Three- and Four-point correlators of excited bosonic twist fields

Pascal Anastasopoulos

arxiv: 1305.7166
with M. D. Goodsell and R. Richter.

Corfu-08/09/2013

Plan of the talk

* Motivation
* D-brane model building
* Three-point correlators
* Four-point correlators
* Conclusions

Motivation

Motivation

* D-brane compactifications provide a promising framework for model building.

Motivation

* D-brane compactifications provide a promising framework for model building.
* They allow for large extra dimensions which imply a significantly lower string scale, even of just a few TeV.

Motivation

* D-brane compactifications provide a promising framework for model building.
* They allow for large extra dimensions which imply a significantly lower string scale, even of just a few TeV.
* Scenarios of these kinds may explain the hierarchy problem, but also allow for stringy signatures that can be observed at LHC.

Motivation

* D-brane compactifications provide a promising framework for model building.
* They allow for large extra dimensions which imply a significantly lower string scale, even of just a few TeV.
* Scenarios of these kinds may explain the hierarchy problem, but also allow for stringy signatures that can be observed at LHC.

Antoniadis Arkani-Hamed Dimopoulos Dvali

* In these compactifications,
* gauge fields are strings with both ends on the same D-brane.
* matter fields are strings stretched between different branes.

Motivation

* D-brane compactifications provide a promising framework for model building.
* They allow for large extra dimensions which imply a significantly lower string scale, even of just a few TeV.
* Scenarios of these kinds may explain the hierarchy problem, but also allow for stringy signatures that can be observed at LHC.

Antoniadis Arkani-Hamed Dimopoulos Dvali

* In these compactifications,
* gauge fields are strings with both ends on the same D-brane.
* matter fields are strings stretched between different branes.
* Several constructions have been built which come very close to the Standard Model.

Motivation

* D-brane compactifications provide a promising framework for model building.
* They allow for large extra dimensions which imply a significantly lower string scale, even of just a few TeV.
* Scenarios of these kinds may explain the hierarchy problem, but also allow for stringy signatures that can be observed at LHC.

Antoniadis Arkani-Hamed Dimopoulos Dvali

* In these compactifications,
* gauge fields are strings with both ends on the same D-brane.
* matter fields are strings stretched between different branes.
* Several constructions have been built which come very close to the Standard Model.
* Particular interest have the intersecting D-brane scenarios.

Motivation

* In these scenarios, Standard Model matter fields are living at D-brane intersections.

Motivation

* In these scenarios, Standard Model matter fields are living at D-brane intersections.
* However, at the same intersections, there exist a tower of stringy excitations with masses that depend on the string scale M_{s} but also the intersection angle θ :

$$
M^{2} \approx \theta M_{s}^{2}
$$

Motivation

* In these scenarios, Standard Model matter fields are living at D-brane intersections.
* However, at the same intersections, there exist a tower of stringy excitations with masses that depend on the string scale M_{s} but also the intersection angle θ :

$$
M^{2} \approx \theta M_{s}^{2}
$$

* If the string scale is at a few TeV range and the intersection angle is small, these stringy excitations might be visible at LHC.

Motivation

* In these scenarios, Standard Model matter fields are living at D-brane intersections.
* However, at the same intersections, there exist a tower of stringy excitations with masses that depend on the string scale M_{s} but also the intersection angle θ :

$$
M^{2} \approx \theta M_{s}^{2}
$$

* If the string scale is at a few TeV range and the intersection angle is small, these stringy excitations might be visible at LHC.
* It is very interesting to study their decay channels and their lifetimes.

Motivation

* In these scenarios, Standard Model matter fields are living at D-brane intersections.
* However, at the same intersections, there exist a tower of stringy excitations with masses that depend on the string scale M_{s} but also the intersection angle θ :

$$
M^{2} \approx \theta M_{s}^{2}
$$

* If the string scale is at a few TeV range and the intersection angle is small, these stringy excitations might be visible at LHC.
* It is very interesting to study their decay channels and their lifetimes.
* In order to do so, we have to extend our tools by evaluating the correlation functions of three and four twisted states.

D-brane compactifications

Our tools

*We focus on type IIA constructions in a $T^{2} \times T^{2} \times T^{2}$ space with intersecting D6 branes:
1+6 Neumann directions a stack of $N D_{6}$-branes

An open string attached on a stack of $N \mathrm{D}_{6}$-branes

Our tools

*We focus on type IIA constructions in a $T^{2} \times T^{2} \times T^{2}$ space with intersecting D6 branes:
1+6 Neumann directions

* Strings with both ends on a stack of branes give rise to $U(\mathrm{~N})=S U(\mathrm{~N}) \times U(1)$ group.

Our tools

*We focus on type IIA constructions in a $T^{2} \times T^{2} \times T^{2}$ space with intersecting D6 branes:

* Strings with both ends on a stack of branes give rise to $U(\mathrm{~N})=S U(\mathrm{~N}) \times U(1)$ group.
* Strings stretched between different stacks transform as bifundamentals.

Our tools

* We focus on type IIA constructions in a $T^{2} \times T^{2} \times T^{2}$ space with intersecting D6 branes:

* Strings with both ends on a stack of branes give rise to $U(\mathrm{~N})=S U(\mathrm{~N}) \times U(1)$ group.
* Strings stretched between different stacks transform as bifundamentals.
* Lets focus more on these states at the intersections.

Quantization at angles

* Open strings stretched between intersecting branes are twisted, their oscillator modes depend on the intersection angle θ.

Quantization at angles

* Open strings stretched between intersecting branes are twisted, their oscillator modes depend on the intersection angle θ.
* Mode expansion $\left(Z^{p}=X^{p}+i X^{p+1}\right)$:

$$
\begin{aligned}
\partial Z^{I}(z) & =\sum_{n} \alpha_{n-\theta_{I}}^{I} z^{-n+\theta_{I}-1} & \partial \bar{Z}^{I}(z)=\sum_{n} \alpha_{n+\theta_{I}}^{I} z^{-n-\theta_{I}-1} \\
\Psi^{I}(z) & =\sum_{r \in \mathbb{Z}+\nu} \psi_{r-\theta_{I}}^{I} z^{-r-\frac{1}{2}+\theta_{I}} & \bar{\Psi}^{I}(z)=\sum_{r \in \mathbb{Z}+\nu} \psi_{r+\theta_{I}}^{I} \bar{z}^{-r-\frac{1}{2}-\theta_{I}}
\end{aligned}
$$

for $v=0,1 / 2$ for R and NS respectively.

Quantization at angles

* Open strings stretched between intersecting branes are twisted, their oscillator modes depend on the intersection angle θ.
* Mode expansion $\left(Z^{p}=X^{p}+i X^{p+1}\right)$:

$$
\begin{aligned}
\partial Z^{I}(z) & =\sum_{n} \alpha_{n-\theta_{I}}^{I} z^{-n+\theta_{I}-1} & \partial \bar{Z}^{I}(z)=\sum_{n} \alpha_{n+\theta_{I}}^{I} z^{-n-\theta_{I}-1} \\
\Psi^{I}(z) & =\sum_{r \in \mathbb{Z}+\nu} \psi_{r-\theta_{I}}^{I} z^{-r-\frac{1}{2}+\theta_{I}} & \bar{\Psi}^{I}(z)=\sum_{r \in \mathbb{Z}+\nu} \psi_{r+\theta_{I}}^{I} \bar{z}^{-r-\frac{1}{2}-\theta_{I}}
\end{aligned}
$$

for $v=0,1 / 2$ for R and NS respectively.

* For the quantization we define the commutator/anticommutators:

$$
\left[\alpha_{n \pm \theta}^{I}, \alpha_{m \mp \theta}^{I^{\prime}}\right]=(m \pm \theta) \delta_{n+m} \delta^{I I^{\prime}} \quad\left\{\psi_{m-\theta_{I}}^{I}, \psi_{n+\theta_{I}}^{I^{\prime}}\right\}=\delta_{m, n} \delta^{I I^{\prime}}
$$

Quantization at angles

* Open strings stretched between intersecting branes are twisted,
 their oscillator modes depend on the intersection angle θ.
* Mode expansion $\left(Z^{p}=X^{p}+i X^{p+1}\right)$:

$$
\begin{aligned}
\partial Z^{I}(z) & =\sum_{n} \alpha_{n-\theta_{I}}^{I} z^{-n+\theta_{I}-1} & \partial \bar{Z}^{I}(z)=\sum_{n} \alpha_{n+\theta_{I}}^{I} z^{-n-\theta_{I}-1} \\
\Psi^{I}(z) & =\sum_{r \in \mathbb{Z}+\nu} \psi_{r-\theta_{I}}^{I} z^{-r-\frac{1}{2}+\theta_{I}} & \bar{\Psi}^{I}(z)=\sum_{r \in \mathbb{Z}+\nu} \psi_{r+\theta_{I}}^{I} \bar{z}^{-r-\frac{1}{2}-\theta_{I}}
\end{aligned}
$$

for $v=0,1 / 2$ for R and NS respectively.

* For the quantization we define the commutator/anticommutators:

$$
\left[\alpha_{n \pm \theta}^{I}, \alpha_{m \neq \theta}^{I^{\prime}}\right]=(m \pm \theta) \delta_{n+m} \delta^{I I^{\prime}} \quad\left\{\psi_{m-\theta_{I}}^{I}, \psi_{n+\theta_{I}}^{I^{\prime}}\right\}=\delta_{m, n} \delta^{I I^{\prime}}
$$

* And the three vacua that these states act on:

WS bosonic: $\quad\left|\theta_{1,2,3}^{a b}\right\rangle_{B}$

WS fermionic (NS):	$\left\|\theta_{1,2,3}^{a b}\right\rangle_{N S}$
WS fermionic (R):	$\left\|\theta_{1,2,3}^{a b}\right\rangle_{R}$

NS sector at the intersections

* Lets consider the NS sector for simplicity.
* The first states (which are also massless by SUSY) are:

$$
\Phi: \quad \prod_{I} \psi_{-\frac{1}{2}+\theta_{I}}\left|\theta_{1,2,3}^{a b}\right\rangle_{B \otimes N S} \quad M^{2}=\left(1-\frac{1}{2}\left(\theta_{1}+\theta_{2}+\theta_{3}\right)\right) M_{s}^{2}=0
$$

NS sector at the intersections

* Lets consider the NS sector for simplicity.
* The first states (which are also massless by SUSY) are:

$$
\Phi: \quad \prod_{I} \psi_{-\frac{1}{2}+\theta_{I}}\left|\theta_{1,2,3}^{a b}\right\rangle_{B \otimes N S} \quad M^{2}=\left(1-\frac{1}{2}\left(\theta_{1}+\theta_{2}+\theta_{3}\right)\right) M_{s}^{2}=0
$$

* Next, we have the states:

$$
\begin{array}{ll}
\tilde{\Phi}: & \alpha_{-\theta_{1}} \prod_{I} \psi_{-\frac{1}{2}+\theta_{I}}\left|\theta_{1,2,3}^{a b}\right\rangle_{B \otimes N S} \\
\tilde{\tilde{\Phi}}: & \alpha_{-\theta_{1}}^{2} \prod_{I} \psi_{-\frac{1}{2}+\theta_{I}}\left|\theta_{1,2,3}^{a b}\right\rangle_{B \otimes N S}
\end{array}
$$

$$
M^{2}=\left(1-\frac{1}{2} \sum_{I} \theta_{I}+\theta_{1}\right) M_{s}^{2}=\theta_{1} M_{s}^{2}
$$

$$
M^{2}=\left(1-\frac{1}{2} \sum_{I}^{1} \theta_{I}+2 \theta_{1}\right) M_{s}^{2}=2 \theta_{1} M_{s}^{2}
$$

NS sector at the intersections

* Lets consider the NS sector for simplicity.
* The first states (which are also massless by SUSY) are:

$$
\Phi: \quad \prod_{I} \psi_{-\frac{1}{2}+\theta_{I}}\left|\theta_{1,2,3}^{a b}\right\rangle_{B \otimes N S} \quad M^{2}=\left(1-\frac{1}{2}\left(\theta_{1}+\theta_{2}+\theta_{3}\right)\right) M_{s}^{2}=0
$$

* Next, we have the states:

$$
\begin{array}{lll}
\tilde{\Phi}: & \alpha_{-\theta_{1}} \prod_{I} \psi_{-\frac{1}{2}+\theta_{I}}\left|\theta_{1,2,3}^{a b}\right\rangle_{B \otimes N S} & M^{2}=\left(1-\frac{1}{2} \sum_{I} \theta_{I}+\theta_{1}\right) M_{s}^{2}=\theta_{1} M_{s}^{2} \\
\tilde{\tilde{\Phi}}: & \alpha_{-\theta_{1}}^{2} \prod_{I} \psi_{-\frac{1}{2}+\theta_{I}}\left|\theta_{1,2,3}^{a b}\right\rangle_{B \otimes N S} & M^{2}=\left(1-\frac{1}{2} \sum_{I} \theta_{I}+2 \theta_{1}\right) M_{s}^{2}=2 \theta_{1} M_{s}^{2}
\end{array}
$$

* These scalars are potentially very light, depending on the intersection angles.

NS sector at the intersections

* Lets consider the NS sector for simplicity.
* The first states (which are also massless by SUSY) are:

$$
\Phi: \quad \prod_{I} \psi_{-\frac{1}{2}+\theta_{I}}\left|\theta_{1,2,3}^{a b}\right\rangle_{B \otimes N S} \quad M^{2}=\left(1-\frac{1}{2}\left(\theta_{1}+\theta_{2}+\theta_{3}\right)\right) M_{s}^{2}=0
$$

* Next, we have the states:

$$
\begin{array}{lll}
\tilde{\Phi}: & \alpha_{-\theta_{1}} \prod_{I} \psi_{-\frac{1}{2}+\theta_{I}}\left|\theta_{1,2,3}^{a b}\right\rangle_{B \otimes N S} & M^{2}=\left(1-\frac{1}{2} \sum_{I} \theta_{I}+\theta_{1}\right) M_{s}^{2}=\theta_{1} M_{s}^{2} \\
\tilde{\tilde{\Phi}}: & \alpha_{-\theta_{1}}^{2} \prod_{I} \psi_{-\frac{1}{2}+\theta_{I}}\left|\theta_{1,2,3}^{a b}\right\rangle_{B \otimes N S} & M^{2}=\left(1-\frac{1}{2} \sum_{I} \theta_{I}+2 \theta_{1}\right) M_{s}^{2}=2 \theta_{1} M_{s}^{2}
\end{array}
$$

* These scalars are potentially very light, depending on the intersection angles.
* The R sector gives spacetime fermions, being the super-partners of the above.

NS sector at the intersections

* Lets consider the NS sector for simplicity.
* The first states (which are also massless by SUSY) are:

$$
\Phi: \quad \prod_{I} \psi_{-\frac{1}{2}+\theta_{I}}\left|\theta_{1,2,3}^{a b}\right\rangle_{B \otimes N S} \quad M^{2}=\left(1-\frac{1}{2}\left(\theta_{1}+\theta_{2}+\theta_{3}\right)\right) M_{s}^{2}=0
$$

* Next, we have the states:

$$
\begin{array}{lll}
\tilde{\Phi}: & \alpha_{-\theta_{1}} \prod_{I} \psi_{-\frac{1}{2}+\theta_{I}}\left|\theta_{1,2,3}^{a b}\right\rangle_{B \otimes N S} & M^{2}=\left(1-\frac{1}{2} \sum_{I} \theta_{I}+\theta_{1}\right) M_{s}^{2}=\theta_{1} M_{s}^{2} \\
\tilde{\tilde{\Phi}}: & \alpha_{-\theta_{1}}^{2} \prod_{I} \psi_{-\frac{1}{2}+\theta_{I}}\left|\theta_{1,2,3}^{a b}\right\rangle_{B \otimes N S} & M^{2}=\left(1-\frac{1}{2} \sum_{I} \theta_{I}+2 \theta_{1}\right) M_{s}^{2}=2 \theta_{1} M_{s}^{2}
\end{array}
$$

* These scalars are potentially very light, depending on the intersection angles.
* The R sector gives spacetime fermions, being the super-partners of the above.
* If the string scale is low, and the angles are small, such states have very low masses.

D-brane worlds

* In semi-realistic D-brane compactifications, the SM matter fields are massless states, living at the intersections:

D-brane worlds

* In semi-realistic D-brane compactifications, the SM matter fields are massless states, living at the intersections:

* However, there is a whole tower of stringy excitations with same quantum numbers.

D-brane worlds

* In semi-realistic D-brane compactifications, the SM matter fields are massless states, living at the intersections:

* However, there is a whole tower of stringy excitations with same quantum numbers.
* The study of the decay channels and the lifetimes of such states is very interesting.

Amplitudes with outgoing excited states

* We wand to compute: the decay amplitudes of two chiral fermions and a scalar:

the scattering amplitudes of four chiral fermions:

Amplitudes with outgoing excited states

* We wand to compute: the decay amplitudes of two chiral fermions and a scalar:

the scattering amplitudes of four chiral fermions:

Amplitudes with outgoing excited states

* We wand to compute: the decay amplitudes of two chiral fermions and a scalar:
stringy excitations
$\langle\tilde{\Phi} \psi \chi\rangle=$

MSSM matter fields

the scattering amplitudes of four chiral fermions:

* Two difficulties: 1. Vertex operators

2. Bosonic twist field correlator

1. Vertex Operators

* For the NS-sector we have the following dictionary
positive angle θ

negative angle θ

$|\theta\rangle_{B \otimes N S}$
$\alpha_{-\theta}|\theta\rangle_{B \otimes N S}$
$\left(\alpha_{-\theta}\right)^{2}|\theta\rangle_{B \otimes N S}$
$\psi_{-\frac{1}{2}+\theta}|\theta\rangle_{B \otimes N S}$
$\alpha_{-\theta} \psi_{-\frac{1}{2}+\theta}|\theta\rangle_{B \otimes N S}$
$: e^{i \theta H} \sigma_{\theta}^{+}$
: $e^{i \theta H} \tau_{\theta}^{+}$
: $e^{i \theta H} \omega_{\theta}^{+}$
$: \quad e^{i(\theta-1) H} \sigma_{\theta}^{+}$
$\left(\alpha_{-\theta}\right)^{2} \psi_{-\frac{1}{2}+\theta}|\theta\rangle_{B \otimes N S}$
$: e^{i(\theta-1) H} \tau_{\theta}^{+}$
$: e^{i(\theta-1) H} \omega_{\theta}^{+}$

$$
\begin{array}{lll}
|\theta\rangle_{B \otimes N S} & : & e^{i \theta H} \sigma_{-\theta}^{-} \\
\alpha_{\theta}|\theta\rangle_{B \otimes N S} & : & e^{i \theta H} \tau_{-\theta}^{-} \\
\left(\alpha_{\theta}\right)^{2}|\theta\rangle_{B \otimes N S} & : & e^{i \theta H} \omega_{-\theta}^{-} \\
\psi_{-\frac{1}{2}-\theta}|\theta\rangle_{B \otimes N S} & : & e^{i(\theta+1) H} \sigma_{-\theta}^{-} \\
\alpha_{\theta} \psi_{-\frac{1}{2}-\theta}|\theta\rangle_{B \otimes N S} & : & e^{i(\theta+1) H} \tau_{-\theta}^{-} \\
\left(\alpha_{\theta}\right)^{2} \psi_{-\frac{1}{2}-\theta}|\theta\rangle_{B \otimes N S} & : & e^{i(\theta+1) H} \omega_{-\theta}^{-}
\end{array}
$$

1. Vertex Operators

* For the NS-sector we have the following dictionary
positive angle θ

$$
\begin{array}{lll}
|\theta\rangle_{B \otimes N S} & : & e^{i \theta H} \sigma_{\theta}^{+} \\
\alpha_{-\theta}|\theta\rangle_{B \otimes N S} & : & e^{i \theta H} \tau_{\theta}^{+} \\
\left(\alpha_{-\theta}\right)^{2}|\theta\rangle_{B \otimes N S} & : & e^{i \theta H} \omega_{\theta}^{+} \\
\psi_{-\frac{1}{2}+\theta}|\theta\rangle_{B \otimes N S} & : & e^{i(\theta-1) H} \sigma_{\theta}^{+} \\
\alpha_{-\theta} \psi_{-\frac{1}{2}+\theta}|\theta\rangle_{B \otimes N S} & : & e^{i(\theta-1) H} \tau_{\theta}^{+} \\
\left(\alpha_{-\theta}\right)^{2} \psi_{-\frac{1}{2}+\theta}|\theta\rangle_{B \otimes N S} & : & e^{i(\theta-1) H} \omega_{\theta}^{+}
\end{array}
$$

negative angle θ

$$
\begin{array}{ll}
|\theta\rangle_{B \otimes N S} & : \\
e^{i \theta H} \sigma_{-\theta}^{-} \\
\alpha_{\theta}|\theta\rangle_{B \otimes N S} & : \\
\left(\alpha_{\theta}\right)^{2}|\theta\rangle_{B \otimes N S} \tau_{-\theta}^{-} \\
\psi_{-\frac{1}{2}-\theta}|\theta\rangle_{B \otimes N S} & : \\
\alpha_{\theta} \psi_{-\frac{1}{2}-\theta}|\theta\rangle_{B \otimes N S} & : \\
\omega_{-\theta} \\
\left(\alpha_{\theta}\right)^{2} \psi_{-\frac{1}{2}-\theta}|\theta\rangle_{B \otimes N S} & : \\
e e^{i(\theta+1) H} \sigma_{-\theta}^{-} \\
i(\theta+1) H & \omega_{-\theta}^{-}
\end{array}
$$

* For the R-sector apply the following dictionary

$$
\begin{aligned}
& \text { positive angle } \theta \\
& |\theta\rangle_{B \otimes R} \quad: \quad e^{i(\theta-1 / 2) H} \sigma_{\theta}^{+}
\end{aligned}
$$

negative angle θ

$$
|\theta\rangle_{B \otimes R} \quad: \quad e^{i(\theta+1 / 2) H} \sigma_{-\theta}^{-}
$$

1.Vertex Operators

* For the NS-sector we have the following dictionary
positive angle θ

```
| 0\mp@subsup{\rangle}{B\otimesNS}{}
\alpha-0}|0\mp@subsup{\rangle}{B\otimesNS}{
(\alpha-0)}\mp@subsup{}{}{2}|0\mp@subsup{\rangle}{B\otimesNS}{
\psi-\frac{1}{2}+0
\[
\alpha_{-\theta} \psi_{-\frac{1}{2}+\theta}|\theta\rangle_{B \otimes N S}
\]
```

$: e^{i \theta H} \sigma_{\theta}^{+}$
$: e^{i \theta H} \tau_{\theta}^{+}$
: $e^{i \theta H} \omega_{\theta}^{+}$
$: \quad e^{i(\theta-1) H} \tau_{\theta}^{+}$

```
\[
\left(\alpha_{-\theta}\right)^{2} \psi_{-\frac{1}{2}+\theta}|\theta\rangle_{B \otimes N S} \quad: \quad e^{i(\theta-1) H} \omega_{\theta}^{+}
\]
```

$$
: \quad e^{i(\theta-1) H} \sigma_{\theta}^{+} \quad \psi_{-\frac{1}{2}-\theta}|\theta\rangle_{B \otimes N S}
$$

negative angle θ

$\|\theta\rangle_{B \otimes N S}$	$:$	$e^{i \theta H} \sigma_{-\theta}^{-}$
$\alpha_{\theta}\|\theta\rangle_{B \otimes N S}$	$:$	$e^{i \theta H} \tau_{-\theta}^{-}$
$\left(\alpha_{\theta}\right)^{2}\|\theta\rangle_{B \otimes N S}$	$:$	$e^{i \theta H} \omega_{-\theta}^{-}$
$\psi_{-\frac{1}{2}-\theta}\|\theta\rangle_{B \otimes N S}$	$:$	$e^{i(\theta+1) H} \sigma_{-\theta}^{-}$
$\alpha_{\theta} \psi_{-\frac{1}{2}-\theta}\|\theta\rangle_{B \otimes N S}$	$:$	$e^{i(\theta+1) H} \tau_{-\theta}^{-}$
$\left(\alpha_{\theta}\right)^{2} \psi_{-\frac{1}{2}-\theta}\|\theta\rangle_{B \otimes N S}$	$:$	$e^{i(\theta+1) H} \omega_{-\theta}^{-}$

$$
: e^{\imath \theta H} \tau_{-\theta}^{-}
$$

$$
\left(\alpha_{\theta}\right)^{2}|\theta\rangle_{B \otimes N S}
$$

$$
: e^{\operatorname{lon}} \omega_{-\theta}^{-}
$$

$$
e^{\imath(\theta+1) 11} \sigma_{-\theta}^{-}
$$

$$
\alpha_{\theta} \psi_{-\frac{1}{2}-\theta}|\theta\rangle_{B \otimes N S}
$$

$$
e^{\imath(0+1) H} \tau_{-\theta}
$$

Our setup

* In order to proceed we need to specify our setup.
* Consider three stacks of D-branes within a semi-realistic brane configuration:

Our setup

* In order to proceed we need to specify our setup.
* Consider three stacks of D-branes within a semi-realistic brane configuration:

* For the sake of concreteness we choose a supersymmetric setup with:

$$
\begin{array}{lll}
\theta_{a b}^{1}>0, & \theta_{a b}^{2}>0, & \theta_{a b}^{3}<0 \\
\theta_{b c}^{1}>0, & \theta_{b c}^{2}>0, & \theta_{b c}^{3}<0 \\
\theta_{c a}^{1}<0, & \theta_{c a}^{2}<0, & \theta_{c a}^{3}<0
\end{array} \quad \Longrightarrow \quad \begin{aligned}
& \theta_{a b}^{1}+\theta_{a b}^{2}+\theta_{a b}^{3}=0 \\
& \theta_{b c}^{1}+\theta_{b c}^{2}+\theta_{b c}^{3}=0 \\
& \theta_{c a}^{1}+\theta_{c a}^{2}+\theta_{c a}^{3}=-2
\end{aligned}
$$

Our setup

* In order to proceed we need to specify our setup.
* Consider three stacks of D-branes within a semi-realistic brane configuration:

* For the sake of concreteness we choose a supersymmetric setup with:

$$
\begin{array}{lll}
\theta_{a b}^{1}>0, & \theta_{a b}^{2}>0, & \theta_{a b}^{3}<0 \\
\theta_{b c}^{1}>0, & \theta_{b c}^{2}>0, & \theta_{b c}^{3}<0 \\
\theta_{c a}^{1}<0, & \theta_{c a}^{2}<0, & \theta_{c a}^{3}<0
\end{array} \quad \Longrightarrow \quad \begin{aligned}
& \theta_{a b}^{1}+\theta_{a b}^{2}+\theta_{a b}^{3}=0 \\
& \theta_{b c}^{1}+\theta_{b c}^{2}+\theta_{b c}^{3}=0 \\
& \theta_{c a}^{1}+\theta_{c a}^{2}+\theta_{c a}^{3}=-2
\end{aligned}
$$

* At the intersections live chiral fermions $\psi, \bar{\psi}, \chi, \bar{\chi}, \phi, \bar{\phi}$ and their superparteners Ψ, X, Φ.

The vertex operators

* Using our dictionary, we have for example

$$
\begin{aligned}
& V_{\psi}^{(-1 / 2)}=\Lambda_{b c} \psi^{\alpha} e^{-\varphi / 2} S_{\alpha}\left(\sigma_{\theta_{b c}^{1}}^{+} e^{i\left(\theta_{b c}^{1}-\frac{1}{2}\right) H_{1}}\right)\left(\sigma_{\theta_{b c}^{2}}^{+} e^{i\left(\theta_{b c}^{2}-\frac{1}{2}\right) H_{2}}\right)\left(\sigma_{-\theta_{b c}^{3}}^{-} e^{i\left(\theta_{b c}^{3}+\frac{1}{2}\right) H_{3}}\right) e^{i k X} \\
& V_{\tilde{\psi}}^{(-1 / 2)}=\Lambda_{b c} \tilde{\psi}^{\alpha} e^{-\varphi / 2} S_{\alpha}\left(\tau_{\theta_{b c}^{1}}^{+} e^{i\left(\theta_{b c}^{1}-\frac{1}{2}\right) H_{1}}\right)\left(\sigma_{\theta_{b c}^{2}}^{+} e^{i\left(\theta_{b c}^{2}-\frac{1}{2}\right) H_{2}}\right)\left(\sigma_{-\theta_{b c}^{3}}^{-} e^{i\left(\theta_{b c}^{3}+\frac{1}{2}\right) H_{3}}\right) e^{i k X} \\
& V_{\tilde{\tilde{\psi}}}^{(-1 / 2)}=\Lambda_{b c} \tilde{\tilde{\psi}}^{\alpha} e^{-\varphi / 2} S_{\alpha}\left(\omega_{\theta_{b c}^{1}}^{+} e^{i\left(\theta_{b c}^{1}-\frac{1}{2}\right) H_{1}}\right)\left(\sigma_{\theta_{b c}^{2}}^{+} e^{i\left(\theta_{b c}^{2}-\frac{1}{2}\right) H_{2}}\right)\left(\sigma_{-\theta_{b c}^{3}}^{-} e^{i\left(\theta_{b c}^{3}+\frac{1}{2}\right) H_{3}}\right) e^{i k X}
\end{aligned}
$$

The vertex operators

* Using our dictionary, we have for example

$$
\begin{aligned}
& V_{\psi}^{(-1 / 2)}=\Lambda_{b c} \psi^{\alpha} e^{-\varphi / 2} S_{\alpha}\left(\sigma_{\theta_{b c}^{1}}^{+} e^{i\left(\theta_{b c}^{1}-\frac{1}{2}\right) H_{1}}\right)\left(\sigma_{\theta_{b c}^{2}}^{+} e^{i\left(\theta_{b c}^{2}-\frac{1}{2}\right) H_{2}}\right)\left(\sigma_{-\theta_{b c}^{3}}^{-} e^{i\left(\theta_{b c}^{3}+\frac{1}{2}\right) H_{3}}\right) e^{i k X} \\
& V_{\tilde{\psi}}^{(-1 / 2)}=\Lambda_{b c} \tilde{\psi}^{\alpha} e^{-\varphi / 2} S_{\alpha}\left(\tau_{\theta_{b c}^{1}}^{+} e^{i\left(\theta_{b c}^{1}-\frac{1}{2}\right) H_{1}}\right)\left(\sigma_{\theta_{b c}^{2}}^{+} e^{i\left(\theta_{b c}^{2}-\frac{1}{2}\right) H_{2}}\right)\left(\sigma_{-\theta_{b c}^{3}}^{-} e^{i\left(\theta_{b c}^{3}+\frac{1}{2}\right) H_{3}}\right) e^{i k X} \\
& V_{\tilde{\tilde{\psi}}}^{(-1 / 2)}=\Lambda_{b c} \tilde{\tilde{\psi}}^{\alpha} e^{-\varphi / 2} S_{\alpha}\left(\omega_{\theta_{b c}^{1}}^{+} e^{i\left(\theta_{b c}^{1}-\frac{1}{2}\right) H_{1}}\right)\left(\sigma_{\theta_{b c}^{2}}^{+} e^{i\left(\theta_{b c}^{2}-\frac{1}{2}\right) H_{2}}\right)\left(\sigma_{-\theta_{b c}^{3}}^{-} e^{i\left(\theta_{b c}^{3}+\frac{1}{2}\right) H_{3}}\right) e^{i k X}
\end{aligned}
$$

* We will need various correlation functions:

$$
\begin{array}{cl}
& \\
\langle\tilde{\Phi} \psi \chi\rangle,\left\langle\tau_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
& \left\langle\tau_{\alpha}^{+}\left(x_{1}\right) \tau_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
& \left\langle\omega_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \ldots \\
\left.\langle\bar{\psi} \psi \tilde{\chi} \bar{\chi}\rangle,\langle\bar{\psi} \psi \tilde{\chi} \overline{\tilde{\chi}}\rangle, \quad \Longrightarrow \quad \begin{array}{l}
\\
\\
\langle\bar{\psi} \psi \tilde{\tilde{\chi}} \bar{\chi}\rangle, \ldots \\
\\
\\
\\
\left\langle\tau_{\alpha}^{+}\left(x_{1}\right) \tau_{\alpha}^{+}\left(x_{1}\right) \tau_{\alpha}^{+}\left(x_{2}\right) \sigma_{\beta}^{+}\left(x_{3}\right) \sigma_{\beta}^{-}\left(x_{3}\right) \sigma_{\beta}^{-}\left(x_{4}\right)\right\rangle \\
\\
\end{array} \omega_{\alpha}^{+}\left(x_{1}\right) \sigma_{\alpha}^{-}\left(x_{2}\right) \sigma_{\beta}^{+}\left(x_{3}\right) \sigma_{\beta}^{-}\left(x_{4}\right)\right\rangle \ldots
\end{array}
$$

2. Correlation functions

$$
\begin{aligned}
& \left\langle\tau_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
& \left\langle\tau_{\alpha}^{+}\left(x_{1}\right) \tau_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
& \left\langle\omega_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \ldots
\end{aligned}
$$

* The excited twist fields, τ and ω are not primaries.

2. Correlation functions

$$
\begin{aligned}
& \left\langle\tau_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
& \left\langle\tau_{\alpha}^{+}\left(x_{1}\right) \tau_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
& \left\langle\omega_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \ldots
\end{aligned}
$$

* The excited twist fields, τ and ω are not primaries.
* Thus, we will take a detour: we will evaluating higher correlators with only primaries:

$$
\left\langle\partial Z(z) \sigma_{\alpha}\left(x_{1}\right) \sigma_{\beta}\left(x_{2}\right) \sigma_{\gamma}\left(x_{3}\right) \ldots\right\rangle \quad\left\langle\partial Z(z) \partial \bar{Z}(w) \sigma_{\alpha}\left(x_{1}\right) \sigma_{\beta}\left(x_{2}\right) \sigma_{\gamma}\left(x_{3}\right) \ldots\right\rangle
$$

2. Correlation functions

$$
\begin{aligned}
& \left\langle\tau_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
& \left\langle\tau_{\alpha}^{+}\left(x_{1}\right) \tau_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
& \left\langle\omega_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \ldots
\end{aligned}
$$

* The excited twist fields, τ and ω are not primaries.
* Thus, we will take a detour: we will evaluating higher correlators with only primaries:

$$
\left\langle\partial Z(z) \sigma_{\alpha}\left(x_{1}\right) \sigma_{\beta}\left(x_{2}\right) \sigma_{\gamma}\left(x_{3}\right) \ldots\right\rangle
$$

* Next, taking the appropriate limits, like $z \rightarrow x_{1}, w \rightarrow x_{2}$ and using the OPE's:

$$
\begin{array}{rlrl}
\partial Z(z) \sigma_{\alpha}^{+}(w) & \sim(z-w)^{\alpha-1} \tau_{\alpha}^{+}(w) & & \partial \bar{Z}(z) \sigma_{\alpha}^{+}(w) \sim(z-w)^{-\alpha} \widetilde{\tau}_{\alpha}^{+}(w) \\
\partial Z(z) \tau_{\alpha}^{+}(w) \sim(z-w)^{\alpha-1} \omega_{\alpha}^{+}(w) & & \partial \bar{Z}(z) \tau_{\alpha}^{+}(w) \sim(z-w)^{-\alpha-1} \sigma_{\alpha}^{+}(w) \\
\partial Z(z) \omega_{\alpha_{\alpha}^{+}}^{+}(w) \sim(z-w)^{\alpha-1} \rho_{\alpha}^{+}(w) & & \partial \bar{Z}(z) \omega_{\alpha}^{+}(w) \sim(z-w)^{-\alpha-1} \tau_{\alpha}^{+}(w) \\
\partial Z(z) \widetilde{\tau}_{\alpha}^{+}(w) \sim(z-w)^{-2+\alpha} \sigma_{\alpha}^{+}(w) & & \partial \bar{Z}(z) \widetilde{\tau}_{\alpha}^{+}(w) \sim(z-w)^{-\alpha} \widetilde{\omega}_{\alpha}^{+}(w) \\
\partial Z(z) \sigma_{\alpha}^{-}(w) \sim(z-w)^{-\alpha} \tau_{\alpha}^{-}(w) & & \partial \bar{Z}(z) \sigma_{\alpha}^{-}(w) \sim(z-w)^{\alpha-1} \widetilde{\tau}_{\alpha}^{-}(w) \\
\partial Z(z) \tau_{\alpha}^{-}(w) \sim(z-w)^{-\alpha} \omega_{\alpha}^{-}(w) & & \partial \bar{Z}(z) \tau_{\alpha}^{-}(w) \sim(z-w)^{-2+\alpha} \sigma_{\alpha}^{-}(w) \\
\partial Z(z) \widetilde{\tau}_{\alpha}^{-}(w) \sim(z-w)^{-1+\alpha} \sigma_{\alpha}^{-}(w) & & \partial \bar{Z}(z) \widetilde{\tau}_{\alpha}^{-}(w) \sim(z-w)^{-1-\alpha} \widetilde{\omega}_{\alpha}^{-}(w) \\
\partial Z(z) \widetilde{\omega}_{\alpha}^{-}(w) \sim(z-w)^{-1+\alpha} \widetilde{\tau}_{\alpha}^{-}(w) & & \partial \bar{Z}(z) \widetilde{\omega}_{\alpha}^{-}(w) \sim(z-w)^{-1-\alpha} \widetilde{\rho}_{\alpha}^{-}(w)
\end{array}
$$

we get our desired correlators:

$$
\left\langle\tau_{\alpha}\left(x_{1}\right) \sigma_{\beta}\left(x_{2}\right) \sigma_{\gamma}\left(x_{3}\right) \ldots\right\rangle
$$

$$
\left\langle\tau_{\alpha}\left(x_{1}\right) \tilde{\tau}_{\beta}\left(x_{2}\right) \sigma_{\gamma}\left(x_{3}\right) \ldots\right\rangle
$$

Three-point correlators

The three-point correlators

* Let us focus on the three-point correlators.

The three-point correlators

* Let us focus on the three-point correlators.
* Out starting point are the five-point correlators:

$$
\begin{aligned}
& \left\langle\partial Z(z) \partial \bar{Z}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
& \left\langle\partial Z(z) \partial Z(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
& \left\langle\partial \bar{Z}(z) \partial \bar{Z}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle
\end{aligned}
$$

The three-point correlators

* Let us focus on the three-point correlators.
* Out starting point are the five-point correlators:

$$
\begin{aligned}
& \left\langle\partial Z(z) \partial \bar{Z}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
& \left\langle\partial Z(z) \partial Z(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
& \left\langle\partial \bar{Z}(z) \partial \bar{Z}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle
\end{aligned}
$$

* The $\partial Z, \partial \bar{Z}$ split on a classical and a quantum part:

$$
\partial Z=\partial Z_{c l}+\partial Z_{q u} \quad \partial \bar{Z}=\partial \bar{Z}_{c l}+\partial \bar{Z}_{q u}
$$

The three-point correlators

* Let us focus on the three-point correlators.
* Out starting point are the five-point correlators:

$$
\begin{aligned}
& \left\langle\partial Z(z) \partial \bar{Z}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
& \left\langle\partial Z(z) \partial Z(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
& \left\langle\partial \bar{Z}(z) \partial \bar{Z}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle
\end{aligned}
$$

* The $\partial Z, \partial \bar{Z}$ split on a classical and a quantum part:

$$
\partial Z=\partial Z_{c l}+\partial Z_{q u} \quad \partial \bar{Z}=\partial \bar{Z}_{c l}+\partial \bar{Z}_{q u}
$$

* Since correlators with odd number of $\partial Z_{q u}, \partial \bar{Z}_{q u}$ are zero, we have to evaluate:

$$
\begin{array}{ll}
\partial Z_{c l}(z) \partial \bar{Z}_{c l}(w)\left\langle\sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle & +\left\langle\partial Z_{q u}(z) \partial \bar{Z}_{q u}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
\partial Z_{c l}(z) \partial Z_{c l}(w)\left\langle\sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle & +\left\langle\partial Z_{q u}(z) \partial Z_{q u}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
\partial \bar{Z}_{c l}(z) \partial \bar{Z}_{c l}(w)\left\langle\sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle & +\left\langle\partial \bar{Z}_{q u}(z) \partial \bar{Z}_{q u}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle
\end{array}
$$

The three-point correlators

* Let us focus on the three-point correlators.
* Out starting point are the five-point correlators:

$$
\begin{aligned}
& \left\langle\partial Z(z) \partial \bar{Z}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
& \left\langle\partial Z(z) \partial Z(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
& \left\langle\partial \bar{Z}(z) \partial \bar{Z}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle
\end{aligned}
$$

* The $\partial Z, \partial \bar{Z}$ split on a classical and a quantum part:

$$
\partial Z=\partial Z_{c l}+\partial Z_{q u} \quad \partial \bar{Z}=\partial \bar{Z}_{c l}+\partial \bar{Z}_{q u}
$$

* Since correlators with odd number of $\partial Z_{q u}, \partial \bar{Z}_{q u}$ are zero, we have to evaluate:

$$
\begin{array}{ll}
\partial Z_{c l}(z) \partial \bar{Z}_{c l}(w)\left\langle\sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle & +\left\langle\partial Z_{q u}(z) \partial \bar{Z}_{q u}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
\partial Z_{c l}(z) \partial Z_{c l}(w)\left\langle\sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle & +\left\langle\partial Z_{q u}(z) \partial Z_{q u}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
\partial \bar{Z}_{c l}(z) \partial \bar{Z}_{c l}(w)\left\langle\sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle & +\left\langle\partial \bar{Z}_{q u}(z) \partial \bar{Z}_{q u}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle
\end{array}
$$

* The two parts can be evaluated separately.

The "classical" part

* The "classical" parts:

$$
\begin{aligned}
& \partial Z_{c l}(z) \partial \bar{Z}_{c l}(w)\left\langle\sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
& \partial Z_{c l}(z) \partial Z_{c l}(w)\left\langle\sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
& \partial \bar{Z}_{c l}(z) \partial \bar{Z}_{c l}(w)\left\langle\sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle
\end{aligned}
$$

can be computed using the three-point function:

$$
\left\langle\sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle=\left(2 \pi \frac{\Gamma(\alpha) \Gamma(\beta) \Gamma(\gamma)}{\Gamma(1-\alpha) \Gamma(1-\beta) \Gamma(1-\gamma)}\right)^{\frac{1}{4}} x_{12}^{-(1-\alpha)(1-\beta)} x_{13}^{-(1-\alpha)(1-\gamma)} x_{23}^{-(1-\beta)(1-\gamma)} .
$$

and the classical solutions:

$$
\begin{aligned}
& \partial Z_{c l}(z)=e^{i \pi(\gamma-1)} z^{\alpha-1}(z-1)^{\beta-1} v_{c} \frac{\Gamma(1-\gamma)}{\Gamma(\alpha) \Gamma(\beta)} \\
& \partial \bar{Z}_{c l}(z)=0
\end{aligned}
$$

Lust Meyr Richter Stieberger Abel Owen
Cvetic Richter Weigand

The "quantum" part

* The "quantum" part:

$$
\begin{aligned}
g(z, w) & \sim\left\langle\partial Z_{q u}(z) \partial \bar{Z}_{q u}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
k(z, w) & \sim\left\langle\partial Z_{q u}(z) \partial Z_{q u}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
m(z, w) & \sim\left\langle\partial \bar{Z}_{q u}(z) \partial \bar{Z}_{q u}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle
\end{aligned}
$$

The "quantum" part

* The "quantum" part:

$$
\begin{aligned}
g(z, w) & \sim\left\langle\partial Z_{q u}(z) \partial \bar{Z}_{q u}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
k(z, w) & \sim\left\langle\partial Z_{q u}(z) \partial Z_{q u}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
m(z, w) & \sim\left\langle\partial \bar{Z}_{q u}(z) \partial \bar{Z}_{q u}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle
\end{aligned}
$$

can be evaluated by using:

* the local behavior
$\partial Z_{q u}(z) \partial \bar{Z}_{q u}(w) \sim \frac{1}{(z-w)^{2}} \quad \partial Z_{q u}(z) \partial Z_{q u}(w) \sim$ regular $\quad \partial \bar{Z}_{q u}(z) \partial \bar{Z}_{q u}(w) \sim$ regular
* the monodromy conditions:

$$
e^{i \pi \alpha} \int_{x_{1}}^{x_{2}} m(z, w) d w-e^{-i \pi \alpha} \int_{x_{1}}^{x_{2}} g(z, w) d w=0
$$

The results

* Adding the classical and quantum parts we get the total five-point correlators:

$$
\begin{aligned}
& \left\langle\partial Z(z) \partial \bar{Z}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
& \left\langle\partial Z(z) \partial Z(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
& \left\langle\partial \bar{Z}(z) \partial \bar{Z}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle
\end{aligned}
$$

The results

* Adding the classical and quantum parts we get the total five-point correlators:

$$
\begin{aligned}
& \left\langle\partial Z(z) \partial \bar{Z}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
& \left\langle\partial Z(z) \partial Z(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle \\
& \left\langle\partial \bar{Z}(z) \partial \bar{Z}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle
\end{aligned}
$$

* Taking various limits, like $z \rightarrow x_{1}, w \rightarrow x_{2}$ or $w \rightarrow x_{1}$ and using the OPE's we get:

$$
\begin{aligned}
&\left\langle\tau_{\alpha}^{+}\left(x_{1}\right) \widetilde{\tau}_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle=\alpha \frac{\left(2 \pi \frac{\Gamma(1-\alpha) \Gamma(1-\beta) \Gamma(1-\gamma)}{\Gamma(\alpha) \Gamma(\beta) \Gamma(\gamma)}\right)^{\frac{1}{4}}}{x_{12}^{1+\alpha-(1-\alpha) \beta} x_{13}^{-(1-\alpha) \gamma} x_{23}^{(1+\beta) \gamma}} \sum_{n} e^{-S_{c l}} \\
&\left\langle\tau_{\alpha}^{+}\left(x_{1}\right) \tau_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle=-(2 \pi)^{\frac{1}{4}}\left(\frac{\Gamma(1-\alpha) \Gamma(1-\beta) \Gamma(1-\gamma)}{\Gamma(\alpha) \Gamma(\beta) \Gamma(\gamma)}\right)^{\frac{5}{4}} \\
& \times \sum_{n}\left\{1-\frac{\sin (\pi \alpha) \sin (\pi \beta)}{\pi \sin (\pi \gamma)}\left|v_{c}\right|^{2}\right\} x_{12}^{-\alpha \beta-\alpha-\beta} x_{13}^{-\alpha(2+\gamma)-\gamma+1} x_{23}^{-\beta(2+\gamma)-\gamma+1} e^{-S_{c l}} \\
&\left\langle\omega_{\alpha}^{+}\left(x_{1}\right) \sigma_{\beta}^{+}\left(x_{2}\right) \sigma_{\gamma}^{+}\left(x_{3}\right)\right\rangle=-(2 \pi)^{\frac{1}{4}}\left(\frac{\Gamma(1-\alpha) \Gamma(1-\beta) \Gamma(1-\gamma)}{\Gamma(\alpha) \Gamma(\beta) \Gamma(\gamma)}\right)^{\frac{5}{4}} \\
& \times \sum_{n}\left\{1-\frac{\sin (\pi \alpha) \sin (\pi \beta)}{\pi \sin (\pi \gamma)}\left|v_{c}\right|^{2}\right\} x_{12}^{-\alpha(2+\beta)} x_{13}^{-\alpha(2+\gamma)} x_{23}^{-\beta(2+\gamma)-2 \gamma+2} e^{-S_{c l}}
\end{aligned}
$$

Comments

* The three-point correlator containing just one excited bosonic twist field does not contain a purely quantum part, but is dictated by the classical solution.

Comments

* The three-point correlator containing just one excited bosonic twist field does not contain a purely quantum part, but is dictated by the classical solution.
* Thus, the decay rate of the first excited stringy scalar state, ex. $\tilde{\Phi} \rightarrow \psi \chi$, depends on the displacement in the compactification manifold between the stringy massive state and the massless states localized at different D-brane intersections.

Comments

* The three-point correlator containing just one excited bosonic twist field does not contain a purely quantum part, but is dictated by the classical solution.
* Thus, the decay rate of the first excited stringy scalar state, ex. $\tilde{\Phi} \rightarrow \psi \chi$, depends on the displacement in the compactification manifold between the stringy massive state and the massless states localized at different D-brane intersections.
* This displacement is also related to the observed Yukawa coupling hierarchies of the massless fermions.

Comments

* The three-point correlator containing just one excited bosonic twist field does not contain a purely quantum part, but is dictated by the classical solution.
* Thus, the decay rate of the first excited stringy scalar state, ex. $\tilde{\Phi} \rightarrow \psi \chi$, depends on the displacement in the compactification manifold between the stringy massive state and the massless states localized at different D-brane intersections.
* This displacement is also related to the observed Yukawa coupling hierarchies of the massless fermions.
* This potentially allows one to obtain bounds on the decay rate of light stringy states in terms of observed mass hierarchies.

Comments

* The three-point correlator containing just one excited bosonic twist field does not contain a purely quantum part, but is dictated by the classical solution.
* Thus, the decay rate of the first excited stringy scalar state, ex. $\tilde{\Phi} \rightarrow \psi \chi$, depends on the displacement in the compactification manifold between the stringy massive state and the massless states localized at different D-brane intersections.
* This displacement is also related to the observed Yukawa coupling hierarchies of the massless fermions.
* This potentially allows one to obtain bounds on the decay rate of light stringy states in terms of observed mass hierarchies.
* This is a work in progress.

Four-point correlators

Four-point procedure

* Similarly for the four-point correlators:

Four-point procedure

* Similarly for the four-point correlators:

1. we start with the six-point correlators of primary fields:

$$
\begin{aligned}
& \left\langle\partial Z(z) \partial \bar{Z}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{1-\alpha}^{+}\left(x_{2}\right) \sigma_{\beta}^{+}\left(x_{3}\right) \sigma_{1-\beta}^{+}\left(x_{4}\right)\right\rangle \\
& \left\langle\partial Z(z) \partial Z(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{1-\alpha}^{+}\left(x_{2}\right) \sigma_{\beta}^{+}\left(x_{3}\right) \sigma_{1-\beta}^{+}\left(x_{4}\right)\right\rangle \\
& \left\langle\partial Z(z) \partial \bar{Z}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{1-\alpha}^{+}\left(x_{2}\right) \sigma_{\beta}^{+}\left(x_{3}\right) \sigma_{1-\beta}^{+}\left(x_{4}\right)\right\rangle
\end{aligned}
$$

Four-point procedure

* Similarly for the four-point correlators:

1. we start with the six-point correlators of primary fields:

$$
\begin{aligned}
& \left\langle\partial Z(z) \partial \bar{Z}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{1-\alpha}^{+}\left(x_{2}\right) \sigma_{\beta}^{+}\left(x_{3}\right) \sigma_{1-\beta}^{+}\left(x_{4}\right)\right\rangle \\
& \left\langle\partial Z(z) \partial Z(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{1-\alpha}^{+}\left(x_{2}\right) \sigma_{\beta}^{+}\left(x_{3}\right) \sigma_{1-\beta}^{+}\left(x_{4}\right)\right\rangle \\
& \left\langle\partial Z(z) \partial \bar{Z}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{1-\alpha}^{+}\left(x_{2}\right) \sigma_{\beta}^{+}\left(x_{3}\right) \sigma_{1-\beta}^{+}\left(x_{4}\right)\right\rangle
\end{aligned}
$$

2. we split: $\partial Z=\partial Z_{c l}+\partial Z_{q u}, \partial \bar{Z}=\partial \bar{Z}_{c l}+\partial \bar{Z}_{q u}$.

Four-point procedure

* Similarly for the four-point correlators:

1. we start with the six-point correlators of primary fields:

$$
\begin{aligned}
& \left\langle\partial Z(z) \partial \bar{Z}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{1-\alpha}^{+}\left(x_{2}\right) \sigma_{\beta}^{+}\left(x_{3}\right) \sigma_{1-\beta}^{+}\left(x_{4}\right)\right\rangle \\
& \left\langle\partial Z(z) \partial Z(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{1-\alpha}^{+}\left(x_{2}\right) \sigma_{\beta}^{+}\left(x_{3}\right) \sigma_{1-\beta}^{+}\left(x_{4}\right)\right\rangle \\
& \left\langle\partial Z(z) \partial \bar{Z}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{1-\alpha}^{+}\left(x_{2}\right) \sigma_{\beta}^{+}\left(x_{3}\right) \sigma_{1-\beta}^{+}\left(x_{4}\right)\right\rangle
\end{aligned}
$$

2. we split: $\partial Z=\partial Z_{c l}+\partial Z_{q u}, \partial \bar{Z}=\partial \bar{Z}_{c l}+\partial \bar{Z}_{q u}$.
3. we compute the classical part using the

$$
\partial Z_{c l} \quad \partial \bar{Z}_{c l} \quad\left\langle\sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{1-\alpha}^{+}\left(x_{2}\right) \sigma_{\beta}^{+}\left(x_{3}\right) \sigma_{1-\beta}^{+}\left(x_{4}\right)\right\rangle
$$

Four-point procedure

* Similarly for the four-point correlators:

1. we start with the six-point correlators of primary fields:

$$
\begin{aligned}
& \left\langle\partial Z(z) \partial \bar{Z}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{1-\alpha}^{+}\left(x_{2}\right) \sigma_{\beta}^{+}\left(x_{3}\right) \sigma_{1-\beta}^{+}\left(x_{4}\right)\right\rangle \\
& \left\langle\partial Z(z) \partial Z(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{1-\alpha}^{+}\left(x_{2}\right) \sigma_{\beta}^{+}\left(x_{3}\right) \sigma_{1-\beta}^{+}\left(x_{4}\right)\right\rangle \\
& \left\langle\partial Z(z) \partial \bar{Z}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{1-\alpha}^{+}\left(x_{2}\right) \sigma_{\beta}^{+}\left(x_{3}\right) \sigma_{1-\beta}^{+}\left(x_{4}\right)\right\rangle
\end{aligned}
$$

2. we split: $\partial Z=\partial Z_{c l}+\partial Z_{q u}, \partial \bar{Z}=\partial \bar{Z}_{c l}+\partial \bar{Z}_{q u}$.
3. we compute the classical part using the

$$
\partial Z_{c l} \quad \partial \bar{Z}_{c l} \quad\left\langle\sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{1-\alpha}^{+}\left(x_{2}\right) \sigma_{\beta}^{+}\left(x_{3}\right) \sigma_{1-\beta}^{+}\left(x_{4}\right)\right\rangle
$$

4. we compute the quantum part using the local behaviors \& monodromies.

Four-point procedure

* Similarly for the four-point correlators:

1. we start with the six-point correlators of primary fields:

$$
\begin{aligned}
& \left\langle\partial Z(z) \partial \bar{Z}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{1-\alpha}^{+}\left(x_{2}\right) \sigma_{\beta}^{+}\left(x_{3}\right) \sigma_{1-\beta}^{+}\left(x_{4}\right)\right\rangle \\
& \left\langle\partial Z(z) \partial Z(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{1-\alpha}^{+}\left(x_{2}\right) \sigma_{\beta}^{+}\left(x_{3}\right) \sigma_{1-\beta}^{+}\left(x_{4}\right)\right\rangle \\
& \left\langle\partial Z(z) \partial \bar{Z}(w) \sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{1-\alpha}^{+}\left(x_{2}\right) \sigma_{\beta}^{+}\left(x_{3}\right) \sigma_{1-\beta}^{+}\left(x_{4}\right)\right\rangle
\end{aligned}
$$

2. we split: $\partial Z=\partial Z_{c l}+\partial Z_{q u}, \partial \bar{Z}=\partial \bar{Z}_{c l}+\partial \bar{Z}_{q u}$.
3. we compute the classical part using the

$$
\partial Z_{c l} \quad \partial \bar{Z}_{c l} \quad\left\langle\sigma_{\alpha}^{+}\left(x_{1}\right) \sigma_{1-\alpha}^{+}\left(x_{2}\right) \sigma_{\beta}^{+}\left(x_{3}\right) \sigma_{1-\beta}^{+}\left(x_{4}\right)\right\rangle
$$

4. we compute the quantum part using the local behaviors \& monodromies.
5. we take various limits and we use the known OPE's.

Four-point results

* Some four-point correlators with:

Four-point results

* Some four-point correlators with:

* one twisted field:

$$
\begin{aligned}
& \left\langle\tau_{\alpha}^{+}\left(x_{1}\right) \sigma_{\alpha}^{-}\left(x_{2}\right) \sigma_{\beta}^{+}\left(x_{3}\right) \sigma_{\beta}^{-}\left(x_{4}\right)\right\rangle=-x_{12}^{-\alpha(2-\alpha)} x_{34}^{-\beta(1-\beta)}\left(\frac{x_{23}}{x_{13}}\right)^{\alpha \beta-\frac{\alpha}{2}-\frac{\beta}{2}}\left(\frac{x_{14}}{x_{24}}\right)^{\alpha \beta-\frac{3 \alpha}{2}-\frac{\beta}{2}} \\
& \quad \times \sqrt{2 \pi} e^{-i \pi \alpha} \sum_{p, q} \frac{\left(G_{2}[x] v_{b}+\frac{\sin (\pi \alpha)}{\pi}(1-x)^{\alpha-\beta} B_{1} H_{1}[1-x] e^{i \pi \alpha} v_{a}\right)}{I^{\frac{3}{2}}(x)} e^{-S_{c l}}
\end{aligned}
$$

Four-point results

* Some four-point correlators with:

* one twisted field:

$$
\begin{aligned}
& \left\langle\tau_{\alpha}^{+}\left(x_{1}\right) \sigma_{\alpha}^{-}\left(x_{2}\right) \sigma_{\beta}^{+}\left(x_{3}\right) \sigma_{\beta}^{-}\left(x_{4}\right)\right\rangle=-x_{12}^{-\alpha(2-\alpha)} x_{34}^{-\beta(1-\beta)}\left(\frac{x_{23}}{x_{13}}\right)^{\alpha \beta-\frac{\alpha}{2}-\frac{\beta}{2}}\left(\frac{x_{14}}{x_{24}}\right)^{\alpha \beta-\frac{3 \alpha}{2}-\frac{\beta}{2}} \\
& \quad \times \sqrt{2 \pi} e^{-i \pi \alpha} \sum_{p, q} \frac{\left(G_{2}[x] v_{b}+\frac{\sin (\pi \alpha)}{\pi}(1-x)^{\alpha-\beta} B_{1} H_{1}[1-x] e^{i \pi \alpha} v_{a}\right)}{I^{\frac{3}{2}}(x)} e^{-S_{c l}}
\end{aligned}
$$

* two twisted fields:

$$
\begin{aligned}
& \left\langle\tau_{\alpha}^{+}\left(x_{1}\right) \widetilde{\tau}_{\alpha}^{-}\left(x_{2}\right) \sigma_{\beta}^{+}\left(x_{3}\right) \sigma_{\beta}^{-}\left(x_{4}\right)\right\rangle \\
& =\sqrt{\frac{2 \pi}{I(x)}} x_{12}^{\alpha(\alpha-3)} x_{34}^{-\beta(1-\beta)}\left(\frac{x_{14} x_{23}}{x_{13} x_{24}}\right)^{\alpha \beta-\frac{\alpha}{2}-\frac{3 \beta}{2}} \sum_{p, q}\left\{-\alpha(1-x)^{\beta-\alpha} \frac{B_{2} H_{2}[1-x]}{I(x)}{ }_{2} F_{1}[-\alpha, \beta, 1, x]\right. \\
& +\frac{B_{2} G_{1}[x]}{I(x)}\left(\alpha H_{2}[1-x]-\beta{ }_{2} F_{1}[-\alpha, \beta, 1-\alpha+\beta, 1-x]\right)+\alpha(1-x)^{\beta-\alpha} \frac{F_{1}[-\alpha, \beta, 1, x]}{G_{1}[x]} \\
& \\
& \left.\quad-\frac{\left(G_{1}[x] v_{b}+\frac{\sin (\pi \alpha)}{\pi} B_{1} H_{1}[1-x] e^{i \pi \alpha} v_{a}\right)\left(G_{2}[x] v_{b}-\frac{\sin (\pi \alpha)}{\pi} B_{2} H_{2}[1-x] e^{i \pi \alpha} v_{a}\right)}{I^{2}(x)}\right\} e^{-S_{c l}},
\end{aligned}
$$

etc etc...

Comments

* In $2 \rightarrow 2$ processes involving chiral superfields, only the second excited state in the tower is exchanged.

Comments

* In $2 \rightarrow 2$ processes involving chiral superfields, only the second excited state in the tower is exchanged.
* These processes would be suppressed by the Yukawa couplings.

Comments

* In $2 \rightarrow 2$ processes involving chiral superfields, only the second excited state in the tower is exchanged.
* These processes would be suppressed by the Yukawa couplings.
* Therefore, the bounds on these states will be drastically weaker than those for string Regge excitations.

Comments

* In $2 \rightarrow 2$ processes involving chiral superfields, only the second excited state in the tower is exchanged.
* These processes would be suppressed by the Yukawa couplings.
* Therefore, the bounds on these states will be drastically weaker than those for string Regge excitations.
* Indeed, from dijet searches for related resonances, since the cross-section is so suppressed we can infer that the bounds on such states will be much less than a TeV .

Comments

* In $2 \rightarrow 2$ processes involving chiral superfields, only the second excited state in the tower is exchanged.
* These processes would be suppressed by the Yukawa couplings.
* Therefore, the bounds on these states will be drastically weaker than those for string Regge excitations.
* Indeed, from dijet searches for related resonances, since the cross-section is so suppressed we can infer that the bounds on such states will be much less than a TeV .
* This raises the intriguing prospect that the string scale could be just out of reach of the LHC, but the light stringy states could be hiding in plain sight.

Conclusions

* D-brane realizations of the Standard Model, predict states with $M^{2} \approx \theta M_{s}^{2}$.

Conclusions

* D-brane realizations of the Standard Model, predict states with $M^{2} \approx \theta M_{s}^{2}$.
* If the string scale is at a few TeV region and some of the intersecting angles are small these states are very light.

Conclusions

* D-brane realizations of the Standard Model, predict states with $M^{2} \approx \theta M_{s}^{2}$.
* If the string scale is at a few TeV region and some of the intersecting angles are small these states are very light.
* It is interesting to study their decay channels as well as their lifetimes.

Conclusions

* D-brane realizations of the Standard Model, predict states with $M^{2} \approx \theta M_{s}^{2}$.
* If the string scale is at a few TeV region and some of the intersecting angles are small these states are very light.
* It is interesting to study their decay channels as well as their lifetimes.
* To do so, we have evaluated several correlation functions of twisted fields.

Conclusions

* D-brane realizations of the Standard Model, predict states with $M^{2} \approx \theta M_{s}^{2}$.
* If the string scale is at a few TeV region and some of the intersecting angles are small these states are very light.
* It is interesting to study their decay channels as well as their lifetimes.
* To do so, we have evaluated several correlation functions of twisted fields.
* Three-point functions show the relation of the lifetimes and the compactification manifold between the light stringy states.

Conclusions

* D-brane realizations of the Standard Model, predict states with $M^{2} \approx \theta M_{s}^{2}$.
* If the string scale is at a few TeV region and some of the intersecting angles are small these states are very light.
* It is interesting to study their decay channels as well as their lifetimes.
* To do so, we have evaluated several correlation functions of twisted fields.
* Three-point functions show the relation of the lifetimes and the compactification manifold between the light stringy states.
* Four-point functions will help in the study of the decay channels of these light stringy states which could be observed at LHC.

