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* They allow for large extra dimensions which imply a significantly lower string scale,
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* In these compactifications,
* gauge fields are strings with both ends on the same D-brane.
* matter fields are strings stretched between different branes.
* Several constructions have been built which come very close to the Standard Model.

* Particular interest have the intersecting D-brane scenarios.
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Motivation

* In these scenarios, Standard Model matter fields are living at D-brane intersections.

* However, at the same intersections, there exist a tower of stringy excitations with
masses that depend on the string scale M; but also the intersection angle 0:

M? =~ OM?

+ If the string scale is at a few TeV range and the intersection angle is small, these
stringy excitations might be visible at LHC.

* Itis very interesting to study their decay channels and their lifetimes.

* In order to do so, we have to extend our tools by evaluating the correlation functions
of three and four twisted states.
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*  We focus on type IIA constructions in a 7?xT?xT? space with intersecting D6 branes:
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An open string stretched between branes.
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* Strings with both ends on a stack of branes give rise to U(N) = SU(N)xU(1) group.
* Strings stretched between different stacks transform as bifundamentals.

+ Lets focus more on these states at the intersections.
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their oscillator modes depend on the intersection angle 0. —
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(Quantization at angles

*  Open strings stretched between intersecting branes are twisted, J X, |
their oscillator modes depend on the intersection angle 0.

+ Mode expansion (ZP = XP i XPT1Y:
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for v =0, 1/2 for R and NS respectively.

* For the quantization we define the commutator /anticommutators

/
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*  And the three vacua that these states act on:

WS fermionic (NS): | 69° 53)NS
WS bosonic: | 69% 53)B
WS fermionic (R): | 07" 1,2,3 )R
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NS sector at the intersections

<

Lets consider the NS sector for simplicity.
The first states (which are also massless by SUSY) are:
1
P Hw_%% 0% 3 ) Beons M2 = (1= (01 + 05 + 03)) M2 = 0

Next, we have the states:

~

1
& : o Hzp 10109 5 Y BaNs M2z(1—1261+291)M2:291M2
91 —§—|—91 1 2 3 2 - S S
These scalars are potentially very light, depending on the intersection angles.
The R sector gives spacetime fermions, being the super-partners of the above.

If the string scale is low, and the angles are small, such states have very low masses.
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* In semi-realistic D-brane compactifications, the SM matter fields are massless states,
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* However, there is a whole tower of stringy excitations with same quantum numbers.

* The study of the decay channels and the lifetimes of such states is very interesting.
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Amplitudes with outgoing excited states

* We wand to compute: the decay amplitudes of two chiral fermions and a scalar:

. —r 1
stringy excitations —3

\ W\ Vw
X/ X VX_ 2
MSSM matter fields

the scattering amplitudes of four chiral fermions:
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* 'Two difficulties: 1. Vertex operators

2. Bosonic twist field correlator
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1. Vertex Operators

* For the NS-sector we have the following dictionary

positive angle 0 negative angle 0
10)BeNS I G?QH oy 10)BeNS el
CV_Q‘ 0 >B®NS - GZQH 7'9+ 049’ (92>B®NS - ZQH _9
2 ( e’
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a_g ¢_%+9! 0 >B®NS : 1N Tg+ Qg Qb_%_e! 0 >B®NS H#+1)H T_
(a-0)" ¥_310l0)Bans : €@VH Wf (@0)” ¥_3_ol0)Bons : €OTVH o~
* For the R-sector apply the following dictionary
positive angle 0 negative angle 0
0)por @ €O-VDH gt 0)per : €OTVDH g

+* The o, 7, w are twisted bosonic conformal fields.
Anastasopoulos Bianchi Richter
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Our setup

* In order to proceed we need to specity our setup.

+ Consider three stacks of D-branes within a semi-realistic brane configuration:
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* For the sake of concreteness we choose a supersymmetric setup with:

0. >0, 02, >0 , 03, <0 0L, + 6%, +62, =0
6. >0, 07, >0, 07, <0 — 0. +0. +6. =0
g.<0, &£.20, L.t 0., +62 +0° = -2

+ At the intersections live chiral fermions 1, 1, x, ¥, ¢, ¢ and their superparteners ¥, X, &.
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The vertex operators

* Using our dictionary, we have for example

i . 1 1 . 2 1 . 3 1 .
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+ We will need various correlation functions:
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2. Correlation functions

+ The excited twist fields, 7 and w are not primaries.
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2. Correlation functions

+ The excited twist fields, 7 and w are not primaries.

0Z(2)0Z(w)o(x1)os(T2)0(23)..

* Thus, we will take a detour: we will evaluating higher correlators with only primaries:
(0Z(2)o0(x1)0s(x2)0(23)...)

* Next, taking the appropriate limits, like 2 — 21, w — x> and using the OPE’s:
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we get our desired correlators:

(To(x1)T8(22) T (23)...)

<Ta($1)06 ($2)0fy($3)...>
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* Qut starting point are the five-point correlators:

(0Z(2)0Z(w)oy (21)0] (x2)0 (23))

(0Z(2)0Z(w)oy (x1)0f (x2)07 (23))

(0Z(2)0Z(w)oy (x1)0f (x2)07 (23))
+ The 07,07 split on a classical and a quantum part:
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* Since correlators with odd number of 07,,,,, 8un are zero, we have to evaluate:
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* Let us focus on the three-point correlators.

* Qut starting point are the five-point correlators:
(0Z(2)0Z(w)oy (x1)0f (x2)07 (23))
(0Z(2)0Z(w)oy, (21)05 (x2)07 (23))
(0Z(2)0Z(w)oy (21)05 (22)07 (23))
+ The dZ,0Z split on a classical and a quantum part:

04 = 0Z. + anu 07 = 8Zd + (9un :

+ Since correlators with odd number of 97,,,,07,, are zero, we have to evaluate:

0Zc1(2)0Za(w)(o (x1)0 (22)o (x3)) + (0Zqu(2)0Zgu(w)a] (v1)og (22)0] (23))
8ch(z)(?ch(w)<a+(x1)0;(a:2)0¢(x3)> + <(‘9un(2)8un(10)0;'(:61)0;(xg)ai(x3)>
0Z.(2)0Z . (w <<7 1 ag a:g)a,;r(:cg)> + <0un(Z)52qu(w)U;_(331)0;($2)0;r(553)>

* The two parts can be evaluated separately.
Abel Owen



The “classical” part

* The “classical” parts:
0Z(2)0Z e (w){ok (:131)0;(:132)0;L
0Zy(2)0Zoy(w) (ol ((131)0';(332)0';{;(373)>
0Zy(2)0Zy(w) (ot (xl)ag(xg)aj(a:g,»

can be computed using the three-point function:
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and the classical solutions:

0Zy(z) = e~ 21z — 1)1y,

8ch(z) =0 y
Lust Meyr Richter Stieberger

Abel Owen
Cvetic Richter Weigand
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* The “quantum” part:
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The “quantum” part

* The “quantum” part:

g(z,w) ~ (0Z4u(2)0Zgu(w)oy (x1)0] (x2)0 (23))
k(z,w) ~ <8un(z)8un(w)a;r(xl)ag(xz)a;r(x?)»
m(z,w) ~ <8un(z)82qu(w)a;r(xl)ag(:vg)ai(xgﬁ

can be evaluated by using:

* the local behavior

= 1 . &
0Z g (2)0Z goy (W) ~ (r—w)’ 0Z 4 (2)0Z gy (w) ~ regular 0Z 4 (2)0Z g (w) ~ regular

* the monodromy conditions:
. x2 . x2
e”o‘/ m(z,w) dw — e_”m‘/ g(z,w)dw =0
1 1

Cvetic Papadimitriou
Abel Owen
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The results

+  Adding the classical and quantum parts we get the total five-point correlators:
8 q P 8 P
(0Z(2)0Z(w)o (z1)0 4 (x2)0 ) (x3))
(0Z(2)0Z(w)oy (z1)0 4 (x2)0 ) (x3))
(0Z(2)0Z(w)oy (x1)0f (z2)oT (x3))

* Taking various limits, like 2 — 21, w — x5 or w — x; and using the OPE’s we get:
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Comments

* The three-point correlator containing just one excited bosonic twist field does not
contain a purely quantum part, but is dictated by the classical solution.

* Thus, the decay rate of the first excited stringy scalar state, ex. ® — 1, depends on the
displacement in the compactification manifold between the stringy massive state and
the massless states localized at different D-brane intersections.

* This displacement is also related to the observed Yukawa coupling hierarchies of the
massless fermions.

* This potentially allows one to obtain bounds on the decay rate of light stringy states in
terms of observed mass hierarchies.

* This is a work in progress.
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* Similarly for the four-point correlators: ) | J )
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we start with the six-point correlators of primary fields:
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. wesplit: 0Z =0Z, + 0Z 4, 0Z =07, + (‘9

. we compute the classical part using the

0Zoy 0Zy (o (@1)a]_(x2)05 (x3)0]_5(24))

. we compute the quantum part using the local behaviors & monodromies.

. we take various limits and we use the known OPE’s.
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* two twisted fields:
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Comments

* In 2 — 2 processes involving chiral superfields, only the second excited state in the
tower is exchanged.

* These processes would be suppressed by the Yukawa couplings.

* Therefore, the bounds on these states will be drastically weaker than those for string
Regge excitations.

* Indeed, from dijet searches for related resonances, since the cross-section is so
suppressed we can infer that the bounds on such states will be much less than a TeV.

* This raises the intriguing prospect that the string scale could be just out of reach of the
LHC, but the light stringy states could be hiding in plain sight.
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Conclusions

+ D-brane realizations of the Standard Model, predict states with \/% ~ /2.

* If the string scale is at a few TeV region and some of the intersecting angles are small
these states are very light.

* It is interesting to study their decay channels as well as their lifetimes.
+ To do so, we have evaluated several correlation functions of twisted fields.

# Three-point functions show the relation of the lifetimes and the compactification
manifold between the light stringy states.

*  Four-point functions will help in the study of the decay channels of these light stringy
states which could be observed at LHC.



