

Roy Aleksan Corfu2013

XENON100 (2012)

200 300 400

1000

eved limit (90% CL) cted Smit of this res $\pm 1 \sigma$ expected ±2 σ especte

11-11-10, (10, 10) 11-44 17+14.141

T-SEIRCH

RESST-II (2012)

WIMP Mass [GeV/c²]

30 40 50

Possible Strategy

- 1. Mesuring the electroweak sector with the HIGHEST possible precision with e⁺e⁻ collisions
- 2. Observation of deviations from the SM providing indications on the scale of New Physics
- Exploring this New Physics directly with pp collisions
 If needed, complement the studies with other types of collisions
 - e^{+/-}p collisions
 - γγ collisions
 - µ+µ⁻ collisons

A « >50-year » programme !

Can one do this all in one?

Make

 $E = mc^2$

Extended Multiprobe Collider Complex

$\mathbb{E}=\mathbb{M}\mathbb{C}^2$

80-100 km tunnel

TLEP : e⁺e⁻, up to √s ~350 GeV

PS (0.6 km) SPS (6.9 km)

LHC (26.7 km)

VHE-LHC : pp, $\sqrt{s} \sim 100$ TeV in same tunnel including possibly ep collisions and/or $\gamma\gamma$ collisions if needed

CERN implementation capitalizing on existing infrastructures

....WHY e⁺e⁻.... **Improve further the consistency tests of the Standard Model** Moriond EW '12 **Z** pole measurements 80.5 March 2012 W W LHC excluded - sondard Mode -LEP2 and Tevatron ---- LEP1 and SLD Ζ Ζ 68% CL $\propto M_{t}^{2}$ [GeV] ™ ™ W $\propto \ln(M_{\rm H})$ 80.3 n Direct m_W, m_{top} 100 measurements 155 175 195 Affects Z lineshape, M_{W} = 80.385 ± 0.015 GeV m_t [GeV] Asymmetries, Cross section $M_{\rm H} = 93 \pm {}^{26}_{20} \, {\rm GeV}$ $M_{t} = 173.5 \pm 1.0 \text{ GeV}$ **Decay Rates... Need to improve** Measurement @Z-pole M_w and M_t (*a*threshold) M_H

Polarization at circular colliders

- e⁻(e⁺) spin naturally align along dipole magnetic field
- Transverse polarization builds up by synchrotron radiation emission (or if needed using wigglers)
- Transverse to longitudinal polarization is achieved with Spin Rotators

- Resonant depolarization is achieved with small field (perpendicular to dipole field) RF-magnet with frequency in phase with precession frequency. (Precession period is proportional to beam energy)
- Depolarizing RF-magnet frequency measures beam energy with <0.1 MeV

High precisions at Z pole and WW and top thresholds

Quantity	Physics	Present		Statistical	Systematic	Challenge
	240	precision	2	uncertainty	uncertainty	
$m_{\rm Z}$ (keV)	Input	91187500 ± 2100	Z Line shape scan	5 keV	< 100 keV	QED corrections
$\Gamma_{\rm Z}$ (keV)	$\Delta \rho (\text{not } \Delta \alpha_{\text{had}})$	2495200 ± 2300	Z Line shape scan	8 keV	< 100 keV	QED corrections
R_{ℓ}	$lpha_{ m s}, \delta_{ m b}$	20.767 ± 0.025	Z Peak	0.0001	< 0.001	QED corrections
N_{ν}	PMNS Unitarity,	2.984 ± 0.008	Z Peak	0.00008	< 0.004	Bhabha scat.
$N_{ u}$	and sterile ν 's	2.92 ± 0.05	$Z\gamma$, 161 GeV	0.001	< 0.001	
$R_{\rm b}$	δ_{b}	0.21629 ± 0.00066	Z Peak	0.000003	< 0.000060	Hemisphere correlations
$A_{\rm LR}$	$\Delta_{\rho}, \epsilon_3, \Delta \alpha_{\text{had}}$	0.1514 ± 0.0022	Z peak, polarized	0.000015	< 0.000015	Design experiment
$m_{\rm W}$ (MeV)	$\Delta \rho$, ϵ_3 , ϵ_2 , $\Delta \alpha_{had}$	80385 ± 15	WW threshold scan	0.3 MeV	< 0.5 MeV	QED corrections
$m_{\rm top}~({\rm MeV})$	Input	173200 ± 900	tt threshold scan	10 MeV	< 10 MeV	Theory interpretation

E_{beam} calibration with resonant depolarization unique to circular collider ⇒ δE_{beam} < 0.1 MeV should be possible @TLEP

Indirect m_H measurement error TLEP + matching theory $\Rightarrow \delta m_H \pm 1.4$ GeV TLEP + present theory $\Rightarrow \delta m_H \pm 11$ GeV

High precisions at Z pole and WW and top thresholds

High precisions at Z-pole

Many other measurements would benefit from Tera-Z production

Channels	Production/year	Physics
τ+τ-	3 10 ¹⁰ pairs	Rare decays, conservation laws
c or b quarks	> 2 10 ¹¹	CP violation, rare decays
	e.g. > 3 10^{10} B _s	Large B_s sample with clean environment within SM, > 1000 $B_s \rightarrow \tau^+\tau^-$ detected

W

υ

... or any NP loop process favoring 3rd generation

Study further the Higgs properties and couplings

$$V_{Higgs} = -\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2 + \left[\overline{\psi_{Li}} Y_i \psi_{Rj} \phi + h.c. \right]$$
$$m_{ij} \equiv Y_{ij} v$$

H coupling to fermions $\propto m_f$

High precisions	physics at H	[threshold
-----------------	--------------	-------------

Accelerator → Physical quantity ↓	LHC 300fb ⁻¹ /exp	HL-LHC 3000fb ⁻¹ /exp
Approx. date	2021	2030-35?
N _H	1.7 x 10 ⁷	1.7 x 10 ⁸
Δm _H (MeV)	100	50
$\Delta\Gamma_{\rm H/}\Gamma_{\rm H}$		
$\Delta\Gamma_{ m inv}/\Gamma_{ m H}$	18 - 14%	11 – 7%
$\Delta g_{H\gamma\gamma}/g_{H\gamma\gamma}$	7-5%	5 – 2%
$\Delta g_{Hgg}/g_{Hgg}$	8-6%	5- 3%
$\Delta g_{Hww}/g_{Hww}$	6-4%	5 – 2%
$\Delta g_{HZZ}/g_{HZZ}$	6-4%	4 – 2%
$\Delta g_{\rm HHH}/g_{\rm HHH}$		< 30% ?
		(2 exp.)
$\Delta g_{H\mu\mu}/g_{H\mu\mu}$	~30%	~10%
$\Delta g_{H\tau\tau}/g_{H\tau\tau}$	8-6%	5 – 2%
$\Delta g_{Hcc}/g_{Hcc}$		~7%
$\Delta { m g}_{ m Hbb}/{ m g}_{ m Hbb}$	13 - 10%	7 – 4%
$\Delta g_{Htt}/g_{Htt}$	15 - 14%	10 – 7%
Δm _t (MeV)	800-1000	500-800
Δm _W (MeV)		~10

High precisions at H threshold

Sub % sensitivities on couplings to Higgs are highly desirable to probe new physics at and above the TeV scale

High precisions Higgs couplings at 240 GeV and 350 GeV

- **Reconstruct** Z
- **Determine recoil mass** (thanks to be beam-energy constraint)

 $\delta(\sigma_{\rm HZ}) = 0.4\%$

- **Great e⁺e⁻ asset: Tagged Higgs sample**
 - ⇒ Total Higgs decay width
 - ⇒ Individual branching ratios to sub %
 - ⇒ Invisible and exotic decays

But ...

Cross section modest ⇒ very large luminosity

Total Higgs decay width can also be extracted from W-fusion

Physical	3000fb ⁻¹	ILC (250+350)	TLEP 240 +35	50				/			
quantity ↓	/exp		4 IP		S	onci	. .	u to I	ligo		
$\Delta\Gamma_{H/}\Gamma_{H}$		6.0%	1.0%		3	ensi	uvity		ngg	S	
$\Delta\Gamma_{inv}/\Gamma_{H}$	~7%	2.9%	0.45%		(Coup	oling	at T	LE		
$\Delta g_{H\gamma\gamma}/g_{H\gamma\gamma}$	2.0%	14.5%	1.5%		us	ing (data	at 24	10 ai	nd	15.54
$\Delta g_{Hgg}/g_{Hgg}$	3.0%	4.4%	0.8%		35		oV (5 100	nrs (at	/
$\Delta g_{Hww}/g_{Hww}$	2.0%	0.5%	0.19%		5.	U U		S y Ca		aı	
$\Delta g_{HZZ}/g_{HZZ}$	2.0%	0.9%	0.15%	1		ea	ch e	nerg	y)		
$\Delta g_{H\mu\mu}/g_{H\mu\mu}$	<10%	45%	6.2%	/	9/1	1	-		~		
$\Delta g_{H\tau\tau}/g_{H\tau\tau}$	2.0%	2.9%	0.54%	¥ = 4			- 1				
$\Delta g_{Hcc}/g_{Hcc}$	~7%	3.8%	0.71%								
$\Delta {f g}_{ m Hbb}/{f g}_{ m Hbb}$	4.0%	2.4%	0.42%								1955
Compa TLEP with H	rison wit sensitivit L-LHC a ILC	h of ties 0 and -5		IC : One ex	(perime	ent only)			‡	±1%

Sensitivity to Higgs Coupling at TLEP using data at 240 GeV (5 years, 4 detectors)

12	Collider	TLEP 240	ILC 250
	$\sigma_{ m HZ}$	0.4%	2.5%
1	$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to {\rm b}\bar{\rm b})$	0.2%	1.1%
	$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to {\rm c}\bar{\rm c})$	1.2%	7.4%
	$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to {\rm gg})$	1.4%	9.1%
	$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to {\rm WW})$	0.9%	6.4%
	$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to \tau \tau)$	0.7%	4.2%
	$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to {\rm ZZ})$	3.1%	19%
	$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to \gamma \gamma)$	3.0%	35%
	$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to \mu \mu)$	13%	100%

12	Coupling	TLEP-240
	$g_{\rm Z}$	0.16%
	$g_{ m W}$	0.85%
	$g_{ m b}$	0.88%
	$g_{ m c}$	1.0%
	$g_{ m g}$	1.1%
1	$g_{ au}$	0.94%
	g_{μ}	6.4%
	g_γ	1.7%
	BR_{exo}	0.48%

High precisions at ttbar threshold

- Scan of the tt threshold
 - Observables σ_{tt} , A_{FB} and $\langle p^{@max} \rangle$ sensitive to m_{top} , Γ_{top} , and λ_{top} (ttH Yukawa coupling)

 Z, γ

• Experimental precision for ILC with 100,000 tt events

- No beamstrahlung and 500,000 tt events at TLEP

Do we have the technology to carry out these measurements?											
	LHC(300)	LHC (3000)	ILC (250+350)	TLEP	Comment						
				(240+350)							
Δm _H (MeV)	~100	~50	~30	~7	Overkill for now						
$\Delta\Gamma_{\rm H}/\Gamma_{\rm H}(\Delta\Gamma_{\rm inv})$	(14)	(7)	6(2.9)%	1.0(0.45)%							
H spin	\checkmark	✓	\checkmark	\checkmark							
Δm_W (MeV)	~10	~10	~7	<0.5	Theo. limits						
Δm _t (MeV)	800-1000	500-800	31	10	~100 from theo.						
$\Delta g_{\rm HVV}/g_{\rm HVV}$	4-7%*	2%*	0.5-14.5%	0.15-1.5%							
$\Delta g_{\rm Hff}^{}/g_{\rm Hff}^{}$	6-13%*	2-7%*	2-2.5%	0.2-0.7%							
$\Delta g_{Htt}/g_{Htt}$	14%*	7%*	~40%	~13%							
$\Delta g_{\rm HHH}^{}/g_{\rm HHH}^{}$		~30%	44%**		Insufficient ?						

Could be significantly improved at VHE-LHC

*Assuming systematic errors scales as statistical and theoretical errors are divided by 2 compared to now

****Sensibility with 2ab⁻¹ at 500 GeV**

Recommendations from European Strategy Group (cont'd)

High-priority large-scale scientific activities (2)

Recommendation #2

d) To stay at the forefront of particle physics, Europe needs to be in a position to propose an <u>ambitious post-LHC accelerator</u> <u>project at CERN</u> by the time of the <u>next Strategy update</u>, when physics results from the LHC running at 14 TeV will be available.

CERN should undertake <u>design studies</u> for accelerator projects in a global context, with emphasis on <u>proton-proton and electronpositron</u> high-energy frontier machines. These design studies should be coupled to a vigorous accelerator R&D programme, including high-field magnets and high-gradient accelerating structures, in collaboration with national institutes, laboratories and universities worldwide.

Indeed, most of the fundamental particles (13/17) have been discovered thanks to accelerators

Today $E_{max} = 8 \text{ TeV} @ \text{ LHC}(\text{pp collider})$ $L_{max} = 2x10^{34} \text{ cm}^2 \text{s}^{-1} @ \text{ KEKB} (\text{ee collider})$ $L = f_{rev} n_b \frac{N_1 N_2}{s(cm^2)}$ $S = 4\pi\sigma_x \sigma_y$

>2(3) orders of magnitude in Energy in e(p) colliders

>5 (3) orders of magnitude in Luminosity for e (p) colliders

SC has enabled great progress

Two main areas: Magnets and RF cavities

Grad. ≈ 100MV/m @12 GHz

G rad. ≈ 40MV/m @1.3 GHz

ESS type elliptical & spoke Cavities

e⁺e⁻ colliders «clean HIGGS FACTORIES»

Some further ILC challenges

Achieving and maintaining nano beam size (o, =6-8nm) with 2x10¹⁰ e/bunch 1.28 GeV ATF2 operating since 2009 at KEK íty (2x10⁹ e/bunch) **Sping rings with** Realization of very low ultra fast kickers for **TIARA collabora** (<1pm @2.86 GeV) Achieving the second fron rate photons **f** through 150m of small-aperture SC undulator 250 m of SC undulators or 125 G of technology at very high scale Industrialization

XFEL =5% of ILC

Some further CLIC challenges

 \succ Same type of difficulties as for ILC though more severe, e.g.

- smaller beam size (~1nm)
- Shorter bunch length (150ns) •
- Normalized y emittance ~20n s preservation ullet
 - Collagnet stabilization Ultra precise alignmen
- > Some difficulties are s CLIC, e.g.
 - Production of R
 - Stable deceler 🕥 drive beam
 - And main **Veleration** \bullet

of progress have been achieved, Although a still a lot of **R&D** needed to deliver a TDR

TLEP Ring e^+e^- co **Tunnel: ~60% co**

Building on existing technologies and experience (LEP, **KEKB, PEPII...)**

Using SC cavities

Could cover a wide range of energy up to 350 Gev collision energy.

collider: Primary	Cost	Driv	ver	Ganava
eost LEP/L	HC solo	1 2 Geneva	Lake	P Geneva
BO-100 km tunnel	6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	b gate b typestr age of the second typestr age of typestr age of typestr age of the second typestr age of typestr age of typestr a	3	
Energy CM (GeV)	90	160	240	350
Luminosity (x10 ³⁴ cm ⁻² s ⁻¹)/IP	56	16	~5	~1.3
Cavity Gradient (MV/m)	20	20	20	20
#5-cell SC cavities	600	600	600	600
Beam lifetime (mn)	67	25	16	20
Total AC power (MW)	250	250	260	284
Most parameters have been SuperKEKB	achieve	ed or are	e plann	ed at

Although based on strong experience in building <u>circular</u> collider, ut based on several challenges have to be overcome:

Beamstrahlung:

⇒ Beam lifetime reduction (show **Mer than** bhabha scattering limits s at ŋ=1.5% (4 IPs) Low Fh

The servery effective technol \Rightarrow Need to study the er acceptance of the g ⇒ optic design

(120-E)/E

n=2.0%

n=2.5%

t n=3.0%

10mn at superKEKB

Explore Sy Laroo adiation damage and

 τ >6mn at

Fomising Possibility a Verv Top ing: ⇒ Need to study the injection system

Example of beam lifetime simulation with Beamstrahlung

TLEP parameters -1

soon at SuperKEKB:

$\beta_x *=0.03 \text{ m}, \beta_y *=0.03 \text{ cm}$

	LEP2	sKEKB LER/HER	LHeC	TLEP -Z	TLEP -W	TLEP -H	TLEP -t
beam energy Eb [GeV]	104.5	4/7	60	45.5	80	120	175
circumference [km]	26.7	3	26.7	80	80	80	80
beam current [A]	0.004	3.6/2.6	0.1	1.18	0.124	0.0243	0.0054
#bunches/beam	4	2500	2808	4400	600	80	12
#e-/beam [10 ¹²]	2.3	226/163	56	1960	200	40.8	9.0
horizontal emittance [nm]	48	3.2	5	30.8	9.4	9.4	10
vertical emittance [nm]	0.25	0.0081	2.5	0.07	0.02	0.02	0.01
bending radius [km]	3.1	16/104	2.6	9.0	9.0	9.0	9.0
Momentum comp. $\alpha_{c}[10^{-5}]$	18.5		8.1	9.0	2.0	1.0	1.0
SR power/beam [MW]	11	\blacksquare	44	50	50	50	50
$\beta_{x}^{*}[m]$	1.5	0.032	0.18	0.5	0.5	0.5	1
β* _y [cm]	5	0.027	10	0.1	0.1	0.1	0.1
σ_{x}^{*} [µm]	270	10	30	124	78	68	100
σ* _y [μm]	3.5	0.047	16	0.27	0.14	0.14	0.1
hourglass F _{hg}	0.98		0.99	0.71	0.75	0.75	0.65
ΔE_{loss}^{SR} /turn [GeV]	3,41	$1/3x10^{-3}$	0.44	0.04	0.4	2.0	9.2

SuperKEKB:ε_ν/ε_ν=0.25%

TLEP parameters -2 / LEP2 was not beam-beam limited									
	LEP2	SKEKB	LHeC	TLEP	TLEP	TLEP	TLEP		
				- <i>L</i>	-W	-H	-t		
V _{RF,tot} [GV]	3.64	9.0094/0.015	0.5	2.0	2.0	6.0	12.0		
$\delta_{\max,RF}$ [%]	0.77		0.66	4.0	5.5	9.4	4.9		
$\xi_{\rm x}/{\rm IP}$	0.025	0.0028/0.0012	N/A	0.07	0.10	0.10	0.10		
$\xi_{\rm v}/{ m IP}$	0.065	0.0881/0.0807	N/A	0.07	0.10	0.10	0.10		
f _s [kHz]	1.6		0.65	1.29	0.45	0.44	0.43		
E _{acc} [MV/m]	7.5		11.9	3	3	10	20		
eff. RF length [m]	485		42	600	600	600	600		
f _{RF} [MHz]	352		721	700	700	700	700		
δ ^{SR} _{rms} [%]	0.22		0.12	0.06	0.10	0.15	0.22		
σ ^{SR} _{z,rms} [cm]	1.61	0.6/0.5	0.69	0.19	0.22	0.17	0.25		
$L/IP[10^{32} cm^{-2} s^{-1}]$	1.25	8000	N/A	5600	1600	480	130		
number of IPs	4	1	1	4	4	4	4		
b.lifetime [min]	360	10	N/A	67	25	16	20		

Lifetime at superKEKB = 10 min

LEP data for 94.5 - 101 GeV consistently suggest a beam-beam limit of ~0.115

TLEP will enable to probe further the SM with very high precision, search for rare processes and new light particles (<~200 GeV)

If deemed necessary, the c.m. energy could be pushed to 400-500 GeV, but to reach much higher scales hadron colliders is necessary (on-going study to determine E_{max} with L=10³⁴ with 4 detectors)

We need a tool to search for direct production of new particles up to energy scale in the 10 TeV range

Why not repeating the success story of LEP/LHC with TLEP/VHE-LHC!

LHC + HL-LHC: Great tool to Search for new particles/phenomena

and verify that unitarity is preserved, thanks to the « Higgs » discovered

Upgrading LHC luminosity early 2020's

➢ Increase beam current ⇒ protect SC dipole (diffracted protons)
 ➢ Reduce beam size at IP ⇒ Stronger focussing quads near IP

8T-15m ⇒ 11T-11m dipoles

5.5 m Nb₃Sn

 $5.5 \text{ m Nb}_3 \text{Sn}$

Fermilab/CERN Collaboration Demo single bore 11T, 2m Test: very good to 10.4 T Next model twin-bore by beginning of 2013

3.5 m

Collim

Change Quadrupole Triplets 200T/m, 70mm (~8T, <6m>) ⇒ 140T/m, 150mm (13T, 8m)

Target parameters for HL-LHC run

Efficiency is defined as the ratio between the annual luminosity target of 250 fb⁻¹ over the potential luminosity that can be reached with an ideal cycle run time with no stop for 150 days: t_{run}= t_{lev}+t_{dec}+t_{turn}. The turnaround time after a beam dump is taken as 5 hours, t_{decav} is 3 h while t_{lev} depends on the total beam current

		1			And R. S.		
	25 ns	25 ns	50 ns		25 ns	50 ns	
N _b [10 ¹¹]	1.15	2.0	3.3		1.7	2.5	
n _b	2808	2808	1404		2808	1404	
I [A]	0.56	1.02	0.84		0.86	0.64	
θc [µrad]	300	475	445		480	430	
β* [m]	0.55	0.15	0.15		0.15	0.15	
ε _n [μm]	3.75	2.5	2.0		2.5	2.0	
$\epsilon_{s} [eV s]$	2.5	2.5	2.5		2.5	2.5	
IBS h [h]	111	25	17		25	10	
IBS 1[h]	65	21	16		21	13	
Piwinski	0.68	2.5	2.5		2.56	2.56	
F red.fact.	0.81	0.37	0.37		0.37	0.36	
b-b/IP[10 ⁻³]	3.1	3.9	5		3	5.6	
$\mathrm{L}_{\mathrm{peak}}$	1	7.4	8.4		5.3	7.2	
Crabbing	no	yes	yes		yes	yes	
L _{peak virtual}	1	20	22.7		14.3	19.5	
Pileup L _{lev} =5L ₀	19	95	190		95	190	
Eff. [†] 150 days	=	0.62	0.61		0.66	0.67	

baseline

On going HTS link test at CERN

2m long MgB₂ cables tested at 2x4500A

Possible cable configuration for high current : 7×14 kA, 7×3 kA and 8×0.6 kA cables Itot~120 kA @ 30 K

Nexan Crouts (20 m long semi-flagge geostat of link) program installed in the installed in the inverse of the second seco

> MgB₂, YBCO... tests started end 2012

« Crab » Crossing

Improving further the luminosity by better overlap of the 2 beams

SC RF «Crab» Cavity, for pbeam rotation at fs level!

Technology pioneered successfully on KEKB, Japan

- Effort at SLAC-ODO and in BNL, USA
- Effort in Daresbury (Cockcroft Institute and STCF) with CERN.

Also help to adjust the luminosity to ease experiments' life (Luminosity levelling)

 $Z \rightarrow \mu\mu$ event from 2012 data with 25 reconstructed vertices

Progress in SC « Crab » Cavities

UK - Cockcroft

Several types of prototypes being designed and made...

... as well as cryomodule

Grand unification of Interactions (Strong, Weak, Electromagnetic)

Additionnal particles (such as supersymmetric partners) with energy scales of TeVs affect the running of the coupling constants

Whatever is found or not, reaching higher energies is unavoidable

First consistent conceptual design

Magnet design: 40 mm bore (depends on injection energy: > 1 Tev) Approximately 2.5 times more SC than LHC: 3000 tonnes! (~4000 long magnets) Multiple powering in the same magnet for FQ (and more sectioning for energy) Only a first attempt: cos9 and other shapes needs to be also investigated

Parameter	LHC	HL-LHC	HE-LHC	VHE-LHC	
c.m. energy [TeV]	14		33	100	
circumference C [km]		26.7		80	
dipole field [T]	8.33		20	20	
dipole coil aperture [mm]	56		40	≤ 40	
beam half aperture [cm]	2.2 (x), 1.8 (y)		1.3	≤ 1.3	
injection energy [TeV]	0.45		>1.0	>3.0	
no. of bunches	2808			8420	
bunch population [10 ¹¹]	1.15 2.2		0.94	0.97	
init. transv. norm. emit. $[\mu m]$	3.75	2.5	1.38	2.15	
initial longitudinal emit. [eVs]	2.5		3.8	13.5	
no. IPs contributing to tune shift	3		2		
max. total beam-beam tune shift	0.01	0.021	0.01	0.01	
beam circulating current [A]	0.584	1.12	0.478	0.492	
RF voltage [MV]	16		16	22	
rms bunch length [cm]			7.55		
IP beta function [m]	0.55	0.15 (min.)	0.35	1.1	
rms IP spot size [µm]	16.7	7.1 (min.)	5.2	6.7	
full crossing angle $[\mu rad]$	285	590	171	71	
Piwinski angle	0.65	3.13 (0)	1.5	0.5	
geometric luminosity loss	0.84	> 0.9	0.55	0.89	
stored beam energy [MJ]	362	694	701	6610	
SR power per ring [kW]	3.6	7.3	96.2	2900	
arc SR heat load [W/m/aperture]	0.17	0.33	4.35	43.4	
energy loss per turn [keV]	6.7		201.3	5857	
critical photon energy [eV]	44		575	5474	
photon flux $[10^{17}/m/s]$	1.0	2.0	1.9	2.0	
longit. SR emit. damping time [h]	12.9		1.0	0.32	
horiz. SR emit. damping time [h]	25.8		2.0	0.64	
init. longit. IBS emit. rise time [h]	57	23.3	40	396	
init. transv. IBS emit. rise time [h]	103	20.4	20	157	
peak events per crossing	27	135 (lev.)	147	171	
total/inelastic cross section [mb]	111 / 85		129 / 93	153 / 108	
peak luminosity $[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	1.0	5.0	5.0	5.0	
beam lifetime due to burn off [h]	45	15.4	5.7	14.8	
optimum run time [h]	15.2	10.2	5.8	10.7	
opt, av. int. luminosity / day [fb ⁻¹]	$/ \text{day} [\text{fb}^{-1}] = 0.47$		1.43	2.08	

Conclusion

The last few years were very exciting

Many teams have contributed to this success, they have to be <u>warmly congratulated</u>

Thanks to this work, *prospects for the Future looks very* promising, with many new ideas emerging

The European Strategy was an opportunity to bring these ideas on the table and provide *further momentum toward* our quest for understanding the fundamental laws of the Universe

The Strategy is an important opportunity to open up a medium and long term ambitious vision and programme

for Particle Physics in Europe : Top priority in the Strategy Accelerator R&D is vital to enable the realization of our vision <u>once we get the results of the LHC runs @ 13-14TeV</u> and should remain at <u>the highest priority</u> within our strategy

Main Conclusion

An 80-100 km complex (TLEP and VHE-LHC) would provide a FANTASTIC post-LHC physics programme

A TLEP Design study has started

Ambitious milestones have been set up

CDR in 2 years

TDR in 5 years, in a timely fashion with an update of the European Strategy in 2017-18, after the first round of operation of the LHC@13-14 TeV

A technically possible timeline (to be confirmed by the DS)

	2 0 1 0	2 0 1 5	2 0 2 0	2 0 2 5	2 0 3 0	2 0 3 5	2 0 4 0	
LHC								
HL-LHC		R&D + const	tr					
TLEP*	Design + R&D + construction							
VHE-LHC*	Design + R&D + construction							