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Motivations

• We want to understand the dependence of typical features of
NC field theories (for example the mixing UV/IR) on the specific
kind of NC
• Mostly NCQFT with constant, Moyal type, non commutativity
are studied.
• The first non-trivial step is to consider NC spaces with NC
parameter which is linear in coordinates (Lie algebra type)

[xa, xb] = ccabxc

• I will describe a procedure to explicitly construct many
inequivalent star products with such a noncommutativity.
• The easiest one, which is considered here is the one mimicking
su(2) algebra
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The noncommutative algebra R
3
λ

It is a subalgebra of the Wick-Voros algebra R
4
θ, a variation of

the Moyal algebra, which exploits the well known realization
of three-dimensional Lie algebras as Poisson subalgebras of
quadratic-linear functions on R

4 ≃ C
2 (isp(4))

Patrizia Vitale Noncommutative field theory on R
3
λ



The noncommutative algebra R
3
λ

[Hammou,Lagraa,SheikhJabbari PRD 2002] [GraciaBondia, Lizzi, Marmo, Vitale JHEP 2002]

The noncommutative algebra R
3
λ

It is a subalgebra of the Wick-Voros algebra R
4
θ, a variation of

the Moyal algebra, which exploits the well known realization
of three-dimensional Lie algebras as Poisson subalgebras of
quadratic-linear functions on R

4 ≃ C
2 (isp(4))

R
3
λ is generated by coordinate functions xµ
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λ

θ
z̄ae

µ
abzb, µ = 0, .., 3, a, b = 1, 2

λ constant, real parameter of length dimension;
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The noncommutative algebra R
3
λ

It is a subalgebra of the Wick-Voros algebra R
4
θ, a variation of

the Moyal algebra, which exploits the well known realization
of three-dimensional Lie algebras as Poisson subalgebras of
quadratic-linear functions on R

4 ≃ C
2 (isp(4))

R
3
λ is generated by coordinate functions xµ

π∗(xµ) =
λ

θ
z̄ae

µ
abzb, µ = 0, .., 3, a, b = 1, 2

λ constant, real parameter of length dimension;

e i = 1
2σ

i , i = 1, .., 3 e0 =
1
21.

Patrizia Vitale Noncommutative field theory on R
3
λ



The noncommutative algebra R
3
λ

[Hammou,Lagraa,SheikhJabbari PRD 2002] [GraciaBondia, Lizzi, Marmo, Vitale JHEP 2002]

The noncommutative algebra R
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4
θ, a variation of
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of three-dimensional Lie algebras as Poisson subalgebras of
quadratic-linear functions on R
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2 (isp(4))

R
3
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θ
z̄ae

µ
abzb, µ = 0, .., 3, a, b = 1, 2

λ constant, real parameter of length dimension;

e i = 1
2σ
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1
21.
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[Hammou,Lagraa,SheikhJabbari PRD 2002] [GraciaBondia, Lizzi, Marmo, Vitale JHEP 2002]

The noncommutative algebra R
3
λ

It is a subalgebra of the Wick-Voros algebra R
4
θ, a variation of

the Moyal algebra, which exploits the well known realization
of three-dimensional Lie algebras as Poisson subalgebras of
quadratic-linear functions on R

4 ≃ C
2 (isp(4))

R
3
λ is generated by coordinate functions xµ

π∗(xµ) =
λ

θ
z̄ae

µ
abzb, µ = 0, .., 3, a, b = 1, 2

λ constant, real parameter of length dimension;

e i = 1
2σ

i , i = 1, .., 3 e0 =
1
21.

it is based on the identification of R3 with g∗. Here g = su(2)

Besides being a Poisson subalgebra, it is also a NC subalgebra
wrt the Wick-Voros (and Moyal) star product

φ ⋆ ψ (za, z̄a) = φ(z , z̄) exp(θ
←−
∂ za

−→
∂ z̄a)ψ(z , z̄), a = 1, 2

[za, z̄b]⋆ = θδab Wick-Voros product
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φ ⋆ ψ (x) = exp

[

λ

2

(

δijx0 + iǫkijxk

) ∂

∂ui

∂

∂vj

]

φ(u)ψ(v)|u=v=x

which implies, for coordinate functions
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) ∂
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The algebra generated by x ′µs is closed wrt the Wick-Voros product

φ ⋆ ψ (x) = exp

[

λ

2

(

δijx0 + iǫkijxk

) ∂

∂ui

∂

∂vj

]

φ(u)ψ(v)|u=v=x

which implies, for coordinate functions

xi ⋆ xj = xixj +
λ

2

(

x0δij + iǫijkx
k
)

x0 ⋆ xi = xi ⋆ x0 = x0xi +
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The algebra generated by x ′µs is closed wrt the Wick-Voros product

φ ⋆ ψ (x) = exp

[

λ

2

(

δijx0 + iǫkijxk

) ∂

∂ui

∂

∂vj

]

φ(u)ψ(v)|u=v=x

which implies, for coordinate functions

xi ⋆ xj = xixj +
λ

2

(

x0δij + iǫijkx
k
)

x0 ⋆ xi = xi ⋆ x0 = x0xi +
λ

2
xi

x0 ⋆ x0 = x0(x0 +
λ

2
) =

∑

i

xi ⋆ xi − λx0
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The algebra generated by x ′µs is closed wrt the Wick-Voros product

φ ⋆ ψ (x) = exp

[

λ

2

(

δijx0 + iǫkijxk

) ∂

∂ui

∂

∂vj

]

φ(u)ψ(v)|u=v=x

which implies, for coordinate functions

xi ⋆ xj = xixj +
λ

2

(

x0δij + iǫijkx
k
)

x0 ⋆ xi = xi ⋆ x0 = x0xi +
λ

2
xi

x0 ⋆ x0 = x0(x0 +
λ

2
) =

∑

i

xi ⋆ xi − λx0

[xi ⋆ xj ] = iλǫkijxk

x0 ⋆-commutes with xi so that we can alternatively define R
3
λ as

the ⋆-commutant of x0; x0 generates the center of the algebra.
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The Wick-Voros product

The Wick-Voros product is introduced through a weighted
quantization map which, in two dimensions, associates to functions
on the complex plane the operator (Berezin quantization)

φ̂ = ŴV (φ) =
1

(2π)2

∫

d
2z Ω̂(z , z̄)φ(z , z̄)
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The Wick-Voros product

The Wick-Voros product is introduced through a weighted
quantization map which, in two dimensions, associates to functions
on the complex plane the operator (Berezin quantization)

φ̂ = ŴV (φ) =
1

(2π)2

∫

d
2z Ω̂(z , z̄)φ(z , z̄)

where

Ω̂(z , z̄) =

∫

d
2η e−(ηz̄−η̄z)eθηa

†

e−θη̄a

a, a† are the usual (configuration space) creation and annihilation
operators, with commutation relations

[a, a†] = θ.
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The Wick-Voros product

The inverse map which is the analogue of the Wigner map is
represented by:

φ(z , z̄) =W−1
V (φ̂) = 〈z |φ̂|z〉

with |z〉 the coherent states defined by a|z〉 = z |z〉.
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The Wick-Voros product

The inverse map which is the analogue of the Wigner map is
represented by:

φ(z , z̄) =W−1
V (φ̂) = 〈z |φ̂|z〉

with |z〉 the coherent states defined by a|z〉 = z |z〉.
The Wick-Voros product is then defined as

φ ⋆ ψ :=W−1
V

(

ŴV (φ)ŴV (ψ)
)

= 〈z |φ̂ ψ̂|z〉

Unlike the Moyal product

∫

φ ⋆ ψ =

∫

ψ ⋆ φ 6=
∫

φ · ψ

the algebra R
3
λ
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[GraciaBondia, Varilly JMP 1988]
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The Wick-Voros matrix base for R4
θ

F. Lizzi, P. V. and A. Zampini, JHEP 0308, 057 (2003) [arXiv:hep-th/0306247]

This is similar to the matrix base introduced for the Moyal product
[GraciaBondia, Varilly JMP 1988] In 2-d it is based on the expansion

φ(z̄ , z) =
∑

pq

φ̃pq z̄
pzq , p, q ∈ N φ̃pq ∈ C

The quantization map produces the normal ordered operator
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The Wick-Voros matrix base for R4
θ

F. Lizzi, P. V. and A. Zampini, JHEP 0308, 057 (2003) [arXiv:hep-th/0306247]

This is similar to the matrix base introduced for the Moyal product
[GraciaBondia, Varilly JMP 1988] In 2-d it is based on the expansion

φ(z̄ , z) =
∑

pq

φ̃pq z̄
pzq , p, q ∈ N φ̃pq ∈ C

The quantization map produces the normal ordered operator

φ̂ = ŴV (φ) =
∑

pq

φ̃pqa
†paq

Thus we generalize to 4d, aa, a
†
a, a = 1, 2 and use the harmonic

oscillator base
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The Wick-Voros matrix base for R4
θ

F. Lizzi, P. V. and A. Zampini, JHEP 0308, 057 (2003) [arXiv:hep-th/0306247]

This is similar to the matrix base introduced for the Moyal product
[GraciaBondia, Varilly JMP 1988] In 2-d it is based on the expansion

φ(z̄ , z) =
∑

pq

φ̃pq z̄
pzq , p, q ∈ N φ̃pq ∈ C

The quantization map produces the normal ordered operator

φ̂ = ŴV (φ) =
∑

pq

φ̃pqa
†paq

Thus we generalize to 4d, aa, a
†
a, a = 1, 2 and use the harmonic

oscillator base

a1|n1, n2〉 =
√
θ
√
n1|n1 − 1, n2〉, a†1|n〉 =

√
θ
√
n1 + 1|n1 + 1, n2〉,

a2|n1, n2〉 =
√
θ
√
n2|n1, n2 − 1〉, a†2|n〉 =

√
θ
√
n2 + 1|n1, n2 + 1〉

Wick-Voros product
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we get

φ̂ =
∑

P,Q∈N2

φPQ |P〉〈Q| φPQ ∈ C |P〉 := |p1, p2〉

|P〉 = a
†p1
1 a

†p2
2

[P!θ|P|]1/2
|0〉, ∀P = (p1, p2) ∈ N

2,

thus the matrix base in R
4
θ
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The matrix base
The Wick-Voros matrix base for R4

θ

we get

φ̂ =
∑

P,Q∈N2

φPQ |P〉〈Q| φPQ ∈ C |P〉 := |p1, p2〉

|P〉 = a
†p1
1 a

†p2
2

[P!θ|P|]1/2
|0〉, ∀P = (p1, p2) ∈ N

2,

thus the matrix base in R
4
θ

fPQ(z , z̄) = 〈z1, z2|f̂PQ |z1, z2〉 =
e−

z̄1z1+z̄2z2
θ

√

P!Q!θ|P+Q|
z̄
p1
1 z̄

p2
2 z

q1
1 z

q2
2

with f̂PQ := |P〉〈Q|
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The matrix base
The Wick-Voros matrix base for R4

θ

we get

φ̂ =
∑

P,Q∈N2

φPQ |P〉〈Q| φPQ ∈ C |P〉 := |p1, p2〉

|P〉 = a
†p1
1 a

†p2
2

[P!θ|P|]1/2
|0〉, ∀P = (p1, p2) ∈ N

2,

thus the matrix base in R
4
θ

fPQ(z , z̄) = 〈z1, z2|f̂PQ |z1, z2〉 =
e−

z̄1z1+z̄2z2
θ

√

P!Q!θ|P+Q|
z̄
p1
1 z̄

p2
2 z

q1
1 z

q2
2

with f̂PQ := |P〉〈Q| and usual nice properties

fMN ⋆ fPQ(z , z̄) = δNP fMQ(z , z̄)
∫

d2z1d
2z2 fPQ(z , z̄) = (πθ)2δPQ
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The matrix base
The Wick-Voros matrix base for R4

θ

The star product becomes a matrix product

φ ⋆ ψ(z , z̄) =
∑

φMNψPQ fMN ⋆ fPQ =
∑

φMPψPQ fMQ

and the integral becomes a trace

∫

φ ⋆ ψ ⋆ ... = (πθ)2 TrΦΨ...
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The matrix base of R3
λ

It is obtained as a reduction from the previous one using the
Schwinger-Jordan realization of SU(2) generators.
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The matrix base of R3
λ

It is obtained as a reduction from the previous one using the
Schwinger-Jordan realization of SU(2) generators.

Consider the number operators N̂1 = a
†
1a1, N̂2 = a

†
2a2 with

eigenvalues n1, n2.

n1 + n2 = 2j n1 − n2 = 2m

with j(j + 1) and m eigenvalues of X̂i X̂i and X̂3 resp.
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The matrix base of R3
λ

It is obtained as a reduction from the previous one using the
Schwinger-Jordan realization of SU(2) generators.

Consider the number operators N̂1 = a
†
1a1, N̂2 = a

†
2a2 with

eigenvalues n1, n2.

n1 + n2 = 2j n1 − n2 = 2m

with j(j + 1) and m eigenvalues of X̂i X̂i and X̂3 resp.

|n1, n2 >−→ |j +m, j −m >
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The matrix base of R3
λ

It is obtained as a reduction from the previous one using the
Schwinger-Jordan realization of SU(2) generators.

Consider the number operators N̂1 = a
†
1a1, N̂2 = a

†
2a2 with

eigenvalues n1, n2.

n1 + n2 = 2j n1 − n2 = 2m

with j(j + 1) and m eigenvalues of X̂i X̂i and X̂3 resp.

|n1, n2 >−→ |j +m, j −m >

f̂NP = |n1, n2 >< p1, p2| −→ |j +m, j −m >< ̃+ m̃, ̃− m̃| ≡ v̂
j ̃
mm̃
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The matrix base of R3
λ

It is obtained as a reduction from the previous one using the
Schwinger-Jordan realization of SU(2) generators.

Consider the number operators N̂1 = a
†
1a1, N̂2 = a

†
2a2 with

eigenvalues n1, n2.

n1 + n2 = 2j n1 − n2 = 2m

with j(j + 1) and m eigenvalues of X̂i X̂i and X̂3 resp.

|n1, n2 >−→ |j +m, j −m >

f̂NP = |n1, n2 >< p1, p2| −→ |j +m, j −m >< ̃+ m̃, ̃− m̃| ≡ v̂
j ̃
mm̃

fNP(z̄ , z) −→ v
j ̃
mm̃(z̄, z)
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The matrix base
The matrix base of R3

λ

For this to be a base in R
3
λ we impose it to ⋆-commute with x0

x0 ⋆ v
j ̃
mm̃(z , z̄)− v

j ̃
mm̃ ⋆ x0(z , z̄) = λ(j − ̃)v j ̃mm̃
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The matrix base
The matrix base of R3

λ

For this to be a base in R
3
λ we impose it to ⋆-commute with x0

x0 ⋆ v
j ̃
mm̃(z , z̄)− v

j ̃
mm̃ ⋆ x0(z , z̄) = λ(j − ̃)v j ̃mm̃

This fixes j = ̃. We have then

φ(xi , x0) =
∑

j

j
∑

m,m̃=−j

φjmm̃v
j
mm̃

with

v
j
mm̃ := v

jj
mm̃ = e−

z̄aza
θ

z̄
j+m
1 z

j+m̃
1 z̄

j−m
2 z

j−m̃
2

√

(j +m)!(j −m)!(j + m̃)!(j − m̃)!θ4j

Patrizia Vitale Noncommutative field theory on R
3
λ



The matrix base
The matrix base of R3

λ

For this to be a base in R
3
λ we impose it to ⋆-commute with x0

x0 ⋆ v
j ̃
mm̃(z , z̄)− v

j ̃
mm̃ ⋆ x0(z , z̄) = λ(j − ̃)v j ̃mm̃

This fixes j = ̃. We have then

φ(xi , x0) =
∑

j

j
∑

m,m̃=−j

φjmm̃v
j
mm̃

with

v
j
mm̃ := v

jj
mm̃ = e−

z̄aza
θ

z̄
j+m
1 z

j+m̃
1 z̄

j−m
2 z

j−m̃
2

√

(j +m)!(j −m)!(j + m̃)!(j − m̃)!θ4j

The star product acquires the simple form

v
j
mm̃ ⋆ v

̃
nñ = δj ̃δm̃nv

j
mñ

∫

v
j
mm̃ ⋆ v

̃
nñ = π2θ2δj ̃δm̃nδmñ.
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The matrix base
The matrix base of R3

λ

The star product in R
3
λ becomes a block-diagonal infinite-matrix

product

Patrizia Vitale Noncommutative field theory on R
3
λ



The matrix base
The matrix base of R3

λ

The star product in R
3
λ becomes a block-diagonal infinite-matrix

product

φ ⋆ ψ =
∑

φjm1m̃1
ψj
m2m̃2

v
j
m1m̃1

⋆ v jm2m̃2
=

∑

φjm1m̃1
ψj
m2m̃2

v
j
m1m̃2

δm̃1m2

=
∑

j ,m1,m̃2

(Φj ·Ψj)m1m̃2v
j
m1m̃2
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The matrix base
The matrix base of R3

λ

The star product in R
3
λ becomes a block-diagonal infinite-matrix

product

φ ⋆ ψ =
∑

φjm1m̃1
ψj
m2m̃2

v
j
m1m̃1

⋆ v jm2m̃2
=

∑

φjm1m̃1
ψj
m2m̃2

v
j
m1m̃2

δm̃1m2

=
∑

j ,m1,m̃2

(Φj ·Ψj)m1m̃2v
j
m1m̃2

the infinite matrix Φ gets rearranged into a block-diagonal form,
each block being the (2j + 1)× (2j + 1) matrix
Φj = {φjmn}, −j ≤ m, n ≤ j .
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The matrix base
The matrix base of R3

λ

The star product in R
3
λ becomes a block-diagonal infinite-matrix

product

φ ⋆ ψ =
∑

φjm1m̃1
ψj
m2m̃2

v
j
m1m̃1

⋆ v jm2m̃2
=

∑

φjm1m̃1
ψj
m2m̃2

v
j
m1m̃2

δm̃1m2

=
∑

j ,m1,m̃2

(Φj ·Ψj)m1m̃2v
j
m1m̃2

the infinite matrix Φ gets rearranged into a block-diagonal form,
each block being the (2j + 1)× (2j + 1) matrix
Φj = {φjmn}, −j ≤ m, n ≤ j .
The integral is defined through the pullback to R

4
θ

∫

R3
λ

φ :=
κ3

π2θ2

∫

R4
θ

π⋆(φ) = κ3
∑

j

Tr jΦ
j

with Tr j the trace in the (2j + 1)× (2j + 1) subspace.
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Summary of the first part

The algebra R
3
λ with ⋆-product

φ ⋆ ψ (x) = exp

[

λ

2

(

δijx0 + iǫkijxk

) ∂

∂ui

∂

∂vj

]

φ(u)ψ(v)|u=v=x

The matrix base v
j
mm̃
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Summary of the first part

The algebra R
3
λ with ⋆-product

φ ⋆ ψ (x) = exp

[

λ

2

(

δijx0 + iǫkijxk

) ∂

∂ui

∂

∂vj

]

φ(u)ψ(v)|u=v=x

The matrix base v
j
mm̃

The integral as a trace:
∫

φ ⋆ ψ ⋆ ... ⋆ ξ = κ3
∑

j Tr jΦ
jΨj ...Ξj
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The Laplacian
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The scalar action
The Laplacian

All derivations of R3
λ are inner Dµ → [xµ, ·]⋆ (D0 is trivial

because [x0, f ]⋆ = 0 for f ∈ R
3
λ)

These generate a dynamics which is ”tangent” to the fuzzy
spheres of the foliation.
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These generate a dynamics which is ”tangent” to the fuzzy
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Indeed, the natural Laplacian operator constructed with inner
derivations

∑

µ[xµ, [xµ, φ]⋆]⋆, reduces to the usual Laplacian
on the fuzzy sphere
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The scalar action
The Laplacian

All derivations of R3
λ are inner Dµ → [xµ, ·]⋆ (D0 is trivial

because [x0, f ]⋆ = 0 for f ∈ R
3
λ)

These generate a dynamics which is ”tangent” to the fuzzy
spheres of the foliation.

Indeed, the natural Laplacian operator constructed with inner
derivations

∑

µ[xµ, [xµ, φ]⋆]⋆, reduces to the usual Laplacian
on the fuzzy sphere

we propose

∆φ = α
∑

i

D2
i φ+

β

κ4
x0 ⋆ x0 ⋆ φ

Di = κ−2[xi , · ]⋆, i = 1, .., 3 α, β real parameters and

x0 ⋆ φ = x0φ+
λ

2
xi∂iφ

contains the dilation operator in the radial direction.
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The scalar action
The Laplacian

With a slight modification the highest derivative term of the
Laplacian can be made proportional to the ordinary Laplacian on
R
3, for the parameters α and β appropriately chosen.

∑

i

[xi , [xi , φ]⋆]⋆ = λ2
[

x i∂i (x
j∂jφ+ x i∂iφ)

]

− λ2x20∂2φ

x0 ⋆ x0 ⋆ φ+
λ

2
x0 ⋆ φ =

λ2

4

[

x i∂i (x
j∂jφ+ x i∂iφ)

]

+ λx0(x
i∂iφ+ φ) + x20φ

With this choice, and α/β = −1/4, we obtain a term proportional
to the ordinary Laplacian, multiplied by x20 , plus lower derivatives.
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The scalar action
The potential

The kinetic action is then

Skin[φ] =

∫

φ ⋆ (∆ + µ2)φ
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The scalar action
The potential

The kinetic action is then

Skin[φ] =

∫

φ ⋆ (∆ + µ2)φ

As for the potential we consider a quartic interaction but every
polynomial interaction can be treated easily

g

4!

∫

φ⋆4 =
κ3g

4!
Tr (ΦΦΦΦ)

from which we read the vertex
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The scalar action
The potential

The kinetic action is then

Skin[φ] =

∫

φ ⋆ (∆ + µ2)φ

As for the potential we consider a quartic interaction but every
polynomial interaction can be treated easily

g

4!

∫

φ⋆4 =
κ3g

4!
Tr (ΦΦΦΦ)

from which we read the vertex

V
j1j2j3j4
p1p̃1;p2p̃2;p3p̃3;p4p̃4

=
g

4!
δj1j2δj2j3δj3j4δp̃1p2δp̃2p3δp̃3p4δp̃4p1
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The scalar action
The kinetic action in the matrix base
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The kinetic action in the matrix base

We express all operators in the matrix base
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The scalar action
The kinetic action in the matrix base

We express all operators in the matrix base

x+ =
λ

θ
z̄1z2 = λ

∑

j ,m

√

(j +m)(j −m + 1)v jmm−1

x− =
λ

θ
z̄2z1 = λ

∑

j ,m

√

(j −m)(j +m + 1)v jmm+1

x3 =
λ

2θ
(z̄1z1 − z̄2z2) = λ

∑

j ,m

mv jmm

x0 =
λ

2θ
(z̄1z1 + z̄2z2) = λ

∑

j ,m

jv jmm
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The scalar action
The kinetic action in the matrix base

We express all operators in the matrix base

x+ =
λ

θ
z̄1z2 = λ

∑

j ,m

√

(j +m)(j −m + 1)v jmm−1

x− =
λ

θ
z̄2z1 = λ

∑

j ,m

√

(j −m)(j +m + 1)v jmm+1

x3 =
λ

2θ
(z̄1z1 − z̄2z2) = λ

∑

j ,m

mv jmm

x0 =
λ

2θ
(z̄1z1 + z̄2z2) = λ

∑

j ,m

jv jmm

and compute

Sk [φ] = κ3
∑

φj1m1m̃1

(

∆(α, β) + µ21
)j1j2

m1m̃1;m2m̃2
φj2m2m̃2

= κ3 Tr (Φ(∆(α, β) + µ21)Φ)
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The scalar action
The kinetic action in the matrix base

with

(∆ + µ21)j1j2m1m̃1;m2m̃2
=

1

π2θ2

∫

v
j1
m1m̃1

⋆ (∆(α, β) + µ21)v j2m2m̃2

=
λ2

κ4
δj1j2

{

δm̃1m2δm1m̃2D
j2
m2m̃2

− δm̃1,m2+1δm1,m̃2+1B
j2
m2,m̃2

−δm̃1,m2−1δm1,m̃2−1H
j2
m2,m̃2

}
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The scalar action
The kinetic action in the matrix base

with

(∆ + µ21)j1j2m1m̃1;m2m̃2
=

1

π2θ2

∫

v
j1
m1m̃1

⋆ (∆(α, β) + µ21)v j2m2m̃2

=
λ2

κ4
δj1j2

{

δm̃1m2δm1m̃2D
j2
m2m̃2

− δm̃1,m2+1δm1,m̃2+1B
j2
m2,m̃2

−δm̃1,m2−1δm1,m̃2−1H
j2
m2,m̃2

}

There are non-diagonal (or non-local, in the language of matrix
models) terms.
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The scalar action
The kinetic action in the matrix base

with

(∆ + µ21)j1j2m1m̃1;m2m̃2
=

1

π2θ2

∫

v
j1
m1m̃1

⋆ (∆(α, β) + µ21)v j2m2m̃2

=
λ2

κ4
δj1j2

{

δm̃1m2δm1m̃2D
j2
m2m̃2

− δm̃1,m2+1δm1,m̃2+1B
j2
m2,m̃2

−δm̃1,m2−1δm1,m̃2−1H
j2
m2,m̃2

}

There are non-diagonal (or non-local, in the language of matrix
models) terms.
Remarks

In the matrix base the interaction term is diagonal, the kinetic
term is not (cfr. Grosse-Wulkenhaar)
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The scalar action
The kinetic action in the matrix base

with

(∆ + µ21)j1j2m1m̃1;m2m̃2
=

1

π2θ2

∫

v
j1
m1m̃1

⋆ (∆(α, β) + µ21)v j2m2m̃2

=
λ2

κ4
δj1j2

{

δm̃1m2δm1m̃2D
j2
m2m̃2

− δm̃1,m2+1δm1,m̃2+1B
j2
m2,m̃2

−δm̃1,m2−1δm1,m̃2−1H
j2
m2,m̃2

}

There are non-diagonal (or non-local, in the language of matrix
models) terms.
Remarks

In the matrix base the interaction term is diagonal, the kinetic
term is not (cfr. Grosse-Wulkenhaar)

The action factorizes into an infinite sum of contributions
S [Φ] =

∑

j∈N

2
S (j)[Φ]
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The scalar action
The propagator

The propagator is defined as
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The scalar action
The propagator

The propagator is defined as

j2
∑

k,l=−j2

∆j1j2
mn;lkP

j2j3
lk;rs = δj1j3δmsδnr
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The scalar action
The propagator

The propagator is defined as

j2
∑

k,l=−j2

∆j1j2
mn;lkP

j2j3
lk;rs = δj1j3δmsδnr

The kinetic term may be diagonalized in each subspace at j fixed.
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The scalar action
The propagator

The propagator is defined as

j2
∑

k,l=−j2

∆j1j2
mn;lkP

j2j3
lk;rs = δj1j3δmsδnr

The kinetic term may be diagonalized in each subspace at j fixed.
The technique is the same as in [GrosseWulkenhaar]. It uses
m + l = n + k and orthogonal polynomials.
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lk;rs = δj1j3δmsδnr

The kinetic term may be diagonalized in each subspace at j fixed.
The technique is the same as in [GrosseWulkenhaar]. It uses
m + l = n + k and orthogonal polynomials.
It turns out that the polynomials are the dual Hahn polynomials
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The scalar action
The propagator

The propagator is defined as

j2
∑

k,l=−j2

∆j1j2
mn;lkP

j2j3
lk;rs = δj1j3δmsδnr

The kinetic term may be diagonalized in each subspace at j fixed.
The technique is the same as in [GrosseWulkenhaar]. It uses
m + l = n + k and orthogonal polynomials.
It turns out that the polynomials are the dual Hahn polynomials
which are proportional to fuzzy spherical harmonics.
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The scalar action
The propagator

The propagator is defined as

j2
∑

k,l=−j2

∆j1j2
mn;lkP

j2j3
lk;rs = δj1j3δmsδnr

The kinetic term may be diagonalized in each subspace at j fixed.
The technique is the same as in [GrosseWulkenhaar]. It uses
m + l = n + k and orthogonal polynomials.
It turns out that the polynomials are the dual Hahn polynomials
which are proportional to fuzzy spherical harmonics.

(P(α, β))j1 j2p1 ,p̃1;p2p̃2
=

2j1
∑

l=0

l
∑

k=−l

δj1j2

(2j1 + 1)(λ
2

κ4 γ + µ2)
(Y j1

lk

†
)p1 p̃1(Y

j2
lk )p2 p̃2

with
γ =

(

αl(l + 1) + βj2
)
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The scalar action
The propagator

(Y j
lk)mm̃ =< v̂

j
mm̃|Ŷ

j
lk >=

√

2j + 1(−1)j−m̃

(

j j l

m −m̃ k

)

(Y j
lk

†
)mm̃ = (−1)−2j (Y j

lk)m̃m
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The scalar action
The propagator

(Y j
lk)mm̃ =< v̂

j
mm̃|Ŷ

j
lk >=

√

2j + 1(−1)j−m̃

(

j j l

m −m̃ k

)

(Y j
lk

†
)mm̃ = (−1)−2j (Y j

lk)m̃m

Once we have the propagator and the vertex we can compute
correlation functions

oo oo
// //j1

m̃1

j2
m2

m1 m̃2

�� ?? �� __

??��__��

j1

p1

p̃1

j2
p2

p̃2

j3

p̃3

p3

j4

p4

p̃4
(1)
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One-loop calculations

�� ?? �� __

����

p1

p̃1 p2

p̃2

Planar diagram contributing to the 2-point correlation function

Aj1j2
P

p1p̃1;p2p̃2
=
κ4

λ2
δj1j2δp̃1p2δp1p̃2

2j1
∑

l=0

(−1)2j1 2l + 1

(2j1 + 1)(γ(j1, l ;αβ) +
κ4

λ2µ2)

which is finite for all j
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One-loop calculations

In the propagating (fuzzy harmonics) base

Ãj1j2 P
l1k1;l2k2

=
κ4

λ2
δj1j2

2j1
∑

l=0

2l + 1

αl(l + 1) + βj21 + κ4

λ2µ2
(−1)k2δ−k1k2δl1l2 .

When fixing j1 = j2 = j and β = 0 we retrieve the result for the
fuzzy sphere
S. Vaidya, Phys. Lett. B 512, 403 (2001); C. -S. Chu, J. Madore, H. Steinacker, JHEP

0108, 038 (2001)
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One-loop calculations

oo
// //

oo
OO

��
p̃1

p1

p3

p̃3

Nonplanar diagram contributing to the two-point function

Aj1j3NP

p1p̃1;p3p̃3 =
κ4

λ2
δj1j3

2j1
∑

l=0

1
(

γ(j1, l , α, β) +
κ4

λ2µ2
)×

∑

k

(−1)p1+p̃1

(

j1 j1 l

p̃3 −p1 k

)(

j1 j1 l

p3 −p̃1 k

)

can be seen to be finite for all values of the indices
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One-loop calculations

In the propagating base

Ãj1j2 NP
l1k1;l2k2

=
κ4

λ2
δj1j2

2j1
∑

l=0

(2j1 + 1)(2l + 1)
(

αl(l + 1) + βj21 + κ4

λ2µ2
)
×

(−1)l1+l+2j1−k1δl1l2δk1,−k2

{

j1 j1 l1
j1 j1 l

}

In agreement with
S. Vaidya, Phys. Lett. B 512, 403 (2001); C. -S. Chu, J. Madore, H. Steinacker, JHEP

0108, 038 (2001)

for j1 = j2, β = 0
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Conclusions

We have studied a scalar field theory on R
3
λ.
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φ6 theory which is just renormalizable in 3-d in the
commutative case
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Conclusions

We have studied a scalar field theory on R
3
λ.

We find that it is finite at one-loop. Likely to be finite at all
loops.

No UV-IR mixing

Further developments

Study other star-products with noncompact foliations, s.t. the
one induced by su(1, 1). The space is foliated into fuzzy
hyperboloids.

Consider different Laplacians V. Galikova, P. Presnajder,
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φ6 theory which is just renormalizable in 3-d in the
commutative case

gauge models (in preparation with Antoine Géré and J.-C.
Wallet)
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