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✤ D-brane compactifications provide a promising framework for model building.

✤ They allow for large extra dimensions which imply a significantly lower string scale, 
even of just a few TeV.

✤ Scenarios of these kinds may explain the hierarchy problem, but also allow for stringy 
signatures that can be observed at LHC. 

✤ In these compactifications, 

✴ gauge fields are strings with both ends on the same D-brane.

✴ matter fields are strings stretched between different branes.  

✤ Several constructions have been built which come very close to the Standard Model.

✤ Particular interest have the intersecting D-brane scenarios.

Antoniadis Arkani-Hamed Dimopoulos Dvali 
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Motivation

✤ In these scenarios, Standard Model matter fields are living at D-brane intersections.

✤ However, at the same intersections, there exist a tower of stringy excitations with 
masses that depend on the string scale Ms but also the intersection angle !:

✤ If the string scale is at a few TeV range and the intersection angle is small, these 
stringy excitations might be visible at LHC.

✤ It is very interesting to study their decay channels and their lifetimes.

✤ In order to do so, we have to extend our tools by evaluating the correlation functions    
of three and four twisted states.

M2 ⇡ ✓M2
s
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✤ We focus on type IIA constructions in a T2×T2×T2 space with intersecting D6 branes:

✤ Strings with both ends on a stack of branes give rise to U(N) = SU(N)xU(1) group.

✤ Strings stretched between different stacks transform as bifundamentals.

✤ Lets focus more on these states at the intersections.
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✤ Open strings stretched between intersecting branes are twisted,                                                  
their oscillator modes depend on the intersection angle !.

✤ Mode expansion (                                ):

for " = 0, 1/2 for R and NS respectively.

✤ For the quantization we define the commutator/anticommutators:

✤ And the three vacua that these states act on:
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✤ Lets consider the NS sector for simplicity.

✤ The first states (which are also massless by SUSY) are:

✤ Next, we have the states:

✤ These scalars are potentially very light, depending on the intersection angles.

✤ The R sector gives spacetime fermions, being the super-partners of the above.

✤ If the string scale is low, and the angles are small, such states have very low masses.
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✤ In semi-realistic D-brane compactifications, the SM matter fields are massless states, 
living at the intersections: 

✤ However, there is a whole tower of stringy excitations with same quantum numbers.

✤ The study of the decay channels and the lifetimes of such states is very interesting.
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˜̃ER, . . .

UR, ŨR,
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✤ We wand to compute: the decay amplitudes of two chiral fermions and a scalar:

                    the scattering amplitudes of four chiral fermions:

✤ Two difficulties:  1. Vertex operators  

                                   2.  Bosonic twist field correlator
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✤ For the NS-sector we have the following dictionary 
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1. Vertex Operators
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2 | ✓ iB⌦NS : ei✓H !+

✓ (↵✓)
2 | ✓ iB⌦NS : ei✓H !�

�✓
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2+✓| ✓ iB⌦NS : ei(✓�1)H �+

✓  � 1
2�✓| ✓ iB⌦NS : ei(✓+1)H ��
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(↵�✓)
2  � 1
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2  � 1
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✤ Using our dictionary, we have for example
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✤ We will need various correlation functions:
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✤ The excited twist fields,    and     are not primaries.
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✤ The excited twist fields,    and     are not primaries.

✤ Thus, we will take a detour: we will evaluating higher correlators with only primaries: 

✤ Next, taking the appropriate limits, like              ,                and using the OPE’s:
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✤ Let us focus on the three-point correlators.
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✤ Let us focus on the three-point correlators.

✤ Out starting point are the five-point correlators:

✤ The      ,       split on a classical and a quantum part:

✤ Since correlators with odd number of          ,          are zero, we have to evaluate:
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✤ Let us focus on the three-point correlators.

✤ Out starting point are the five-point correlators:

✤ The      ,       split on a classical and a quantum part:

✤ Since correlators with odd number of          ,          are zero, we have to evaluate:

✤ The two parts can be evaluated separately.
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✤ The ‘‘classical’’ parts:

can be computed using the three-point function:

and the classical solutions:
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✤ The ‘‘quantum’’ part:
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✤ The ‘‘quantum’’ part:

can be evaluated by using:

✴ the local behavior  

✴ the monodromy conditions:
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✤ Adding the classical and quantum parts we get the total five-point correlators:

The results
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✤ Adding the classical and quantum parts we get the total five-point correlators:

✤ Taking various limits, like             ,               or               and using the OPE’s we get:

The results
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✤ The three-point correlator containing just one excited bosonic twist field does not 
contain a purely quantum part, but is dictated by the classical solution. 

Comments



✤ The three-point correlator containing just one excited bosonic twist field does not 
contain a purely quantum part, but is dictated by the classical solution. 

✤ Thus, the decay rate of the first excited stringy scalar state, ex.                , depends on the 
displacement in the compactification manifold between the stringy massive state and 
the massless states localized at different D-brane intersections. 
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the massless states localized at different D-brane intersections. 

✤ This displacement is also related to the observed Yukawa coupling hierarchies of the 
massless fermions. 

✤ This potentially allows one to obtain bounds on the decay rate of light stringy states in 
terms of observed mass hierarchies.
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✤ The three-point correlator containing just one excited bosonic twist field does not 
contain a purely quantum part, but is dictated by the classical solution. 

✤ Thus, the decay rate of the first excited stringy scalar state, ex.                , depends on the 
displacement in the compactification manifold between the stringy massive state and 
the massless states localized at different D-brane intersections. 

✤ This displacement is also related to the observed Yukawa coupling hierarchies of the 
massless fermions. 

✤ This potentially allows one to obtain bounds on the decay rate of light stringy states in 
terms of observed mass hierarchies.

✤ This is a work in progress.
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✤ Similarly for the four-point correlators:

1. we start with the six-point correlators of primary fields:
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✤ Similarly for the four-point correlators:
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✤ Similarly for the four-point correlators:

1. we start with the six-point correlators of primary fields:

2. we split:                                   ,

3. we compute the classical part using the
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✤ Similarly for the four-point correlators:

1. we start with the six-point correlators of primary fields:

2. we split:                                   ,

3. we compute the classical part using the

4. we compute the quantum part using the local behaviors & monodromies.

Four-point procedure
ȥ

ab

c

c

cbș caș

ȥ Ȥ

Ȥ

⌦
@Z(z)@Z̄(w)�+

↵ (x1)�
+
1�↵(x2)�

+
� (x3)�

+
1��(x4)

↵
⌦
@Z(z)@Z(w)�+

↵ (x1)�
+
1�↵(x2)�

+
� (x3)�

+
1��(x4)

↵
⌦
@Z(z)@Z̄(w)�+

↵ (x1)�
+
1�↵(x2)�

+
� (x3)�

+
1��(x4)

↵

⌦
�

+
↵ (x1)�

+
1�↵(x2)�

+
� (x3)�

+
1��(x4)

↵
@Zcl @Z̄cl

@Z = @Zcl + @Zqu @Z̄ = @Z̄cl + @Z̄qu .



✤ Similarly for the four-point correlators:

1. we start with the six-point correlators of primary fields:

2. we split:                                   ,

3. we compute the classical part using the

4. we compute the quantum part using the local behaviors & monodromies.

5. we take various limits and we use the known OPE’s.
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✤ These processes would be suppressed by the Yukawa couplings. 

✤ Therefore, the bounds on these states will be drastically weaker than those for string 
Regge excitations.

✤ Indeed, from dijet searches for related resonances, since the cross-section is so 
suppressed we can infer that the bounds on such states will be much less than a TeV. 

✤ This raises the intriguing prospect that the string scale could be just out of reach of the 
LHC, but the light stringy states could be hiding in plain sight.
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✤ D-brane realizations of the Standard Model, predict states with                    .

✤ If the string scale is at a few TeV region and some of the intersecting angles are small 
these states are very light.

✤ It is interesting to study their decay channels as well as their lifetimes.

✤ To do so, we have evaluated several correlation functions of twisted fields.

✤ Three-point functions show the relation of the lifetimes and the compactification 
manifold between the light stringy states.

✤ Four-point functions will help in the study of the decay channels of these light stringy 
states which could be observed at LHC.

Conclusions

M2 ⇡ ✓M2
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