Integration of NCQFT through Ward identities

Ricardo Kullock*
Workshop on Noncommutative Quantum Field Theory and Gravity, Corfu, Greece
*Faculty of Physics, University of Vienna
ricardo.kullock@univie.ac.at

Noncommutative action

- The action is typicaly defined through the star product

$$
S=\int d x\left(\frac{1}{2} \partial_{i} \phi \star \partial^{j} \phi+\frac{1}{2} \mu^{2} \phi \star \phi+V\right)
$$

where

$$
f \star g=m\left(e^{i \theta^{i j} \partial_{i} \partial_{j}}(f, g)\right)
$$

- This is such that

$$
\left[x_{i}, x_{j}\right]_{\star}=i \theta_{i j}
$$

- Another way of writting the noncommutativity is

$$
(f \star g)(x)=\int \frac{d k}{(2 \pi)^{4}} \int d y f\left(x+\frac{1}{2} \theta \cdot k\right) g(x+y) e^{i k \cdot y}
$$

- The action previously defined is non-renormalizable. Grosse and Wulkenhaar solved this by adding

$$
\frac{\Omega^{2}}{2}\left(\tilde{x}_{i} \phi\right) \star\left(\tilde{x}^{i} \phi\right)
$$

to the lagrangian, where $\tilde{x}=2 \theta^{-1} \cdot x$.

- The treatment simplifies if we use the matrix basis

$$
\left(f_{m n} \star f_{k l}\right)(x)=\delta_{n k} f_{m l}(x)
$$

with

$$
\phi(x)=\sum \phi_{m n} f_{m n}(x)
$$

- In the matrix basis we have

$$
\partial_{i} f(x)=\left[\tilde{x}_{i}, f(x)\right]
$$

- The kinetic term becomes

$$
x_{i} x_{i} \phi^{2}-x_{i} \phi x_{i} \phi
$$

- With the extra potential and the mass term we are left with

$$
\left(x_{i} x_{i}+\mu^{2}\right) \phi^{2}
$$

- We can choose an apropriate basis so that $\left(x_{i} x_{i}+\mu^{2}\right)$ leads to a harmonic oscillator spectrum

Ward Identity

- The action for $\lambda \phi^{4}$ is written as

$$
S=\sum \frac{1}{2} \phi_{m n} H_{m n} \phi_{n m}+V(\phi)
$$

with a cut-off in the summation, and $H_{n m}=\left(m+n+\mu^{2}\right)$. The $\lambda \phi^{3}$ has also a linear term $M \phi, M_{a b}=m \delta_{a b}$

- The partition function is

$$
\mathcal{Z}[J]=N \int \mathcal{D} \phi e^{-S+\operatorname{Tr}(\phi J)}=N e^{(-V[\partial / \partial J)} e^{\frac{1}{2}\left\langle J, H^{-1} J\right\rangle},
$$

in the $\lambda \phi^{4}$, with $\left\langle J, H^{-1} J\right\rangle=\sum_{p, q} J_{p q} H_{p q}^{-1} J_{q p}$, and

$$
\mathcal{Z}[J]=N e^{(-V[\partial / \partial J)} e^{\frac{1}{2}\left\langle(J+M), H^{-1}(J+M)>\right.}
$$

in the $\lambda \phi^{3}$.

- We consider the variation of $W=\ln \mathcal{Z}$ with respect to infenitesimal unitary transformations, which leads to

$$
\left(\sum_{n}\left(H_{n b}-H_{a n}\right) \frac{\partial^{2}}{\partial J_{n b} \partial J_{a n}}+\left(J_{n a} \frac{\partial}{\partial J_{n b}}-J_{b n} \frac{\partial}{\partial J_{a n}}\right)\right) e^{(-V[\partial / \partial J])} e^{\frac{1}{2}<J, H^{-1} J>}=0
$$

- The Identity can be further developed to

$$
\sum_{n} \frac{\partial^{2}}{\partial J_{n b} \partial J_{a n}} \mathcal{Z}=\sum_{n}\left(\delta_{a b} G_{a n}+\frac{1}{b-a}\left(J_{b n} \frac{\partial}{\partial J_{a n}}-J_{n a} \frac{\partial}{\partial J_{n b}}\right)\right) \mathcal{Z}
$$

Two-point funtion for $\lambda \phi^{4}$

- The two-point function is given by

$$
G_{a b}=\frac{N}{\mathcal{Z}[0]}\left[e^{-V} \frac{\partial^{2}}{\partial J_{a b} \partial J_{b a}} e^{\frac{1}{2}\left\langle J, H^{-1} J\right\rangle}\right]_{J=0},
$$

- This leads to (zero genus)

$$
G_{a b}=H_{a b}^{-1}+\lambda H_{a b}^{-1} G_{a b} \sum G_{a n}+\lambda H_{a b}^{-1} \sum \frac{G_{b n}-G_{a b}}{a-n}
$$

- Notice it is not explicitly symmetric.

The $\lambda \phi^{3}$

- The two-point function can be calculated by

$$
\begin{gathered}
G_{a b}=\frac{N}{\mathcal{Z}[0]}\left[e^{-V} \frac{\partial}{\partial J_{a b}} H_{a b}^{-1} J_{a b} e^{\frac{1}{2}\left\langle J, H^{-1} J\right\rangle}\right]_{J=0}= \\
G_{a b}=H_{a b}^{-1}+\frac{N H_{a b}^{-1}}{\mathcal{Z}[0]}\left[e^{-V} J_{a b} \frac{\partial}{\partial J_{a b}} e^{\frac{1}{2}\left\langle J, H^{-1} J\right\rangle}\right]_{J=0}= \\
G_{a b}=H_{a b}^{-1}+\frac{H_{a b}^{-1}}{\mathcal{Z}[0]}\left[\frac{\partial(-V)}{\partial \phi_{a b}}\left[\frac{\partial}{\partial J}\right] \frac{\partial}{\partial J_{a b}} \mathcal{Z}[J]\right]_{J=0}
\end{gathered}
$$

- The derivative of V will give

$$
\lambda \sum \frac{\partial}{\partial J_{b n}} \frac{\partial}{\partial J_{n a}} \mathcal{Z}[J]
$$

- Here enters the Ward identity, so that we have, for $a \neq b$

$$
G_{a b}=H_{a b}^{-1}+\frac{(-\lambda) H_{a b}^{-1}}{(a-b) \mathcal{Z}[0]} \sum\left[\frac{\partial}{\partial J_{a b}}\left(J_{a n} \frac{\partial}{\partial J_{b n}}-J_{n b} \frac{\partial}{\partial J_{n a}}\right) \mathcal{Z}[J]\right]_{J=0}
$$

So that we have

$$
G_{a b}=H_{a b}^{-1}+\frac{\lambda H_{a b}^{-1}}{(a-b)}\left(G_{a}-G_{b}\right)
$$

where G_{a} is the one point function.

- The equation is no longer only on the two-point function, but it is explicitly symmetric.
- We can try the same for the one-point function:

$$
G_{a}=\frac{N}{\mathcal{Z}[0]}\left[e^{-V} \frac{\partial}{\partial J_{a a}} e^{\frac{1}{2}\left\langle J, H^{-1} J\right\rangle}\right]_{J=0}
$$

- Now the linear term shows,

$$
G_{a}=\frac{N}{\mathcal{Z}[0]}\left[e^{-V} H_{a a}^{-1}\left(J_{a a}+m(\lambda, \Lambda)\right) e^{\frac{1}{2}\left\langle J, H^{-1} J\right\rangle}\right]_{J=0}
$$

- The Ward identity has a singularity, so in this case we have only

$$
G_{a}=\frac{N}{\mathcal{Z}[0]}\left[H_{a a}^{-1}\left(-\lambda \sum \frac{\partial}{\partial J_{a n}} \frac{\partial}{\partial J_{n a}}+m\right) \mathcal{Z}[J]\right]_{J=0}
$$

- Thus

$$
G_{a}=H_{a a}^{-1}\left(m-\lambda \sum G_{a n}\right)
$$

- We can also take two currents down in the two-point function calculation

$$
G_{a b}=H_{a b}^{-1}+H_{a b}^{-2}\left[e^{-V} J_{a b} J_{b a} \mathcal{Z}[J]\right]_{J=0}
$$

- This leads to

$$
G_{a b}=H_{a b}^{-1}-\lambda H_{a b}^{-2}\left(G_{a}+G_{b}\right)+\frac{\lambda^{2} H_{a b}^{-2}}{a-b} \sum\left(G_{a n}-G_{b n}\right)
$$

- But this equation is not linearly independent from the two others.
- Taking $G_{a 0}$ and $G_{0 b}$ we can write

$$
\frac{\lambda H_{a b}^{-2}}{a-b}\left(a G_{a}-b G_{b}\right)+\frac{H_{a b}^{-2}}{a-b}\left(a H_{a 0}^{2} G_{a 0}-b H_{0 b}^{2} G_{0 b}\right)-H_{a b}^{-1}=\frac{\lambda^{2} H_{a b}^{-2}}{a-b} \sum\left(G_{a n}-G_{b n}\right)
$$

And so

$$
G_{a b}=\frac{\lambda H_{a b}^{-2}}{a-b}\left(b G_{a}-a G_{b}\right)+\frac{H_{a b}^{-2}}{a-b}\left(a H_{a 0}^{2} G_{a 0}-b H_{0 b}^{2} G_{0 b}\right)
$$

- For the three-point funtion we find

$$
G_{a b c}=-\frac{\lambda H_{b c}^{-1}}{b-c}\left(G_{a b}-G_{a c}\right)=-\frac{\lambda H_{c a}^{-1}}{c-a}\left(G_{b c}-G_{b a}\right)=-\frac{\lambda H_{a b}^{-1}}{a-b}\left(G_{c a}-G_{c b}\right)
$$

- Similarly we have the four-point function

$$
G_{a b c d}=-\frac{\lambda H_{c d}^{-1}}{c-d}\left(G_{a b c}-G_{a b d}\right)
$$

- Inserting the first equation for the two-point in the one-point funtion equation, we have

$$
G_{a}=\frac{m}{2 a+\mu^{2}}-\frac{1}{2 a+\mu^{2}} \sum \frac{1}{a+n+\mu^{2}}-\frac{\lambda}{2 a+\mu^{2}} \sum \frac{G_{a}-G_{n}}{\left(a+n+\mu^{2}\right)(a-n)}
$$

- This leads to the singular integral equation of the Carleman type

$$
\alpha(a) G(a)+\int_{0}^{\wedge} d n \frac{G(n)}{(a-n)(a+n+1)}=f(a)
$$

or

$$
\alpha(\tilde{a}) G(\tilde{a})+\int_{1 / 2}^{\Lambda+1 / 2} d \tilde{n} \frac{G(\tilde{n})}{\tilde{a}^{2}-\tilde{n}^{2}}=f(\tilde{a})
$$

- The equation has a non-degenerate kernel. It can be solved by the transformation $n^{2}=x$.
- Using the equation for the three-point function we can also have

$$
G_{a b}=H_{a b}^{-1}-\sum G_{a b n}=H_{a b}^{-1}+\lambda^{2} \sum \frac{H_{b n}^{-1}}{b-n}\left(G_{a b}-G a n\right)
$$

or

$$
G_{a b}\left(1-\lambda^{2} \sum \frac{H_{b c}^{-1}}{b-c}\right)=H_{a b}^{-1}-\lambda^{2} \sum \frac{H_{b n}^{-1}}{b-n} G_{a n}
$$

- This allows us to study the mass renormalization μ_{R}

$$
G_{00}\left(1-\lambda^{2} \sum \frac{H_{0 n}^{-1}}{b-n}\right)=\mu^{-2}+\lambda^{2} \sum \frac{H_{0 n}^{-1}}{n} G_{0 n}
$$

- We have also the renormalization condition $G_{a}=0$

$$
m=\lambda \sum G_{0 n}
$$

- Both cnditions are given by $G_{0 n}$

