mu} z_{b}, \quad \mu=0, . ., 3, \quad a, b=1,2
$$

λ constant, real parameter of length dimension;

The noncommutative algebra \mathbb{R}_{λ}^{3}

The noncommutative algebra \mathbb{R}_{λ}^{3}

- It is a subalgebra of the Wick-Voros algebra \mathbb{R}_{θ}^{4}, a variation of the Moyal algebra, which exploits the well known realization of three-dimensional Lie algebras as Poisson subalgebras of quadratic-linear functions on $\mathbb{R}^{4} \simeq \mathbb{C}^{2} \quad(i \mathfrak{i p}(4))$
- \mathbb{R}_{λ}^{3} is generated by coordinate functions x^{μ}

$$
\pi^{*}\left(x^{\mu}\right)=\frac{\lambda}{\theta} \bar{z}_{a} e_{a b}^{\mu} z_{b}, \quad \mu=0, . ., 3, \quad a, b=1,2
$$

λ constant, real parameter of length dimension;

- $e^{i}=\frac{1}{2} \sigma^{i}, i=1, . ., 3 e_{0}=\frac{1}{2} \mathbf{1}$.

The noncommutative algebra \mathbb{R}_{λ}^{3}

The noncommutative algebra \mathbb{R}_{λ}^{3}

- It is a subalgebra of the Wick-Voros algebra \mathbb{R}_{θ}^{4}, a variation of the Moyal algebra, which exploits the well known realization of three-dimensional Lie algebras as Poisson subalgebras of quadratic-linear functions on $\mathbb{R}^{4} \simeq \mathbb{C}^{2} \quad(i \mathfrak{i s p}(4))$
- \mathbb{R}_{λ}^{3} is generated by coordinate functions x^{μ}

$$
\pi^{*}\left(x^{\mu}\right)=\frac{\lambda}{\theta} \bar{z}_{a} e_{a b}^{\mu} z_{b}, \quad \mu=0, . ., 3, \quad a, b=1,2
$$

λ constant, real parameter of length dimension;

- $e^{i}=\frac{1}{2} \sigma^{i}, i=1, . ., 3 e_{0}=\frac{1}{2} \mathbf{1}$.
- it is based on the identification of \mathbb{R}^{3} with \mathfrak{g}^{*}. Here $\mathfrak{g}=\mathfrak{s u}(2)$

The noncommutative algebra \mathbb{R}_{λ}^{3}

The noncommutative algebra \mathbb{R}_{λ}^{3}

- It is a subalgebra of the Wick-Voros algebra \mathbb{R}_{θ}^{4}, a variation of the Moyal algebra, which exploits the well known realization of three-dimensional Lie algebras as Poisson subalgebras of quadratic-linear functions on $\mathbb{R}^{4} \simeq \mathbb{C}^{2}$
- \mathbb{R}_{λ}^{3} is generated by coordinate functions x^{μ}

$$
\pi^{*}\left(x^{\mu}\right)=\frac{\lambda}{\theta} \bar{z}_{a} e_{a b}^{\mu} z_{b}, \quad \mu=0, . ., 3, \quad a, b=1,2
$$

λ constant, real parameter of length dimension;

- $e^{i}=\frac{1}{2} \sigma^{i}, i=1, . ., 3 e_{0}=\frac{1}{2} \mathbf{1}$.
- it is based on the identification of \mathbb{R}^{3} with \mathfrak{g}^{*}. Here $\mathfrak{g}=\mathfrak{s u}(2)$
- Besides being a Poisson subalgebra, it is also a NC subalgebra wrt the Wick-Voros (and Moyal) star product $\phi \star \psi\left(z_{a}, \bar{z}_{a}\right)=\phi(z, \bar{z}) \exp \left(\theta \overleftarrow{\partial}_{z_{a}} \vec{\partial}_{\bar{z}_{a}}\right) \psi(z, \bar{z}), \quad a=1,2$ $\left[z_{a}, \bar{z}_{b}\right]_{\star}=\theta \delta_{a b}$

The noncommutative algebra \mathbb{R}_{λ}^{3}
The algebra generated by $x_{\mu}^{\prime} s$ is closed wrt the Wick-Voros product

The noncommutative algebra \mathbb{R}_{λ}^{3}
The algebra generated by $x_{\mu}^{\prime} s$ is closed wrt the Wick-Voros product

$$
\phi \star \psi(x)=\left.\exp \left[\frac{\lambda}{2}\left(\delta_{i j} x_{0}+i \epsilon_{i j}^{k} x_{k}\right) \frac{\partial}{\partial u_{i}} \frac{\partial}{\partial v_{j}}\right] \phi(u) \psi(v)\right|_{u=v=x}
$$

which implies, for coordinate functions

The noncommutative algebra \mathbb{R}_{λ}^{3}

The algebra generated by $x_{\mu}^{\prime} s$ is closed wrt the Wick-Voros product

$$
\phi \star \psi(x)=\left.\exp \left[\frac{\lambda}{2}\left(\delta_{i j} x_{0}+i \epsilon_{i j}^{k} x_{k}\right) \frac{\partial}{\partial u_{i}} \frac{\partial}{\partial v_{j}}\right] \phi(u) \psi(v)\right|_{u=v=x}
$$

which implies, for coordinate functions

$$
x_{i} \star x_{j}=x_{i} x_{j}+\frac{\lambda}{2}\left(x_{0} \delta_{i j}+i \epsilon_{k}^{i j} x^{k}\right)
$$

The noncommutative algebra \mathbb{R}_{λ}^{3}

The algebra generated by $x_{\mu}^{\prime} s$ is closed wrt the Wick-Voros product

$$
\phi \star \psi(x)=\left.\exp \left[\frac{\lambda}{2}\left(\delta_{i j} x_{0}+i \epsilon_{i j}^{k} x_{k}\right) \frac{\partial}{\partial u_{i}} \frac{\partial}{\partial v_{j}}\right] \phi(u) \psi(v)\right|_{u=v=x}
$$

which implies, for coordinate functions

$$
\begin{aligned}
& x_{i} \star x_{j}=x_{i} x_{j}+\frac{\lambda}{2}\left(x_{0} \delta_{i j}+i \epsilon_{k}^{i j} x^{k}\right) \\
& x_{0} \star x_{i}=x_{i} \star x_{0}=x_{0} x_{i}+\frac{\lambda}{2} x_{i}
\end{aligned}
$$

The noncommutative algebra \mathbb{R}_{λ}^{3}

The algebra generated by $x_{\mu}^{\prime} s$ is closed wrt the Wick-Voros product

$$
\phi \star \psi(x)=\left.\exp \left[\frac{\lambda}{2}\left(\delta_{i j} x_{0}+i \epsilon_{i j}^{k} x_{k}\right) \frac{\partial}{\partial u_{i}} \frac{\partial}{\partial v_{j}}\right] \phi(u) \psi(v)\right|_{u=v=x}
$$

which implies, for coordinate functions

$$
\begin{aligned}
x_{i} \star x_{j} & =x_{i} x_{j}+\frac{\lambda}{2}\left(x_{0} \delta_{i j}+i \epsilon_{k}^{i j} x^{k}\right) \\
x_{0} \star x_{i} & =x_{i} \star x_{0}=x_{0} x_{i}+\frac{\lambda}{2} x_{i} \\
x_{0} \star x_{0} & =x_{0}\left(x_{0}+\frac{\lambda}{2}\right)=\sum_{i} x_{i} \star x_{i}-\lambda x_{0}
\end{aligned}
$$

The noncommutative algebra \mathbb{R}_{λ}^{3}

The algebra generated by $x_{\mu}^{\prime} s$ is closed wrt the Wick-Voros product

$$
\phi \star \psi(x)=\left.\exp \left[\frac{\lambda}{2}\left(\delta_{i j} x_{0}+i \epsilon_{i j}^{k} x_{k}\right) \frac{\partial}{\partial u_{i}} \frac{\partial}{\partial v_{j}}\right] \phi(u) \psi(v)\right|_{u=v=x}
$$

which implies, for coordinate functions

$$
\begin{aligned}
x_{i} \star x_{j}= & x_{i} x_{j}+\frac{\lambda}{2}\left(x_{0} \delta_{i j}+i \epsilon_{k}^{i j} x^{k}\right) \\
x_{0} \star x_{i}= & x_{i} \star x_{0}=x_{0} x_{i}+\frac{\lambda}{2} x_{i} \\
x_{0} \star x_{0}= & x_{0}\left(x_{0}+\frac{\lambda}{2}\right)=\sum_{i} x_{i} \star x_{i}-\lambda x_{0} \\
& {\left[x_{i} \star x_{j}\right]=i \lambda \epsilon_{i j}^{k} x_{k} }
\end{aligned}
$$

$x_{0} \star$-commutes with x_{i} so that we can alternatively define \mathbb{R}_{λ}^{3} as the \star-commutant of $x_{0} ; x_{0}$ generates the center of the algebra.

The Wick-Voros product

The Wick-Voros product
The Wick-Voros product is introduced through a weighted quantization map which, in two dimensions, associates to functions on the complex plane the operator (Berezin quantization)

$$
\hat{\phi}=\hat{\mathcal{W}}_{V}(\phi)=\frac{1}{(2 \pi)^{2}} \int \mathrm{~d}^{2} z \hat{\Omega}(z, \bar{z}) \phi(z, \bar{z})
$$

The Wick-Voros product

The Wick-Voros product
The Wick-Voros product is introduced through a weighted quantization map which, in two dimensions, associates to functions on the complex plane the operator (Berezin quantization)

$$
\hat{\phi}=\hat{\mathcal{W}}_{V}(\phi)=\frac{1}{(2 \pi)^{2}} \int \mathrm{~d}^{2} z \hat{\Omega}(z, \bar{z}) \phi(z, \bar{z})
$$

where

$$
\hat{\Omega}(z, \bar{z})=\int \mathrm{d}^{2} \eta e^{-(\eta \bar{z}-\bar{\eta} z)} e^{\theta \eta a^{\dagger}} e^{-\theta \bar{\eta} a}
$$

a, a^{\dagger} are the usual (configuration space) creation and annihilation operators, with commutation relations

$$
\left[a, a^{\dagger}\right]=\theta
$$

The Wick-Voros product

The inverse map which is the analogue of the Wigner map is represented by:

$$
\phi(z, \bar{z})=\mathcal{W}_{V}^{-1}(\hat{\phi})=\langle z| \hat{\phi}|z\rangle
$$

with $|z\rangle$ the coherent states defined by $a|z\rangle=z|z\rangle$.

The Wick-Voros product

The inverse map which is the analogue of the Wigner map is represented by:

$$
\phi(z, \bar{z})=\mathcal{W}_{V}^{-1}(\hat{\phi})=\langle z| \hat{\phi}|z\rangle
$$

with $|z\rangle$ the coherent states defined by $a|z\rangle=z|z\rangle$.
The Wick-Voros product is then defined as

$$
\phi \star \psi:=\mathcal{W}_{V}^{-1}\left(\hat{\mathcal{W}}_{V}(\phi) \hat{\mathcal{W}}_{V}(\psi)\right)=\langle z| \hat{\phi} \hat{\psi}|z\rangle
$$

Unlike the Moyal product

$$
\int \phi \star \psi=\int \psi \star \phi \neq \int \phi \cdot \psi
$$

The matrix base
The Wick-Voros matrix base for \mathbb{R}_{θ}^{4}
The Wick-Voros matrix base for \mathbb{R}_{θ}^{4}
F. Lizzi, P. V. and A. Zampini, JHEP 0308, 057 (2003) [arXiv:hep-th/0306247]

The matrix base
The Wick-Voros matrix base for \mathbb{R}_{θ}^{4}
The Wick-Voros matrix base for \mathbb{R}_{θ}^{4}
F. Lizzi, P. V. and A. Zampini, JHEP 0308, 057 (2003) [arXiv:hep-th/0306247]

This is similar to the matrix base introduced for the Moyal product [GraciaBondia, Varilly JMP 1988]

The matrix base
The Wick-Voros matrix base for \mathbb{R}_{θ}^{4}
The Wick-Voros matrix base for \mathbb{R}_{θ}^{4}
F. Lizzi, P. V. and A. Zampini, JHEP 0308, 057 (2003) [arXiv:hep-th/0306247]

This is similar to the matrix base introduced for the Moyal product [GraciaBondia, Varilly JMP 1988] In 2-d it is based on the expansion

$$
\phi(\bar{z}, z)=\sum_{p q} \tilde{\phi}_{p q} \bar{z}^{p} z^{q}, \quad p, q \in \mathbb{N} \quad \tilde{\phi}_{p q} \in \mathbb{C}
$$

The quantization map produces the normal ordered operator

The matrix base
The Wick-Voros matrix base for \mathbb{R}_{θ}^{4}
The Wick-Voros matrix base for \mathbb{R}_{θ}^{4}
F. Lizzi, P. V. and A. Zampini, JHEP 0308, 057 (2003) [arXiv:hep-th/0306247]

This is similar to the matrix base introduced for the Moyal product [GraciaBondia, Varilly JMP 1988] In 2-d it is based on the expansion

$$
\phi(\bar{z}, z)=\sum_{p q} \tilde{\phi}_{p q} \bar{z}^{p} z^{q}, \quad p, q \in \mathbb{N} \quad \tilde{\phi}_{p q} \in \mathbb{C}
$$

The quantization map produces the normal ordered operator

$$
\hat{\phi}=\hat{\mathcal{W}}_{V}(\phi)=\sum_{p q} \tilde{\phi}_{p q} a^{\dagger p} a^{q}
$$

Thus we generalize to $4 \mathrm{~d}, a_{a}, a_{a}^{\dagger}, a=1,2$ and use the harmonic oscillator base

The matrix base

The Wick-Voros matrix base for \mathbb{R}_{θ}^{4}
The Wick-Voros matrix base for \mathbb{R}_{θ}^{4}
F. Lizzi, P. V. and A. Zampini, JHEP 0308, 057 (2003) [arXiv:hep-th/0306247]

This is similar to the matrix base introduced for the Moyal product [GraciaBondia, Varilly JMP 1988] In 2-d it is based on the expansion

$$
\phi(\bar{z}, z)=\sum_{p q} \tilde{\phi}_{p q} \bar{z}^{p} z^{q}, \quad p, q \in \mathbb{N} \quad \tilde{\phi}_{p q} \in \mathbb{C}
$$

The quantization map produces the normal ordered operator

$$
\hat{\phi}=\hat{\mathcal{W}}_{V}(\phi)=\sum_{p q} \tilde{\phi}_{p q} a^{\dagger p} a^{q}
$$

Thus we generalize to $4 \mathrm{~d}, a_{a}, a_{a}^{\dagger}, a=1,2$ and use the harmonic oscillator base

$$
\begin{aligned}
& a_{1}\left|n_{1}, n_{2}\right\rangle=\sqrt{\theta} \sqrt{n_{1}}\left|n_{1}-1, n_{2}\right\rangle, a_{1}^{\dagger}|n\rangle=\sqrt{\theta} \sqrt{n_{1}+1}\left|n_{1}+1, n_{2}\right\rangle, \\
& a_{2}\left|n_{1}, n_{2}\right\rangle=\sqrt{\theta} \sqrt{n_{2}}\left|n_{1}, n_{2}-1\right\rangle, a_{2}^{\dagger}|n\rangle=\sqrt{\theta} \sqrt{n_{2}+1}\left|n_{1}, n_{2}+1\right\rangle
\end{aligned}
$$

The matrix base
The Wick-Voros matrix base for \mathbb{R}_{θ}^{4}
we get

$$
\begin{gathered}
\hat{\phi}=\sum_{P, Q \in \mathbb{N}^{2}} \phi_{P Q}|P\rangle\langle Q| \quad \phi_{P Q} \in \mathbb{C} \quad|P\rangle:=\left|p_{1}, p_{2}\right\rangle \\
|P\rangle=\frac{a_{1}^{\dagger p_{1}} a_{2}^{\dagger p_{2}}}{\left[P!\theta^{|P|}\right]^{1 / 2}}|0\rangle, \quad \forall P=\left(p_{1}, p_{2}\right) \in \mathbb{N}^{2},
\end{gathered}
$$

thus the matrix base in \mathbb{R}_{θ}^{4}

The matrix base
The Wick-Voros matrix base for \mathbb{R}_{θ}^{4}
we get

$$
\begin{gathered}
\hat{\phi}=\sum_{P, Q \in \mathbb{N}^{2}} \phi_{P Q}|P\rangle\langle Q| \quad \phi_{P Q} \in \mathbb{C} \quad|P\rangle:=\left|p_{1}, p_{2}\right\rangle \\
|P\rangle=\frac{a_{1}^{\dagger p_{1}} a_{2}^{\dagger p_{2}}}{\left[P!\theta^{|P|}\right]^{1 / 2}}|0\rangle, \quad \forall P=\left(p_{1}, p_{2}\right) \in \mathbb{N}^{2},
\end{gathered}
$$

thus the matrix base in \mathbb{R}_{θ}^{4}

$$
f_{P Q}(z, \bar{z})=\left\langle z_{1}, z_{2}\right| \hat{f}_{P Q}\left|z_{1}, z_{2}\right\rangle=\frac{e^{-\frac{\bar{z}_{1} z_{1}+\bar{z}_{2} z_{2}}{\theta}}}{\sqrt{P!Q!\theta^{|P+Q|}}} \bar{z}_{1}^{p_{1}} \bar{z}_{2}^{p_{2}} z_{1}^{q_{1}} z_{2}^{q_{2}}
$$

with $\hat{f}_{P Q}:=|P\rangle\langle Q|$

The matrix base
The Wick-Voros matrix base for \mathbb{R}_{θ}^{4}
we get

$$
\begin{gathered}
\hat{\phi}=\sum_{P, Q \in \mathbb{N}^{2}} \phi_{P Q}|P\rangle\langle Q| \quad \phi_{P Q} \in \mathbb{C} \quad|P\rangle:=\left|p_{1}, p_{2}\right\rangle \\
|P\rangle=\frac{a_{1}^{\dagger p_{1}} a_{2}^{\dagger p_{2}}}{\left[P!\theta^{|P|}\right]^{1 / 2}}|0\rangle, \quad \forall P=\left(p_{1}, p_{2}\right) \in \mathbb{N}^{2},
\end{gathered}
$$

thus the matrix base in \mathbb{R}_{θ}^{4}

$$
f_{P Q}(z, \bar{z})=\left\langle z_{1}, z_{2}\right| \hat{f}_{P Q}\left|z_{1}, z_{2}\right\rangle=\frac{e^{-\frac{\bar{z}_{1} z_{1}+\bar{z}_{2} z_{2}}{\theta}}}{\sqrt{P!Q!\theta^{|P+Q|}}} \bar{z}_{1}^{p_{1}} \bar{z}_{2}^{p_{2}} z_{1}^{q_{1}} z_{2}^{q_{2}}
$$

with $\hat{f}_{P Q}:=|P\rangle\langle Q|$ and usual nice properties

$$
\begin{aligned}
f_{M N} \star f_{P Q}(z, \bar{z}) & =\delta_{N P} f_{M Q}(z, \bar{z}) \\
\int d^{2} z_{1} d^{2} z_{2} f_{P Q}(z, \bar{z}) & =(\pi \theta)^{2} \delta_{P Q}
\end{aligned}
$$

The star product becomes a matrix product

$$
\phi \star \psi(z, \bar{z})=\sum \phi_{M N} \psi_{P Q} f_{M N} \star f_{P Q}=\sum \phi_{M P} \psi_{P Q} f_{M Q}
$$

and the integral becomes a trace

$$
\int \phi \star \psi \star \ldots=(\pi \theta)^{2} \operatorname{Tr} \Phi \Psi \ldots
$$

The matrix base
The matrix base of \mathbb{R}_{λ}^{3}
The matrix base of \mathbb{R}_{λ}^{3}

The matrix base
The matrix base of \mathbb{R}_{λ}^{3}
The matrix base of \mathbb{R}_{λ}^{3}
It is obtained as a reduction from the previous one using the Schwinger-Jordan realization of $S U(2)$ generators.

The matrix base

The matrix base of \mathbb{R}_{λ}^{3}
The matrix base of \mathbb{R}_{λ}^{3}
It is obtained as a reduction from the previous one using the Schwinger-Jordan realization of $S U(2)$ generators.
Consider the number operators $\hat{N}_{1}=a_{1}^{\dagger} a_{1}, \hat{N}_{2}=a_{2}^{\dagger} a_{2}$ with eigenvalues n_{1}, n_{2}.

$$
n_{1}+n_{2}=2 j \quad n_{1}-n_{2}=2 m
$$

with $j(j+1)$ and m eigenvalues of $\hat{X}_{i} \hat{X}_{i}$ and \hat{X}_{3} resp.

The matrix base

The matrix base of \mathbb{R}_{λ}^{3}
The matrix base of \mathbb{R}_{λ}^{3}
It is obtained as a reduction from the previous one using the Schwinger-Jordan realization of $S U(2)$ generators.
Consider the number operators $\hat{N}_{1}=a_{1}^{\dagger} a_{1}, \hat{N}_{2}=a_{2}^{\dagger} a_{2}$ with eigenvalues n_{1}, n_{2}.

$$
n_{1}+n_{2}=2 j \quad n_{1}-n_{2}=2 m
$$

with $j(j+1)$ and m eigenvalues of $\hat{X}_{i} \hat{X}_{i}$ and \hat{X}_{3} resp.

$$
\left|n_{1}, n_{2}>\longrightarrow\right| j+m, j-m>
$$

The matrix base

The matrix base of \mathbb{R}_{λ}^{3}
The matrix base of \mathbb{R}_{λ}^{3}
It is obtained as a reduction from the previous one using the Schwinger-Jordan realization of $S U(2)$ generators.
Consider the number operators $\hat{N}_{1}=a_{1}^{\dagger} a_{1}, \hat{N}_{2}=a_{2}^{\dagger} a_{2}$ with eigenvalues n_{1}, n_{2}.

$$
n_{1}+n_{2}=2 j \quad n_{1}-n_{2}=2 m
$$

with $j(j+1)$ and m eigenvalues of $\hat{X}_{i} \hat{X}_{i}$ and \hat{X}_{3} resp.

$$
\begin{gathered}
\left|n_{1}, n_{2}>\longrightarrow\right| j+m, j-m> \\
\hat{f}_{N P}=\left|n_{1}, n_{2}><p_{1}, p_{2}\right| \longrightarrow|j+m, j-m><\tilde{\jmath}+\tilde{m}, \tilde{\jmath}-\tilde{m}| \equiv \hat{v}_{m \tilde{m}}^{j \tilde{j}}
\end{gathered}
$$

The matrix base

The matrix base of \mathbb{R}_{λ}^{3}
The matrix base of \mathbb{R}_{λ}^{3}
It is obtained as a reduction from the previous one using the Schwinger-Jordan realization of $S U(2)$ generators.
Consider the number operators $\hat{N}_{1}=a_{1}^{\dagger} a_{1}, \hat{N}_{2}=a_{2}^{\dagger} a_{2}$ with eigenvalues n_{1}, n_{2}.

$$
n_{1}+n_{2}=2 j \quad n_{1}-n_{2}=2 m
$$

with $j(j+1)$ and m eigenvalues of $\hat{X}_{i} \hat{X}_{i}$ and \hat{X}_{3} resp.

$$
\begin{gathered}
\left|n_{1}, n_{2}>\longrightarrow\right| j+m, j-m> \\
\hat{f}_{N P}=\left|n_{1}, n_{2}><p_{1}, p_{2}\right| \longrightarrow|j+m, j-m><\tilde{\jmath}+\tilde{m}, \tilde{\jmath}-\tilde{m}| \equiv \hat{v}_{m \tilde{m}}^{j \tilde{m}} \\
f_{N P}(\bar{z}, z) \longrightarrow v_{m \tilde{m}}^{j \tilde{j}}(\bar{z}, z)
\end{gathered}
$$

The matrix base
The matrix base of \mathbb{R}_{λ}^{3}
For this to be a base in \mathbb{R}_{λ}^{3} we impose it to \star-commute with x_{0}

$$
x_{0} \star v_{m \tilde{m}}^{j \tilde{j}}(z, \bar{z})-v_{m \tilde{m}}^{j \tilde{j}} \star x_{0}(z, \bar{z})=\lambda(j-\tilde{\jmath}) v_{m \tilde{m}}^{j \tilde{j}}
$$

The matrix base
The matrix base of \mathbb{R}_{λ}^{3}
For this to be a base in \mathbb{R}_{λ}^{3} we impose it to \star-commute with x_{0}

$$
x_{0} \star v_{m \tilde{m}}^{j \tilde{j}}(z, \bar{z})-v_{m \tilde{m}}^{j \tilde{j}} \star x_{0}(z, \bar{z})=\lambda(j-\tilde{\jmath}) v_{m \tilde{m}}^{j \tilde{j}}
$$

This fixes $j=\tilde{\jmath}$. We have then

$$
\phi\left(x_{i}, x_{0}\right)=\sum_{j} \sum_{m, \tilde{m}=-j}^{j} \phi_{m \tilde{m}}^{j} v_{m \tilde{m}}^{j}
$$

with

$$
v_{m \tilde{m}}^{j}:=v_{m \tilde{m}}^{j j}=e^{-\frac{\bar{z}_{2} z_{a}}{\theta}} \frac{\bar{z}_{1}^{j+m} z_{1}^{j+\tilde{m}_{\bar{z}_{2}^{j-m}} z_{2}^{j-\tilde{m}}}}{\sqrt{(j+m)!(j-m)!(j+\tilde{m})!(j-\tilde{m})!\theta^{4 j}}}
$$

The matrix base

The matrix base of \mathbb{R}_{λ}^{3}
For this to be a base in \mathbb{R}_{λ}^{3} we impose it to \star-commute with x_{0}

$$
x_{0} \star v_{m \tilde{m}}^{j \tilde{j}}(z, \bar{z})-v_{m \tilde{m}}^{j \tilde{j}} \star x_{0}(z, \bar{z})=\lambda(j-\tilde{\jmath}) v_{m \tilde{m}}^{j \tilde{j}}
$$

This fixes $j=\tilde{\jmath}$. We have then

$$
\phi\left(x_{i}, x_{0}\right)=\sum_{j} \sum_{m, \tilde{m}=-j}^{j} \phi_{m \tilde{m}}^{j} v_{m \tilde{m}}^{j}
$$

with

$$
v_{m \tilde{m}}^{j}:=v_{m \tilde{m}}^{j j}=e^{-\frac{\bar{z}_{a} z_{a}}{\theta}} \frac{\bar{z}_{1}^{j+m} z_{1}^{j+\tilde{m}} \bar{z}_{2}^{j-m} z_{2}^{j-\tilde{m}}}{\sqrt{(j+m)!(j-m)!(j+\tilde{m})!(j-\tilde{m})!\theta^{4 j}}}
$$

The star product acquires the simple form

$$
\begin{gathered}
v_{m \tilde{m}}^{j} \star v_{n \tilde{n}}^{\tilde{J}}=\delta^{j \tilde{\jmath}} \delta_{\tilde{m} n} v_{m \tilde{n}}^{j} \\
\int v_{m \tilde{m}}^{j} \star v_{n \tilde{n}}^{\tilde{j}}=\pi^{2} \theta^{2} \delta^{j \tilde{\jmath}} \delta_{\tilde{m} n} \delta_{m \tilde{n}}
\end{gathered}
$$

The matrix base
The matrix base of \mathbb{R}_{λ}^{3}
The star product in \mathbb{R}_{λ}^{3} becomes a block-diagonal infinite-matrix product

The star product in \mathbb{R}_{λ}^{3} becomes a block-diagonal infinite-matrix product

$$
\begin{aligned}
\phi \star \psi & =\sum_{j} \phi_{m_{1} \tilde{m}_{1}}^{j} \psi_{m_{2} \tilde{m}_{2}}^{j} V_{m_{1} \tilde{m}_{1}}^{j} \star V_{m_{2} \tilde{m}_{2}}^{j}=\sum \phi_{m_{1} \tilde{m}_{1}}^{j} \psi_{m_{2}}^{j} \tilde{m}_{2} V_{m_{1}}^{j} \tilde{m}_{2} \delta_{\tilde{m}_{1} m_{2}} \\
& \left.=\sum^{j} \cdot \psi^{j}\right)_{m_{1}} \tilde{m}_{2} V_{m_{1} \tilde{m}_{2}}^{j}
\end{aligned}
$$

The matrix base

The matrix base of \mathbb{R}_{λ}^{3}
The star product in \mathbb{R}_{λ}^{3} becomes a block-diagonal infinite-matrix product

$$
\begin{aligned}
\phi \star \psi & =\sum \phi_{m_{1} \tilde{m}_{1}}^{j} \psi_{m_{2} \tilde{m}_{2}}^{j} v_{m_{1} \tilde{m}_{1}}^{j} \star v_{m_{2} \tilde{m}_{2}}^{j}=\sum \phi_{m_{1} \tilde{m}_{1}}^{j} \psi_{m_{2} \tilde{m}_{2}}^{j} v_{m_{1} \tilde{m}_{2}}^{j} \delta_{\tilde{m}_{1} m_{2}} \\
& =\sum_{j, m_{1}, \tilde{m}_{2}}\left(\Phi^{j} \cdot \psi^{j}\right)_{m_{1} \tilde{m}_{2}} v_{m_{1} \tilde{m}_{2}}^{j}
\end{aligned}
$$

the infinite matrix Φ gets rearranged into a block-diagonal form, each block being the $(2 j+1) \times(2 j+1)$ matrix $\Phi^{j}=\left\{\phi_{m n}^{j}\right\},-j \leq m, n \leq j$.

The matrix base

The matrix base of \mathbb{R}_{λ}^{3}
The star product in \mathbb{R}_{λ}^{3} becomes a block-diagonal infinite-matrix product

$$
\begin{aligned}
\phi \star \psi & =\sum \phi_{m_{1} \tilde{m}_{1}}^{j} \psi_{m_{2} \tilde{m}_{2}}^{j} v_{m_{1} \tilde{m}_{1}}^{j} \star v_{m_{2} \tilde{m}_{2}}^{j}=\sum \phi_{m_{1} \tilde{m}_{1}}^{j} \psi_{m_{2} \tilde{m}_{2}}^{j} v_{m_{1} \tilde{m}_{2}}^{j} \delta_{\tilde{m}_{1} m_{2}} \\
& =\sum_{j, m_{1}, \tilde{m}_{2}}\left(\Phi^{j} \cdot \psi^{j}\right)_{m_{1} \tilde{m}_{2}} v_{m_{1} \tilde{m}_{2}}^{j}
\end{aligned}
$$

the infinite matrix Φ gets rearranged into a block-diagonal form, each block being the $(2 j+1) \times(2 j+1)$ matrix $\phi^{j}=\left\{\phi_{m n}^{j}\right\},-j \leq m, n \leq j$.
The integral is defined through the pullback to \mathbb{R}_{θ}^{4}

$$
\int_{\mathbb{R}_{\lambda}^{3}} \phi:=\frac{\kappa^{3}}{\pi^{2} \theta^{2}} \int_{\mathbb{R}_{\theta}^{4}} \pi^{\star}(\phi)=\kappa^{3} \sum_{j} \operatorname{Tr}_{j} \phi^{j}
$$

with Tr_{j} the trace in the $(2 j+1) \times(2 j+1)$ subspace.

Summary of the first part

Summary of the first part

- The algebra \mathbb{R}_{λ}^{3} with *-product

$$
\phi \star \psi(x)=\left.\exp \left[\frac{\lambda}{2}\left(\delta_{i j} x_{0}+i \epsilon_{i j}^{k} x_{k}\right) \frac{\partial}{\partial u_{i}} \frac{\partial}{\partial v_{j}}\right] \phi(u) \psi(v)\right|_{u=v=x}
$$

- The matrix base $v_{m \tilde{m}}^{j}$

Summary of the first part

- The algebra \mathbb{R}_{λ}^{3} with *-product

$$
\phi \star \psi(x)=\left.\exp \left[\frac{\lambda}{2}\left(\delta_{i j} x_{0}+i \epsilon_{i j}^{k} x_{k}\right) \frac{\partial}{\partial u_{i}} \frac{\partial}{\partial v_{j}}\right] \phi(u) \psi(v)\right|_{u=v=x}
$$

- The matrix base $v_{m \tilde{m}}^{j}$
- The integral as a trace: $\int \phi \star \psi \star \ldots \star \xi=\kappa^{3} \sum_{j} \operatorname{Tr}_{j} \Phi^{j} \psi^{j} \ldots$ Е j

The scalar action
The Laplacian

The scalar action

- All derivations of \mathbb{R}_{λ}^{3} are inner $D_{\mu} \rightarrow\left[x_{\mu}, \cdot\right]_{\star}$ (D_{0} is trivial because $\left[x_{0}, f\right]_{\star}=0$ for $f \in \mathbb{R}_{\lambda}^{3}$)
These generate a dynamics which is "tangent" to the fuzzy spheres of the foliation.

The scalar action

- All derivations of \mathbb{R}_{λ}^{3} are inner $D_{\mu} \rightarrow\left[x_{\mu}, \cdot\right]_{\star}\left(D_{0}\right.$ is trivial because $\left[x_{0}, f\right]_{\star}=0$ for $f \in \mathbb{R}_{\lambda}^{3}$)
These generate a dynamics which is "tangent" to the fuzzy spheres of the foliation.
- Indeed, the natural Laplacian operator constructed with inner derivations $\sum_{\mu}\left[x_{\mu},\left[x_{\mu}, \phi\right]_{\star}\right]_{\star}$, reduces to the usual Laplacian on the fuzzy sphere

The scalar action

- All derivations of \mathbb{R}_{λ}^{3} are inner $D_{\mu} \rightarrow\left[x_{\mu}, \cdot\right]_{\star}\left(D_{0}\right.$ is trivial because $\left[x_{0}, f\right]_{\star}=0$ for $f \in \mathbb{R}_{\lambda}^{3}$)
These generate a dynamics which is "tangent" to the fuzzy spheres of the foliation.
- Indeed, the natural Laplacian operator constructed with inner derivations $\sum_{\mu}\left[x_{\mu},\left[x_{\mu}, \phi\right]_{\star}\right]_{\star}$, reduces to the usual Laplacian on the fuzzy sphere
- we propose

$$
\Delta \phi=\alpha \sum_{i} D_{i}^{2} \phi+\frac{\beta}{\kappa^{4}} x_{0} \star x_{0} \star \phi
$$

$$
\begin{gathered}
D_{i}=\kappa^{-2}\left[x_{i}, \cdot\right]_{\star}, i=1, . ., 3 \quad \alpha, \beta \text { real parameters and } \\
x_{0} \star \phi=x_{0} \phi+\frac{\lambda}{2} x_{i} \partial_{i} \phi
\end{gathered}
$$

contains the dilation operator in the radial direction.

The scalar action

With a slight modification the highest derivative term of the Laplacian can be made proportional to the ordinary Laplacian on \mathbb{R}^{3}, for the parameters α and β appropriately chosen.

$$
\begin{aligned}
\sum_{i}\left[x_{i},\left[x_{i}, \phi\right]_{\star}\right]_{\star} & =\lambda^{2}\left[x^{i} \partial_{i}\left(x^{j} \partial_{j} \phi+x^{i} \partial_{i} \phi\right)\right]-\lambda^{2} x_{0}^{2} \partial^{2} \phi \\
x_{0} \star x_{0} \star \phi+\frac{\lambda}{2} x_{0} \star \phi & =\frac{\lambda^{2}}{4}\left[x^{i} \partial_{i}\left(x^{j} \partial_{j} \phi+x^{i} \partial_{i} \phi\right)\right] \\
& +\lambda x_{0}\left(x^{i} \partial_{i} \phi+\phi\right)+x_{0}^{2} \phi
\end{aligned}
$$

With this choice, and $\alpha / \beta=-1 / 4$, we obtain a term proportional to the ordinary Laplacian, multiplied by x_{0}^{2}, plus lower derivatives.

The scalar action

The kinetic action is then

$$
S_{k i n}[\phi]=\int \phi \star\left(\Delta+\mu^{2}\right) \phi
$$

The scalar action

The kinetic action is then

$$
S_{k i n}[\phi]=\int \phi \star\left(\Delta+\mu^{2}\right) \phi
$$

As for the potential we consider a quartic interaction but every polynomial interaction can be treated easily

$$
\frac{g}{4!} \int \phi^{\star 4}=\frac{\kappa^{3} g}{4!} \operatorname{Tr}(\Phi \Phi \Phi \Phi)
$$

from which we read the vertex

The scalar action

The kinetic action is then

$$
S_{k i n}[\phi]=\int \phi \star\left(\Delta+\mu^{2}\right) \phi
$$

As for the potential we consider a quartic interaction but every polynomial interaction can be treated easily

$$
\frac{g}{4!} \int \phi^{\star 4}=\frac{\kappa^{3} g}{4!} \operatorname{Tr}(\Phi \Phi \Phi \Phi)
$$

from which we read the vertex

$$
V_{p_{1} \tilde{p}_{1} ; p_{2} \tilde{p}_{2} ; p_{3} \tilde{p}_{3} ; p_{4} \tilde{p}_{4}}^{j_{1} j_{j} j_{2}}=\frac{g}{4!} \delta^{j_{1} j_{2}} \delta^{j_{2} j_{3}} \delta^{j_{3} j_{4}} \delta_{\tilde{p}_{1} p_{2}} \delta_{\tilde{p}_{2} p_{3}} \delta_{\tilde{p}_{3} p_{4}} \delta_{\tilde{p}_{4} p_{1}}
$$

The scalar action
The kinetic action in the matrix base

The scalar action

The kinetic action in the matrix base
We express all operators in the matrix base

The scalar action

We express all operators in the matrix base

$$
\begin{aligned}
& x_{+}=\frac{\lambda}{\theta} \bar{z}_{1} z_{2}=\lambda \sum_{j, m} \sqrt{(j+m)(j-m+1)} v_{m m-1}^{j} \\
& x_{-}=\frac{\lambda}{\theta} \bar{z}_{2} z_{1}=\lambda \sum_{j, m} \sqrt{(j-m)(j+m+1)} v_{m m+1}^{j} \\
& x_{3}=\frac{\lambda}{2 \theta}\left(\bar{z}_{1} z_{1}-\bar{z}_{2} z_{2}\right)=\lambda \sum_{j, m} m v_{m m}^{j} \\
& x_{0}=\frac{\lambda}{2 \theta}\left(\bar{z}_{1} z_{1}+\bar{z}_{2} z_{2}\right)=\lambda \sum_{j, m} j v_{m m}^{j}
\end{aligned}
$$

The scalar action

We express all operators in the matrix base

$$
\begin{aligned}
& x_{+}=\frac{\lambda}{\theta} \bar{z}_{1} z_{2}=\lambda \sum_{j, m} \sqrt{(j+m)(j-m+1)} v_{m m-1}^{j} \\
& x_{-}=\frac{\lambda}{\theta} \bar{z}_{2} z_{1}=\lambda \sum_{j, m} \sqrt{(j-m)(j+m+1)} v_{m m+1}^{j} \\
& x_{3}=\frac{\lambda}{2 \theta}\left(\bar{z}_{1} z_{1}-\bar{z}_{2} z_{2}\right)=\lambda \sum_{j, m} m v_{m m}^{j} \\
& x_{0}=\frac{\lambda}{2 \theta}\left(\bar{z}_{1} z_{1}+\bar{z}_{2} z_{2}\right)=\lambda \sum_{j, m} j v_{m m}^{j}
\end{aligned}
$$

and compute

$$
\begin{aligned}
S_{k}[\phi] & =\kappa^{3} \sum \phi_{m_{1} \tilde{m}_{1}}^{j_{1}}\left(\Delta(\alpha, \beta)+\mu^{2} \mathbf{1}\right)_{m_{1} \tilde{m}_{1} ; m_{2} \tilde{m}_{2}}^{j_{1} j_{2}} \phi_{m_{2} \tilde{m}_{2}}^{j_{2}} \\
& =\kappa^{3} \operatorname{Tr}\left(\Phi\left(\Delta(\alpha, \beta)+\mu^{2} \mathbf{1}\right) \Phi\right)
\end{aligned}
$$

The scalar action

with

$$
\begin{aligned}
& \left(\Delta+\mu^{2} \mathbf{1}\right)_{m_{1} \tilde{m}_{1} ; m_{2} \tilde{m}_{2}}^{j_{1} j_{2}}=\frac{1}{\pi^{2} \theta^{2}} \int v_{m_{1}}^{j_{1} \tilde{m}_{1}} \star\left(\Delta(\alpha, \beta)+\mu^{2} \mathbf{1}\right) v_{m_{2}}^{j_{2}} \tilde{m}_{2} \\
& \quad=\frac{\lambda^{2}}{\kappa^{4}} \delta^{j_{1} j_{2}}\left\{\delta_{\tilde{m}_{1} m_{2}} \delta_{m_{1} \tilde{m}_{2}} D_{m_{2} \tilde{m}_{2}}^{j_{2}}-\delta_{\tilde{m}_{1}, m_{2}+1} \delta_{m_{1}, \tilde{m}_{2}+1} B_{m_{2}, \tilde{m}_{2}}^{j_{2}}\right. \\
& \left.\quad-\delta_{\tilde{m}_{1}, m_{2}-1} \delta_{m_{1}, \tilde{m}_{2}-1} H_{m_{2}, \tilde{m}_{2}}^{j_{2}}\right\}
\end{aligned}
$$

The scalar action

with

$$
\begin{aligned}
& \left(\Delta+\mu^{2} \mathbf{1}\right)_{m_{1} \tilde{m}_{1} ; m_{2} \tilde{m}_{2}}^{j_{1} j_{2}}=\frac{1}{\pi^{2} \theta^{2}} \int v_{m_{1}}^{j_{1}} \tilde{m}_{1} \star\left(\Delta(\alpha, \beta)+\mu^{2} \mathbf{1}\right) v_{m_{2}}^{j_{2}} \tilde{m}_{2} \\
& \quad=\frac{\lambda^{2}}{\kappa^{4}} \delta^{j_{1} j_{2}}\left\{\delta_{\tilde{m}_{1} m_{2}} \delta_{m_{1} \tilde{m}_{2}} D_{m_{2} \tilde{m}_{2}}^{j_{2}}-\delta_{\tilde{m}_{1}, m_{2}+1} \delta_{m_{1}, \tilde{m}_{2}+1} B_{m_{2}, \tilde{m}_{2}}^{j_{2}}\right. \\
& \left.\quad-\delta_{\tilde{m}_{1}, m_{2}-1} \delta_{m_{1}, \tilde{m}_{2}-1} H_{m_{2}, \tilde{m}_{2}}^{j_{2}}\right\}
\end{aligned}
$$

There are non-diagonal (or non-local, in the language of matrix models) terms.

The scalar action

with

$$
\begin{aligned}
& \left(\Delta+\mu^{2} \mathbf{1}\right)_{m_{1} \tilde{m}_{1} ; m_{2} \tilde{m}_{2}}^{j_{1} j_{2}}=\frac{1}{\pi^{2} \theta^{2}} \int v_{m_{1} \tilde{m}_{1}}^{j_{1}} \star\left(\Delta(\alpha, \beta)+\mu^{2} \mathbf{1}\right) v_{m_{2}}^{j_{2}} \tilde{m}_{2} \\
& \quad=\frac{\lambda^{2}}{\kappa^{4}} \delta^{j_{1} j_{2}}\left\{\delta_{\tilde{m}_{1} m_{2}} \delta_{m_{1} \tilde{m}_{2}} D_{m_{2} \tilde{m}_{2}}^{j_{2}}-\delta_{\tilde{m}_{1}, m_{2}+1} \delta_{m_{1}, \tilde{m}_{2}+1} B_{m_{2}, \tilde{m}_{2}}^{j_{2}}\right. \\
& \left.\quad-\delta_{\tilde{m}_{1}, m_{2}-1} \delta_{m_{1}, \tilde{m}_{2}-1} H_{m_{2}, \tilde{m}_{2}}^{j_{2}}\right\}
\end{aligned}
$$

There are non-diagonal (or non-local, in the language of matrix models) terms.
Remarks

- In the matrix base the interaction term is diagonal, the kinetic term is not (cfr. Grosse-Wulkenhaar)

The scalar action

The kinetic action in the matrix base
with

$$
\begin{aligned}
& (\Delta \\
& \left.\quad+\mu^{2} \mathbf{1}\right)_{m_{1} \tilde{m}_{1} ; m_{2} \tilde{m}_{2}}^{j_{1} j_{2}}=\frac{1}{\pi^{2} \theta^{2}} \int v_{m_{1} \tilde{m}_{1}}^{j_{1}} \star\left(\Delta(\alpha, \beta)+\mu^{2} \mathbf{1}\right) v_{m_{2} \tilde{m}_{2}}^{j_{2}} \\
& \quad=\frac{\lambda^{2}}{\kappa^{4}} \delta^{j_{1} j_{2}}\left\{\delta_{\tilde{m}_{1} m_{2}} \delta_{m_{1} \tilde{m}_{2}} D_{m_{2} \tilde{m}_{2}}^{j_{2}}-\delta_{\tilde{m}_{1}, m_{2}+1} \delta_{m_{1}, \tilde{m}_{2}+1} B_{m_{2}, \tilde{m}_{2}}^{j_{2}}\right. \\
& \left.\quad-\delta_{\tilde{m}_{1}, m_{2}-1} \delta_{m_{1}, \tilde{m}_{2}-1} H_{m_{2}, \tilde{m}_{2}}^{j_{2}}\right\}
\end{aligned}
$$

There are non-diagonal (or non-local, in the language of matrix models) terms.
Remarks

- In the matrix base the interaction term is diagonal, the kinetic term is not (cfr. Grosse-Wulkenhaar)
- The action factorizes into an infinite sum of contributions $S[\Phi]=\sum_{j \in \frac{\mathbb{N}}{2}} S^{(j)}[\Phi]$

The scalar action
The propagator
The propagator is defined as

The scalar action

The propagator is defined as

$$
\sum_{k, l=-j_{2}}^{j_{2}} \Delta_{m n ; l k}^{j_{1} j_{2}} P_{l k ; r s}^{j_{2} j_{3}}=\delta^{j_{1} j_{3}} \delta_{m s} \delta_{n r}
$$

The scalar action

The propagator is defined as

$$
\sum_{k, l=-j_{2}}^{j_{2}} \Delta_{m n ; l k}^{j_{1} j_{2}} P_{l k ; r s}^{j_{2} j_{3}}=\delta^{j_{1} j_{3}} \delta_{m s} \delta_{n r}
$$

The kinetic term may be diagonalized in each subspace at j fixed.

The scalar action

The propagator is defined as

$$
\sum_{k, l=-j_{2}}^{j_{2}} \Delta_{m n ; l k}^{j_{1} j_{2}} P_{l k ; r s}^{j_{2} j_{3}}=\delta^{j_{1} j_{3}} \delta_{m s} \delta_{n r}
$$

The kinetic term may be diagonalized in each subspace at j fixed. The technique is the same as in [GrosseWulkenhaar]. It uses $m+I=n+k$ and orthogonal polynomials.

The scalar action

The propagator is defined as

$$
\sum_{k, l=-j_{2}}^{j_{2}} \Delta_{m n ; l k}^{j_{1} j_{2}} P_{l k ; r s}^{j_{2} j_{3}}=\delta^{j_{1} j_{3}} \delta_{m s} \delta_{n r}
$$

The kinetic term may be diagonalized in each subspace at j fixed. The technique is the same as in [GrosseWulkenhaar]. It uses $m+l=n+k$ and orthogonal polynomials.
It turns out that the polynomials are the dual Hahn polynomials

The scalar action

The propagator

The propagator is defined as

$$
\sum_{k, l=-j_{2}}^{j_{2}} \Delta_{m n ; l k}^{j_{1} j_{2}} P_{l k ; r s}^{j_{2} j_{3}}=\delta^{j_{1} j_{3}} \delta_{m s} \delta_{n r}
$$

The kinetic term may be diagonalized in each subspace at j fixed. The technique is the same as in [GrosseWulkenhaar]. It uses $m+I=n+k$ and orthogonal polynomials.
It turns out that the polynomials are the dual Hahn polynomials which are proportional to fuzzy spherical harmonics.

The scalar action

The propagator

The propagator is defined as

$$
\sum_{k, l=-j_{2}}^{j_{2}} \Delta_{m n ; l k}^{j_{1} j_{2}} P_{l k ; r s}^{j_{2} j_{3}}=\delta^{j_{1} j_{3}} \delta_{m s} \delta_{n r}
$$

The kinetic term may be diagonalized in each subspace at j fixed. The technique is the same as in [GrosseWulkenhaar]. It uses $m+I=n+k$ and orthogonal polynomials.
It turns out that the polynomials are the dual Hahn polynomials which are proportional to fuzzy spherical harmonics.
$(P(\alpha, \beta))_{p_{1}, \tilde{p}_{1} ; p_{2} \tilde{p}_{2}}^{j_{1} j_{2}}=\sum_{l=0}^{2 j_{1}} \sum_{k=-l}^{l} \frac{\delta^{j_{1} j_{2}}}{\left(2 j_{1}+1\right)\left(\frac{\lambda^{2}}{\kappa^{4}} \gamma+\mu^{2}\right)}\left(Y_{l k}^{j_{1} \dagger}\right)_{p_{1} \tilde{p}_{1}}\left(Y_{l k}^{j_{2}}\right)_{p_{2} \tilde{p}_{2}}$
with

$$
\gamma=\left(\alpha I(I+1)+\beta j^{2}\right)
$$

The scalar action

$$
\begin{gathered}
\left(Y_{l k}^{j}\right)_{m \tilde{m}}=\left\langle\hat{v}_{m \tilde{m}}^{j}\right| \hat{Y}_{l k}^{j}>=\sqrt{2 j+1}(-1)^{j-\tilde{m}}\left(\begin{array}{cc|c}
j & j & \prime \\
m & -\tilde{m} & k
\end{array}\right) \\
\left(Y_{l k}^{j}\right)_{m \tilde{m}}=(-1)^{-2 j}\left(Y_{l k}^{j}\right)_{\tilde{m} m}
\end{gathered}
$$

The scalar action

The propagator

$$
\begin{gathered}
\left(Y_{l k}^{j}\right)_{m \tilde{m}}=\left\langle\hat{V}_{m \tilde{m}}^{j}\right| \hat{Y}_{l k}^{j}>=\sqrt{2 j+1}(-1)^{j-\tilde{m}}\left(\begin{array}{cc|c}
j & j & l \\
m & -\tilde{m} & k
\end{array}\right) \\
\left(Y_{l k}^{j}\right)_{m \tilde{m}}=(-1)^{-2 j}\left(Y_{l k}^{j}\right)_{\tilde{m} m}
\end{gathered}
$$

Once we have the propagator and the vertex we can compute correlation functions

One-loop calculations

Planar diagram contributing to the 2-point correlation function

$$
\mathcal{A}_{p_{1} \tilde{p}_{1} ; p_{2} \tilde{p}_{2}}^{j_{1} j_{2}{ }^{p}}=\frac{\kappa^{4}}{\lambda^{2}} \delta^{j_{1} j_{2}} \delta_{\tilde{p}_{1} p_{2}} \delta_{p_{1} \tilde{p}_{2}} \sum_{l=0}^{2 j_{1}}(-1)^{2 j_{1}} \frac{2 l+1}{\left(2 j_{1}+1\right)\left(\gamma\left(j_{1}, l ; \alpha \beta\right)+\frac{\kappa^{4}}{\lambda^{2}} \mu^{2}\right)}
$$

which is finite for all j

One-loop calculations

In the propagating (fuzzy harmonics) base

$$
\tilde{\mathcal{A}}_{l_{1} k_{1} ; l_{2} k_{2}}^{j_{1} j_{2} P}=\frac{\kappa^{4}}{\lambda^{2}} \delta^{j_{1} j_{2}} \sum_{l=0}^{2 j_{1}} \frac{2 l+1}{\alpha I(I+1)+\beta j_{1}^{2}+\frac{\kappa^{4}}{\lambda^{2}} \mu^{2}}(-1)^{k_{2}} \delta_{-k_{1} k_{2}} \delta_{l_{1} l_{2}} .
$$

When fixing $j_{1}=j_{2}=j$ and $\beta=0$ we retrieve the result for the fuzzy sphere
S. Vaidya, Phys. Lett. B 512, 403 (2001); C. -S. Chu, J. Madore, H. Steinacker, JHEP 0108, 038 (2001)

One-loop calculations

Nonplanar diagram contributing to the two-point function

$$
\begin{aligned}
& \mathcal{A}^{j_{1} j_{3} N P} N \tilde{p}_{1} ; p_{3} \tilde{p}_{3}
\end{aligned}=\frac{\kappa^{4}}{\lambda^{2}}{ }^{j j_{1} j_{3}} \sum_{l=0}^{2 j_{1}} \frac{1}{\left(\gamma\left(j_{1}, l, \alpha, \beta\right)+\frac{\kappa^{4}}{\lambda^{2}} \mu^{2}\right)} \times .
$$

can be seen to be finite for all values of the indices

One-loop calculations

In the propagating base

$$
\begin{gathered}
\tilde{\mathcal{A}}_{l_{1} k_{1} ; l_{2} k_{2}}^{j_{1} j_{2} N P}=\frac{\kappa^{4}}{\lambda^{2}} \delta^{j_{1} j_{2}} \sum_{I=0}^{2 j_{1}} \frac{\left(2 j_{1}+1\right)(2 I+1)}{\left(\alpha I(I+1)+\beta j_{1}^{2}+\frac{\kappa^{4}}{\lambda^{2}} \mu^{2}\right)} \times \\
(-1)^{l_{1}+I+2 j_{1}-k_{1}} \delta_{l_{1} l_{2}} \delta_{k_{1},-k_{2}}\left\{\begin{array}{ccc}
j_{1} & j_{1} & l_{1} \\
j_{1} & j_{1} & l
\end{array}\right\}
\end{gathered}
$$

In agreement with
S. Vaidya, Phys. Lett. B 512, 403 (2001); C. -S. Chu, J. Madore, H. Steinacker, JHEP 0108, 038 (2001)
for $j_{1}=j_{2}, \beta=0$

Conclusions

- We have studied a scalar field theory on \mathbb{R}_{λ}^{3}.

Conclusions

- We have studied a scalar field theory on \mathbb{R}_{λ}^{3}.
- We find that it is finite at one-loop. Likely to be finite at all loops.
- We have studied a scalar field theory on \mathbb{R}_{λ}^{3}.
- We find that it is finite at one-loop. Likely to be finite at all loops.
- No UV-IR mixing

Further developments

Conclusions

- We have studied a scalar field theory on \mathbb{R}_{λ}^{3}.
- We find that it is finite at one-loop. Likely to be finite at all loops.
- No UV-IR mixing

Further developments

- Study other star-products with noncompact foliations, s.t. the one induced by $\mathfrak{s u}(1,1)$. The space is foliated into fuzzy hyperboloids.

Conclusions

- We have studied a scalar field theory on \mathbb{R}_{λ}^{3}.
- We find that it is finite at one-loop. Likely to be finite at all loops.
- No UV-IR mixing

Further developments

- Study other star-products with noncompact foliations, s.t. the one induced by $\mathfrak{s u}(1,1)$. The space is foliated into fuzzy hyperboloids.
- Consider different Laplacians V. Galikova, P. Presnajder, arXiv:1112.4643 [math-ph]

Conclusions

- We have studied a scalar field theory on \mathbb{R}_{λ}^{3}.
- We find that it is finite at one-loop. Likely to be finite at all loops.
- No UV-IR mixing

Further developments

- Study other star-products with noncompact foliations, s.t. the one induced by $\mathfrak{s u}(1,1)$. The space is foliated into fuzzy hyperboloids.
- Consider different Laplacians V. Galikova, P. Presnajder, arXiv:1112.4643 [math-ph]
- ϕ^{6} theory which is just renormalizable in 3-d in the commutative case

Conclusions

- We have studied a scalar field theory on \mathbb{R}_{λ}^{3}.
- We find that it is finite at one-loop. Likely to be finite at all loops.
- No UV-IR mixing

Further developments

- Study other star-products with noncompact foliations, s.t. the one induced by $\mathfrak{s u}(1,1)$. The space is foliated into fuzzy hyperboloids.
- Consider different Laplacians V. Galikova, P. Presnajder, arXiv:1112.4643 [math-ph]
- ϕ^{6} theory which is just renormalizable in 3-d in the commutative case
- gauge models (in preparation with Antoine Géré and J.-C. Wallet)

