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Spacetime quantization

Heuristic argument: quantum + gravity

“The gravitational field generated by the concentration of energy
required to localize an event in spacetime should not be so strong as to
hide the event itself to a distant observer.”

— fundamental length scale, spacetime uncertainty

hG
Ax > —5 & 1.6 x 107 3cm
c
= need to generalize usual notions of smooth Riemannian geometry
Noncommutative geometry: model quantum geometry of spacetime



Noncommutative spacetime

Noncommutative geometry

Idea: consider the algebra of functions on a manifold and make it
noncommutative; “points” ~ irreducible representations

» Gelfand—Naimark:
spacetime manifold — noncommutative algebra

» Serre-Swan:
vector bundles — projective modules

» Connes: noncommutative differential geometry
(Dirac operator, spectral triple, ...)

Noncommutative coordinates
Heuristic model of quantum geometry (e.g. thought of as induced by
quantum gravitational effects):

1
[, 2 =0 e At Az o]0



Macroscopic and microscopic non-commutativity

Noncommutativity in electrodynamics and string theory

» electron in constant magnetic field B = Be,:

. - B .
L=2%2 ex A with  A=—Zepd
2 2
B . Y
. N B of oj1 — 20
,L'Toﬁ es X €jx = &, %] 5

» bosonic open strings in constant B-field

1

Sy = ——
* 2% ged

/ (g,-l-aaxié‘axj — 27TiaIB,-jeab5'aXi8ij)
b
in low energy limit g;j ~ (a/)? — 0:

i Y i
Sox = ) /az Bjjx'x’ = [, %] = <—>

C-S Chu, P-M Ho (1998); V Schomerus (1999); Seiberg, Witten



Weyl quantization (6 = const.)

consider 6 = const., symmetric ordering

commutative functions — NC operators
xFx¥ = x¥x* [, %] = io"
xt e XH
Vo—

1
xHx 5 (XM&%Y + &V%H)

f(x) = /d"k F(k)eXk f/(;) = /d”k F(k)e*

evaluate product of operators using BCH formula

—  —

f(x)g(x)

/ dnkdnk/ ?(k)g(k’)e"&'ke"’?'k,

—

- / d"kd" K F(K)g(K )™ Bkl 5] . F g



Weyl quantization (6 = const.)

Moyal-Weyl star product
(Frg)lx) = -[ei"" 20 (F o g)]

=Y ! <i> o g (8,, . 0y F)(Oy - - Oy 8)

ml\ 2
partials commute, [0,,,0,] =0 = star product x is associative
BCH quantization: works also for @ linear or quadratic in x.

Integral formula, non-local star product:

(Fxg)(x) = Fxt 20-0)a(x)

1 ,
= /d"yd”k f(x+ 50 - k)g(y)e =2

translation invariance of integral =- star product * is associative



Twist quantization

Drinfel'd twist for Hopf algebra H(A, S, ¢, )
F=> FOoF®PcHoH

with (e ® id)F = (id ® €)F = 1 and cocycle condition
(FRILAIF=(1® F)AxF

maps H to a new Hopf algebra He(Af, Sk, €, ), with
AF=FoAoF™, Sp=~y0Soxy™!,

where v = 3 FISFQ)..

An H-module algebra A is deformed (quantized) as:

frg=S FWf F@p  F1=Y F0gFQ

For the Moyal-Wey! star product: F = e~ 20" 9:®0:



Deformation quantization  6(x) ~> %

Let A be the algebra of functions on a finite-dimensional C°°-manifold.
A star product « is an associative product on A[[A]],

fxg=fg+nhBi(f,g)+MB(f,g)+...,

with a formal deformation parameter i and bi-differential operators B,.

There is a natural gauge symmetry
x—=+, f« g=D"YDf xDg),

with Df = f + ADyf + B2Dof + .. ..

Up to gauge equivalence
f*ng'g+§Ze 8,-f-8,~g—Z200 6,-8kf-6j6,g
B2 ;
- (Z 019,04 (904 f - g — Of - a,-a,g)) o,

where 6 = 099; @ 9; is a Poisson bi-vector.



Deformation quantization

Kontsevich formality and star product
U, maps n k;-multivector fields to a (2 — 2n+ Y k;)-differential operator

Un(Xa, ..., X)) = Z wr Dr(Xy,..., &,)
regG,

where the sum is over all possible diagrams with weight

1 n
"= e/, A\ (a0 n-ondoly)

The star product for a given bivector 8 is:

n!

frg= ZO (”?" Un(O,...,0)(f,g)



Deformation quantization

Example constant 6:
The graphs and hence the integrals factorize. The basic graph

01

yields the weight

1 [ 4 1 1 S
= d do = —— | =(¢v1)?]| ==
Wy (271')2/0 1/11/0 ¢1 (27‘(’)2 |:2(¢1) :|0 2
and the star product turns out to be the Moyal-Weyl one:

i (1" .
f*gzz% (5) 90 (D,, . 0 )y, - - D 8)



Deformation quantization

Formality condition
The U, define a quasi-isomorphisms of L..-DGL algebras and satisfy

1
d.Up(X1, o, Xa) 5 > ex(Z.T) [Ug (A1), Ug(Xg)]
ZUJT=(1,...,n)
Z,T#0

= Z (_1)06,] Un—l([Xia‘)(j]Sa‘Xlw"75&7"'7‘)(]7"'7Xn) )

i<j

relating Schouten brackets to Gerstenhaber brackets.
Kontsevich (1997)

This implies in particular d,®(©) = ik $(de®), i.e.

* associative < 6 Poisson



Hilbert space representations

Note that [&*, X¥] = i0"" with constant 6, are ordinary canonical
commutation relations in disguise.

To study representations by self-adjoint operators acting on a Hilbert
space, we should consider U*(t) := exp(it&*), the Heisenberg group,
Weyl braiding relations

Ur (V¥ (t) = e U (E)Ur(e)

representations by Sylvester's clock and shift matrices, the Stone-von
Neumann theorem etc.



Noncommutative BTZ black hole

2+1 dimensions: ¢, p, t; angle-time noncommutativity [t, ¢] = iT
[, t] = Te'®

Irreducible representations (labeled by o € [0, 7))
t|n,a) = (n7 + o) |n, o)

Dolan, Gupta, Stern



Non-commutative Gravity [©,®] #0

» general relativity on noncommutative spacetime
» theoretical laboratory for physics beyond QFT/GR
problem: fundamental length incompatible with spacetime symmetries

= The symmetry (Hopf algebra) must be twisted, e.g.:
F= exp <_éoab Va by Vb> ) [V87 Vb] =0

A(F)=FAF)F Y frg=F(fog)
twisted tensor calculus, deformed Einstein equations
Aschieri, Blohmann, Dimitrijevic, Meyer, PS, Wess (2005)



Examples

Exact NC black hole solution with rotational symmetry

star product (twist): [x; ¥ x;] = 2iXejjuxk,

VoW = VW+ZB(n e VLW
e H‘MH\M

I

metric in isotropic coordinates
2 4 2 2 2 2
ds® = —(1—— ) dt°+ — (dx” + dy” + dz°)

P P

with r = (p + a/4)?/p, a=2M, p? = x>+ y? + 22

= quantized, quasi 2-dimensional “onion”-spacetime:

|p=2j/\:n)\; n=0,1,2,...

PS, Solodukhin (2008)



Quantization and coherent states

The "black hole” star product, can be computed using coherent states:

Spin coherent state
.. . dQ
9 =Ralij), RaeSUR/UM:  @i+D) [ GIRE@I=1
Star product

For A(Q2) := (Q|A|Q2) and B(Q) := (Q|B|Q) define:

A(Q) x B(Q) = (Q|AB|Q)



Coherent states and entropy

Von Neumann entropy

Sale) = —trpinp =~ +1) [ $2p() *In. ()

Now “switch off" (or ignore) noncommutativity =

Wehrl entropy
. dQ
Sw(p) = (27 +1) / @) ()

> —(@j+1) [ 42 1@w) @)

> 0 even for pure states



Application: anisotropy of CMB

Coherent state analysis of cosmic microwave background

8

2

pseudo - entropy

3




Example of quantization guided by physics

Non-associativity in electrodynamics with magnetic sources
A charged particle (charge e, mass m) experiences a magnetic field B
(with sources) only via the Lorentz force p = £p x B.

The Hamiltonian H = ﬁﬁz is purely kinetic, but p = i[H, B] must imply
the Lorentz force = momenta cannot commute

[F,A]=0, [r,p]=ihé" [p',p] = iec’ Bk
= translations are generated by U(3) = exp(i3- p)

U(31)U(3;) = e ®®2U(3,+3,), ®15 = flux through triangle (31, 3»)
(non)associativity:

[U(a1)U(32)]U(33) = e~ U(a1)[U(32) U(33)]

where @153 is the flux through the tetrahedron (&, 82, 33).



infinitesimally:
P4, 107, P + [P% [P%, P1] + [P°, [, PPl = eV - B

P can be realized as a linear operator —iV — eA only in the associative
regime, i.e.:

» for V- B = 0: no sources, no flux, associativity;

» for V- B # 0: non-associativity, unless ®13/(27) is an integer.!
In the latter case V - B must consist of delta functions, so that the total
flux does not change continuously when the 3's change = monopoles

furthermore, the Dirac quantization condition must be satisfied
Jackiw (1985)

1Taking the into account that the electron is spin 1/2 fermion with double-valued
wave function, this becomes ®123/m € Z .



Noncommutative gauge theory

Covariant coordinates
Noncommutative gauge transformation of a field:

oV = iAx W
Note:

S(xH % W) = ix" x Ax W # iAxxt x U

= introduce covariant coordinates X* = Da(x*) and more generally
covariant functions Da(f(x)), s.t.

5DA(f(x)) = i[A * Da(F(x))]



Noncommutative gauge theory

Covariant coordinate, NC gauge potential:
XM =Da(x") = x* + 0" A,
NC (abelian) gauge transformation:
SXH =iAx XM — A, =9, A+ilA*A)
NC field strength:
XM 5 XYl = Fu=0,A—0,A,—i[A, A, 8F., =i[Ax Fu]
Covariant derivative:

XPaW—Wsxt - H\T!:(?H\T!—ii\#*@

Madore, Schraml, PS, Wess (2000)



Noncommutative gauge theory

NC generalization of the Maxwell-Dirac action
5= /d4x (—% Tr(IA-_W * FHVY 4 U //ADLTJ>

written in units with coupling constant e = 1 and
Fuw = 0,A, — 0,A, — i[A, T A)].

The action is invariant under NC gauge transformations, because of the
*-trace property of the integral

/d4xf*g:/d4xg*f:/d4xfg.



Charge quantization

Physical fields and gauge parameters

”Au =Qau(x), A= QA(x)

with U(1) generator Q (charge operator)

Star commutator

A 1 < . 1. N
(A3 Ad = S{A) 1 3. ()} @, QI +5[A(X) T 3.(x)] {Q, @}
——" N——
=0 =2Q?
The Lie algebra does not close. Two options:
» 2=Q,ie. Q=1orQ=0, or

» Enveloping-algebra valued fields and gauge parameters



Charge quantization

Covariant couplings

The only covariant couplings of the NC photon to charged matter are
through the covariant derivatives

0,0 — i« U, 0,0+ 0xA,, 0,0 A, 0]
corresponding to charge +1, —1, and zero respectively.

» “left” and "right” charges are distinguished in the NC setting,
their sum is the usual commutative charge

» Neutral particles can couple to electromagnetic fields via a
star-commutator.




Seiberg-Witten map

Enveloping algebra valued fields and gauge parameters
Star-commutator in NC non-abelian setting:

1 a 1 a
(A5 AT = S{A0) T ALCHT, TP+ SIA(6) T AT, T7}
= A is valued in the enveloping algebra of U(Lie G):
A=N)T? 4+ Aap(x) s T2TP 4 Agpe(x) : T2TPTC - 4.

No restriction on gauge group or representation (charge) anymore.
(— NC Standard Model, NC GUTs, ...can be constructed.)

Degrees of freedom?



Seiberg-Witten map

Star product and Seiberg-Witten maps
Star product:

1
f*[e] g = fg—|— Eepyaufa,,g—i— e
Similarly, expansion via Seiberg-Witten maps:
~ 1e,
AuA 0l = AL+ 4_19 A OcAu + Fepp + ...

. 1 1
VWAG = W S0UAGY 0 OAY

AN, A, 6] A+ %Q@{Ay,ag/\} +...

-

Cocycle condition [K H K’] + i6AN — iGN = A N]



Noncommutative gauge theory

Finite gauge transformations

classical gauge transformation: ¢ — ¢, = g and a — a; = a + gdg
gauge equivalence =

Vigsasl = Glgal * Viwa » Diagl(F) = Glg.a) * Doy (F) * (Gig.ap)

-1

G[gha@] * Glg, 2 = Glg,.g,5) (noncommutative group law)

NC gauge theory and equivalent star products

NC gauge theory = gauge theory of noncommutativity:
D[a](f * g) = 'D[a]f * D[a]g
Star products %, +": locally equivalent, globally Morita equivalent.

Jurco, PS, Wess, Noncommutative line bundle and Morita equivalence,
Lett.Math.Phys. 61 (2002) 171-186



Outline 2nd lecture

vV v.v v .Yy

string theory and noncommutative geometry
Seiberg-Witten map (exact solution in closed form)
AKSZ sigma models in 141 and 142 dimensions
non-geometric backgrounds and their quantization

non-associative dynamical star product

0(x) # const.



Strings and Noncommutative Geometry

Dynamics of open strings ending on D-branes:
effective description by (non)abelian gauge theory

(xX'(T)x (")) = —G’jln(T—T')z—i—éﬁﬁsgn(T—T') 2
String endpoints become non-commutative in a B-field background with

star product x depending on background fields via the closed-open string
relations:

1 1

g+B:G_+<1>+

§ ford=-B(ora’ —=0): 6=B"1

Ordinary versus non-commutative gauge theory

switch on fluctuations B—~ F = B+ F
In closed string background 2-form B-field

. non-commutative gauge theory (e.g. point-splitting)
ordinary gauge theory (e.g. Pauli-Villars)

depending on regularization scheme = SW map



Seiberg-Witten map

Recall: A Seiberg-Witten map is a field redefinition
~ 1
ALA 0 = A, + Zfef"{Ay,agAH + Fgu} +o
such that
SA, =N = A, =3 A+i[A¥A].

Furthermore

XV =D(x")=x"+0""A,A 0 and  D(f« g)=Df xDg .
I



Seiberg-Witten map

Seiberg-Witten map from equivalence of star products

The map from ordinary to NC gauge theory is related to the equivalence
map D of star products x, ¥’ and is a quantum analog of Moser's lemma.

Let F = dA and p the flow generated by the vector field Ag = ©(A, —):

quantization

B: e .
Moserl P lp lD
B+ F: o quantization N,

where © = ©(1 + hFO)~! and D(f «' g) = Df x Dg.

The noncommutative gauge field A is obtained from Dx =: x + A, A
such that ordinary gauge transform of A = NC gauge transform of A.

— explicit expression for the SW map for arbitrary ©(x)
— can be globalized (and extended to gerbes)
Jurco, PS, Wess (2000-2002)



Seiberg-Witten map

Moser's lemma on “nearby symplectic structures”
B: closed (dB = 0), non-degenerate (§ := B~!) 2-form
B' =B+ F, F exact (F = dA)

B; = B + tF, non-degenerate, t € [0,1] .
= B’ is obtained from B by a change of coordinates.
Proof: Let & = 07 A;8;, i.e ic, By = —A.

= LBy =ig,dB+dig, B=0—-dA=—-F =—-0,B; .

We now integrate the flow generated by L¢, fromt =0to t =1 and
obtain a map p that depends on A and relates B’ to B.

While B’ is gauge invariant, the map p transforms by a canonical
transformation, which is a (semi-classical) NC gauge transformation.



Seiberg-Witten map

Semi-classical Seiberg-Witten map

0: Poisson bi-vector (can be degenerate) ; F = dA
¢ =0—-0-F-0+0-F-0-F-0—+...

0;=6-(L+tF-0)~!, Poisson, t € [0,1] ; &= —A-0,-0 .
= 00, = —Le0; + K[0,6]s - A= —Le, +0.
p*(0") =0, with p* = exp(Le, + 9r) exp(—0r)|,_g

Gauge transformation: A = dA implies 6p%(f) = {p4(f), A},
where A = 3 L(& + 8t)"+1(/\)|t:0.



Seiberg-Witten map

Quantized Seiberg-Witten map
Formality: vector field — differential operator:

£=¢()0 — =Z=)_ %Uﬂl(g,a, )

S(fxg)==fxg+g*x=g+f[LeH|g

The differential operator =; generates deformed diffeomorphisms that can
be integrated to a flow D, which is the SW map (exact, to all orders):

Let x; = > %U,,(Gt, . 0:), ¥ = %1, then 0i(x¢) = —[Z¢, *t]6
D(*") =, with D = exp(Z; + 9¢) exp(—¢)|,—o

Gauge transformation: 0A = dA implies §Da(f) = i[A, Da(f)],

where A = 3" L(=, + 0e)™ M (N)] o



AKSZ sigma-models

AKSZ construction: action functionals in BV formalism of sigma model
QFT's for symplectic Lie n-algebroids E
Alexandrov, Kontsevich, Schwarz, Zaboronsky (1995/97)

Poisson sigma model
2-dimensional topological field theory, E = T*M

. 1 .
Wy = / (6nax + 50767 g) .
Py
with © = 107(x)9; A 0; , £ = (&) € Q (X2, X* T*M)

perturbative expansion =- Kontsevich formality maps

(valid on-shell ([©,©]s = 0) as well as off-shell, e.g. twisted Poisson)



AKSZ sigma-models

Courant sigma model

standard Courant algebroid:
C = TM & T*M with natural frame (g;,x'), metric (0;, x/) = 6/

TFT with 3-dimensional membrane world volume X3
1 .
Siksz = / (¢i AdX" + 5 hy o' Ada? — Pi(X)gi Ao
33
1
+ 5 Tuk(X)a! Ao’ /\aK)

with embeddings X : ¥3 — M, 1-form «, aux. 2-form ¢, fibre metric h,
anchor matrix P, 3-form T (e.g. H-flux, f-flux, Q-flux, R-flux).



Flux compactification

Compactification relates string theory to 3+1 dimensional observably
phenomenology and cosmology. Fluxes stabilize moduli and can lead to
generalized geometric structures; patching by string symmetries.

Non-geometric flux backgrounds
T-dualizing a 3-torus with 3-form H-flux gives rise to geometric and

non-geometric fluxes  Hape —2 Fape —2 Q2. L& Rabe
Hull (2005), Shelton, Taylor, Wecht (2005)

Q-flux: T-duality transitions between local trivializations — T-folds
R-flux: metric and B-field not even locally defined; non-geometric strings

— non-commutative non-associative structures
Liist (2010), Blumenhagen, Plauschinn (2010)
Blumenhagen, Deser, Liist, Plauschinn, Rennecke (2011)
Mylonas, PS, Szabo (2012)



H-space sigma-model

H-space sigma-model
relevant for geometric flux compactifications: C = TM & T*M twisted
by 3-form flux H = £ Hjx(x) dx’ A dx/ A dxk

H-twisted Courant—Dorfman bracket

(Y1, 1), (Y2, a2)],, := ([Y1, Yal7m» Ly,02 — Ly,0n
— 2d(a2(Y1) — a1(Y2)) + H(Y1, Y2, —))

metric: natural dual pairing
(Y1, 1), (Y2,02)) = aa(Y1) 4+ a1 (Y2)

anchor map: projection p: C - TM
non-trivial bracket and 3-bracket

loi, 0] = Hie X, loi, 0, 0k]H = Hijk



H-space sigma-model

H-space sigma-model action

o 1 o
S‘(’é)Z:/z (¢,~/\dX’+oz’/\d§i—¢,-/\a'+6H,-jk(X)a’/\aJ/\ak).
3

where (/) = (al,...,a?) = (al,...,a% &, ..., &)

If X5 := 9%3 # 0, we can add a boundary term =
boundary/bulk open topological membrane action
=(2 2 1 .
58 =st+ [ 3070606
2

(other boundary terms are possible, but will not be considered here)



H-space sigma-model

H-twisted Poisson sigma-model
Integrating out the two-form fields ¢; yields the AKSZ action

~ A
Qo= [ (gnax'+ 567061 6)
P2
1 . .
+/z 6 Hig(X) dX" A dXI A dXE
3

which is the action of the H-twisted Poisson sigma-model with target
space M. Consistency of the equations of motion require © to be
H-twisted Poisson, i.e.

[0,0]s = A*©%(H) # 0

= the Jacobi identity for the bracket is violated.



R-space sigma-model

From Hto Q to R

Closed strings in @-space via two T-duality transformations on 3-torus
T3; locally filtration of T2 over St, globally not well-defined (T-fold).
Closed string world sheet C = R x S!, coordinates (¢, o!), winding
number p3, twisted boundary conditions at ¢'!.

Closed string non-commutativity expressed via Poisson brackets:
{Xi7Xj}Q = Qijkﬁk and {Xiaﬁj}Q =0= {517ﬁJ}Q

Another T-duality transformation sends Q¥ — Rk, p¥ — pj and the
Poisson brackets to the twisted Poisson structure

{x.¥te=R%p, {x',ple=6; and  {p,ple=0.

Liist (2010,2012)



R-space sigma-model

The hidden open string
CFT computation: insert twist field at 0’* € S! — generates branch cut

There are indications that the appropriate R-space theory is a membrane
sigma model, not a string theory:

» open strings do not decouple from gravity in R-space
» membrane theory geometrizes the non-geometric R-flux background

= extend world sheet C to membrane world volume £3 = R x (S! x R);
resulting branch surface can be interpreted as open string world sheet:

o, ;lf | i

C -« — 23 ~— 22

closed <> open string duality



R-space sigma-model

R-space sigma-model

General Courant sigma-model with standard Courant algebroid
C=TM® T*M, twisted by a trivector flux R = & R7(x) 9; A 0; A Ok.

Roytenberg's R-twisted Courant-Dorfman bracket

[(Yl, Oq) , (Yz,ag)]R = ([Yl, YQ]TM + R(Oq, ao, —),
Ly,az — Ly,a1 — 2 d(az(Y1) — a1(Y2)))

non-trivial bracket and 3-bracket

[Xian]R = RUk Ok » [Xianan]R = RUk .



R-space sigma-model

R-space sigma-model action
(2 i i i L ik
S :/ (d),-/\(dX —a) +a Adf,-+6RJ (X)§;/\§j/\§k)
X3
1 .
5 [ 006
>

where we have added a non-topological term involving g¥, to ensure
consistency of Rk £ 0.

Integrating out the 2-form field ¢ yields:

%Rijk(x)ﬁiAfj/\fk+/ %gij(x)ﬁi/\*fj :

3 P}

SO = [ gadXi+ /

P}

assume now constant R%* and g% and consider e.o.m. for X ...



R-space sigma-model

= £ = dP; and the action reduces to a pure boundary action:
@ _ (dP iy L pik L i
@ _ AdX + = R P,-de/\de)—i— = gl dPAxdP; |
o 2 T, 2
which can be rewritten as
s@— [ “Losigaxinax? 4+ [ Lgydx! asax?
R = 5 2l > 81 ,
22 z2
with
1 1 (] 0 O
ot =)= (5 pivn) (@ =(g 5
and X = (X!) = (X1,..., X)) = (XY, ..., X9 Py, .., Py).

= effective target space = phase space

The “closed string metric” g, acts only on momentum space.



R-space sigma-model

Linearized action
Generalized Poisson sigma-model

1 1
5,5?2) =/ (nlAXm+§@IJ(X)77//\?7J> +/ EG”n,/\*nJ,
P

P2y

with auxiliary fields 7, and
_ oy _ (R%pi & w_ (&7 0
o-e)- ("% %) @-(% o

obeying the usual closed-open string relations, w.r.t. ©~1 and g.

In phase-space component form:

] ) 1 . . 1 .
5@ = / (n;/\dX’—i—w’/\dP,-—I—E Rk Py 77i/\77j+77iA7TI)+ / 5 &7 minKnj
22 >

2

with (n)) = (1, ..., m2d) = (M1, - - - My T ,ﬂ'd).



R-space sigma-model

Non-commutative, non-associative phase space
© is an H-twisted Poisson bi-vector: [0, 0]s = A*©%(H), where

H= % R’jkdp,-/\dpj/\dpk =dB, and B = % Rijkpkdp;/\dpj .
Twisted Poisson brackets

{x',x'}o = R py | {xi,pj}e = 5ij and {pi;pjte =0.
Corresponding Jacobiator:

{x',x x*}o = RUK |

where {x', x?, xK}g := [0, 0]s(x!, x?, x¥) = N"K and

(NUK) =

W =

ijk
(eKL 9,0" + o' g0k + o't 8LeKI) _ <R0 8) '



Path integral quantization

Mapping the open string endpoints to finite values and imposing natural
boundary conditions, we are let to the following schematic functional
integrals that reproduce Kontsevich's graphical expansion of global
deformation quantization. For multivector fields X, of degree k,:

U,,(Xl,...,Xn)(ﬁ,...,fm)(x):/ e 5K Sy - Sx. Oulfiy .. s ),

where m=2—2n+3 k., Sx, =3 [5, m1 X" (X)ny -, and

m—2)

A A(X(a) - (X (am))] "
X(00)=x

with 1 =¢g1 > g2 > -+ > gm = 0 and oo distinct points on the boundary

of the disk 0X5; the path integrals are weighted with the full gauge-fixed

action and the integrations taken over all fields including ghosts.
Cattaneo, Felder (2000)



Kontsevich formality maps
U, maps n multivector fields to a differential operator

Un(X1,. o X)) = D wr Dr(Ay,..., Xy)
reaG,

where the sum is over all possible diagrams with weight
-1 /\ deih A~ Adeh
wr = (27T)2"+m_2 - ei1 ef,‘ .
n =1

The star product and the 3-bracket are given by

Frg=> U0, ..,0)(f.8) = ®O)(F.g) .

n!

g h. =S Uy ne.....e)f.gh = o(M)(f.eh.

n:
n=0



Quantization

Relevant diagrams involve the bivector © = 2079, A 9, ...




...and the trivector = :NYK9; A 9, A Ok = de® = [©,0]s:

0

0

For constant [1 all other diagrams factorize and their weights can be
expressed in terms of these three diagrams (up to permutations).



Formality condition
The U, define L,,-morphisms and satisfy

QU )4y Y elTT) (V) Uy ()]

TUJ=(1,...,n)
Z,T#0

= Z (_1)0“7 Un—l([Xi)')c.j]SaXIa'")jc\‘ia"'a')c‘j)"')xn) )
i<j

relating Schouten brackets to Gerstenhaber brackets.
Kontsevich (1997)

This implies in particular
d,P(0) = ihP(de®) ,
which explicitly quantifies the lack of associativity of the star product:

(fxg)xh—fx(gxh)=L[f g hl, = LoM)(f, g h).



The formality condition implies derivation properties:

» For a function h, the Hamiltonian vector field deh = {—, h} is
mapped to the inner derivation d,h = + [ h, —]. = ihd(deh), where

h=oh) =2, Yy, (he,. .. 0).

n=0 n!
» A Poisson structure preserving vector field X (doX = 0) is mapped
to a differential operator X = Y°°° UMy (¥ @,...,0)

n!
satisfying X'(f xg) = X(f)x g+ f x X(g).
» The formality condition d,®(M) = ihd(degl) and higher derivation
properties encode quantum analogs of the derivation property and
fundamental identity for a Nambu-Poisson structure.

» In particular, in the present case, where dgll = 0:

[Fxg, h, k|, —[f, gxh, k|, +[f, g, hxk], = fx[g, h, k. +[f. g, h.*k .



Explicit formulas

» Dynamical non-associative star product: f x g = f x, g, with

frpg = e%lepkB@BJ 1L (908 a®a)(f®g)}

» Replacing the dynamical variable p with a constant p we obtain an
associative Moyal-Weyl type star product % := 3.

» Triple products and 3-bracket:

(f*g)*h:[ (exp( R 9; @ 0; ®8k)(f®g®h)>}

p—p

[F g, hl. = % [ (sinn (5 RFO, 00,000 (Fogon) |

» Trace property: [ [f,g,h]. =0
Mylonas, PS, Szabo (2012)



Seiberg-Witten maps

Twisted Poisson structure, NC gerbes
Poisson structure twisted by closed 3-form H: [©,0]s = \> ©'H

For covering by contractible open patches labeled by «, 3,7, .. .:
H|o, = dB, , (Bsg — Ba)|lang = Fap = dAag

© can be locally untwisted by B,: ©, := ©(1 — hB,©)~ 1.

quantization of © — nonassociative
quantization of ©,, ©g — associative x, x related by D,g
for more details: Aschieri, Bakovic, Jurco, PS (2010)

SW maps for R-twisted Poisson structures
trivial gerbe — replace patch label a by the (constant) vector p:

o hRijkpk 5ij _ hRijkf)k 5ij o 0 0
9_( —67 0 5 = " 0 B> =10 R (py — Px)

©: twisted Poisson Op: Poisson H = dBp = %Rijkdp;dpjdpk



Seiberg-Witten maps

Gauge potential: A= A;dx = a;(x, p)dx’ + & (x, p)dp;
Maps between associative * and %" are generated by
Aﬁf,/ = Rukpi(ﬁk - ﬁ;)dpj with Ff’f” = RUk(,"jk — .b;()dpidpj-

Special case p = 0: canonical Moyal-Weyl star product .

Generalization of SW maps for non-associative structures
A construction directly based on twisted © is spoiled by [©, ©]s-terms.
These can be avoided in the present case by choosing aj(x, p) = 0!

» general coordinate transformations generated by
O(A, —) = 3'(x, p)o;

» Nambu-Poisson maps: choose A = R(ay, —) for any 2-form as;
— higher “Nambu-Poisson” gauge theory.

» map from associative to nonassociative: Dg generated by
Ap = %R”kp,-f)kdpj can be explicitly computed and satisfies

f*g = [’Dﬁf *0 Df,g]

p—p



Nambu-Poisson and Membranes

Remarks on Nambu-Poisson structures

» The trivector M = LR%9; A 0; A Oy is an example of a
Nambu-Poisson tensor.

» Nambu mechanics: multi-Hamiltonian dynamics with generalized
Poisson brackets; e.g. Euler’'s equations for the spinning top :

d [2
—L; = Liy_a
dt { 2

T} with {f, g, h} < € 0,f 9;g Okh
» more generally:
{f by, . hy} = 9o (x) 0;f Oy -+ Oy hy
{{ﬁ)? vfp}ahlv"' ahp} = {{anhlv"' ahp}vflv"' 7fp}+"

...—|—{fb,...,fp_1,{fp,h1,"- ,hp}}
» Our construction may be useful to quantize these objects.



Outline 3rd lecture
» generalized geometry and NC gauge theory
» effective string actions
» Nambu-Poisson structures and NP sigma model

» effective brane actions

p=1 ~ p>1



Generalized geometry

Generalize geometry to accommodate string symmetries.
Replace Lie algebroid TM by a Courant algebroid £

> TM @ T*M (type I/Il without RR fluxes)
» TMO T*M @ G (type | + YM)
>» TMSNT*MSNTM @ T*M (M-theory)

Leibnitz algebroid (E, [, ], p):
vector bundle E — M with bracket on I'(E) and anchor map morphism of
vector bundles p: E — TM, s.t.: [A,[B, C]] = [[A, B], C] + [B, [A, C]] .

plA, B] = [pA, pB] , [A, fB] = f[A, B] + [pA, f]B

Courant algebroid: add field of bilinear form ( , )
Exact Courant algebroid0 - T"M - E - TM — 0: EZX TM @ T*M.




Generalized geometry

Generalized geometry (Hitchin, Gualtieri, ...): replace structures on TM
([, ] iv, Lv, d, ...) by structures on E.

» sections V +£ e l(TM & T*M)

> bilinear form (V + & W +n) = ivn + iwé

» (Dorfman) bracket [V + & W + 1] = [V, W]+ Lvn — iwd¢
» Clifford algebra {yv ¢, Ywin} =2(V +& W + 1)

Symmetries of (, ): O(d,d)
e.g. eB(V +&) =V + &+ iy B preserves bracket up to iviywdB
= symmetries of bracket: Diff(M) x Q2__.,(M).

closed

Twisted Dorfman bracket [, 1y =[, |+ iviwH for H € Q3 ..4(M),
then: €8 : [, Ju [, Juids ; twisted differential: dy = d + HA.



Generalized geometry

E=TM®T*M,V+E{€E, W+neE
bilinear form (V' + &, W +n) = ivn +iw§  in matrix form: <(l) (I)>

signature (n,n) = symmetries: O(n, n).
Examples of O(n, n) transformation:

» B(2-form)-transform: eB(V +&) = V + &+ B(V) , matrix: (é (/)>
» O(bivector)-transform: e?(V + &) = V + &+ 0(€) , matrix: ((I) ?)

» On(V +&) = N(V)+ N-T(&), smooth; matrix: (,(\)I NOT>

Any O € O(n, n) can be written as O = e B0ye".



Generalized geometry

consider an idempotent linear map 7 : I(E) — [(E), 72 =1
eigenvalues +1 ~» splitting E = V. & V_ with eigenbundle:
Vi ={V+A(V) | Ve TM}={A Y ()+£| € T*M} A=g+B

Vo= {VHA(V) |V e TM} = {AH()+£ | € T"M} A= —g+B

. . %4 —-g B -1 %4
in matrix form: 7 <§> = (g —%g_lB ng_1> <£>

positive definite metric via 7: (e1, &), = (Te1, &) = (e1, 7€)
= generalized metric, factorized using Schur decomposition,

G_ g—Bg™'B Bg'\ (I B\(g O /
o —g7 B gt)\o 1)\o gt)\-B

- O
N———



Generalized geometry and NC gauge theory

A O-transform will yield a new generalized metric H = e?G, which can
again be factorized:

(L ) (W -4 9l )

In terms of the eigenbundle:

{(g+B) M) —-0(&)+¢|ceT M}
= {(G+o) () +¢|ce T M}

eg V+

= closed-open relations (!)

1 1

g+B Gro !



Generalized geometry and NC gauge theory

Add fluctuations B— B'=B+F =G~ G =efG
and similarly @ —» &' =+ F/, = H— H' = e~ F'H.

H’ and G’ are related by Oye=?,
where N =14 6F, F/ = FN1, ¢ = N~19.

We find an interesting determinant identity ( “miraculous identity”)
det(g—(B+F)g ™! (B+F)) = det(N?)det(G—(®+F') G H(P+F'))
and from the transformation of the eigenbundle:

1 1

E1BIF NT(GrotFNT

Brano Jurco, PS, Jan Vysoky



Generalized geometry and NC gauge theory

Based on the "miraculous identity” we can make ansatze for effective
open string actions: A commutative version and a non-commutative
version. The latter requires the use of the semi-classical SW map and its
Jacobian needs to match an appropriate power of the factor det N.

This fixes the actions to be

dn dn
/ Xdet%(g+B+F):/GXdet%/vdet%(G+q>+F')

S S

and after a covariantizing change of integration variables (SW map):

[ et rmem = [0 Doty b 4 P
S Gs det59



Effective Actions

Open string effective action

~

1 1 R R
Spel = /d"x— det%(g +B+F)= /d"xA— det %(G—&-d) +F)
8s Gs
commutative <> non-commutative duality

Expand to second order, ignore (cosmological) constants =

1
Spel = / d”x%g’fg“(8+F),-k(B+F)ﬂ (Maxwell/Yang-Mills)

S

o /d” o |ﬁg,gk,{x' KK, KY (Matrix Model)

Covariant coordinates: X' = x/ + A/
Commutative <> non-commutative duality fixes form of action



Massless bosonic modes

> open strings: A, ¢" — gauge and scalar fields

» closed strings: gy, Bu,, ¢ — background geometry, gravity

Closed string effective action
Weyl invariance (at 1 loop) requires vanishing beta functions:

Buv(8) = BWELB) = B(®) =0

equations of motion for g,,,, B, ¢

Nz
)

closed string effective action

/de| g|2< — */3H AHPA — 8M¢'8“d>+...>

Noncommutative version of this?



Nambu-Poisson structures

Nambu mechanics
multi-Hamiltonian dynamics with generalized Poisson brackets

e.g. Euler's equations for spinning top

Lo + w2w3(I3 — Ig) =0 etc.

. 1
= L,‘ = GUijLk/I' = {L,‘, T, §L2}
with L=1-@, T = %Z(D and Nambu-Poisson bracket

_ 8(f7g7h) _ ik 5. .
{f,g, h} = det [8(L1,L2,L3)] = e’ 0;f 0;g Okh



Nambu-Poisson structures

Nambu-Poisson (NP) bracket

more generally: skew-symmetric, multi-linear, derivation
{f by, hp} = o () 0;f Oy -+ Oy hy
+ Fundamental Identity (FI)

{{f(-)u"'7f;3}7h1)'“7hp} = {{ﬂhhl)'”7hp}7f;|.7"'7fp}+"'
...—l-{fo,...,fp_l,{fp,hl,“',hp}}



Nambu-Poisson structures

Alternative viewpoint

» Nambu tensor N1 € TM @ AP TM maps a time-evolution p-form 7
“Nambuian” (n = dH for p = 1) to a time-evolution vector field

1
) = Nedey 5,00 = N7n,0; € T™M
with J = (Jj1,...,Jp): ordered multi-index
» Canonical transformation property
dn=0 = ﬁn(n) MN=2o0
» Conservation law property

n=dmA...Ndh, = Ln(n)nzo



Nambu-Poisson structures

For p=1:
ordinary Poisson structure, differential constraint (Jacobi identity)

For p > 1:
Nambu-Poisson structure, differential & algebraic constraint

< [1 factorizes into wedge product of vector fields

M=VoAVIA.. AV, =|N(x)|7T e A...Ae,

» foliation into (p + 1)-dimensional submanifolds
> |I'I(X)|ﬁ is a scalar density of weight —1
» |M(x)| is the generalized determinant of the rectangular matrix M~



Poisson o-model

Nonlinear gauge theory/Poisson o-model (lkeda; Schaller, Strobel)
o1 1.
SIA, X] = / (A,- AdXT = ZNTA; A AJ-) N = SN9(X)9; A9,
b

X: =M (X: 2D world sheet, M: target space)
A(o) = 1-form on T with values in T3, )M

equations of motion
. N 1
dX'—MVA; =0 dA; + EB;I'I"’A,( ANA=0
consistency of eom requires

[, m¥ = 3 (N"9V* + cycl) =0 = (M,T) must be Poisson



Poisson o-model

Generalized (non-topological) Poisson o-model
T T L1y
S= A,-/\dX—EI'I A,'/\Aj—§(G )A,'/\*Aj
ba
Ai = Aia(0)do® are auxiliary fields — integrate out
1 . . ) .

S'= _/z 2 (gdX" A xdX? + BydX' A dX7)

= closed-open string relations
1

———=6'4nN G=g-Bg'B, 0=-G'Bg
2B +0 = g—Bg B, g



Nambu o-model

Let ni = 7’],'(0’)d0’1 = —A,'l(U)dO'l and ﬁj = ﬁj(O’)dO’O = Ajo(U)dO’o

Generalized Poisson o-model

. o 1. 1 .
S= <dX’ /\’f},’+’l7j/\dXJ — I'I“ﬁj/\n,-— EGU’I’];/\*TU— 5G”f],‘/\*ﬁj>

Y141

p-brane version — Nambu o model

. . 1 . 1.
S = <dX’ /\’17,'—1-771/\de'/— I'I’JﬁJAn;— 56”77,'/\*77]' — EGUﬁ/ /\*ﬁj)

Yip



Nambu sigma model

Notation
X'(0) embedding fn's (scalar fields)
/1, J ordered p-tuple multi-indices
I'=(i,....0p) 0<ih<...<ip<D-1
P
3XI = Z eal...apaalxil . aapXi,,
ai,...,ap=1
a,=01,...,p world volume indices
ab=1,...,p spatial components

A tilde distinguishes fields that carry multi indices.

Nambu sigma model (in components)

~ 1 _ ’ 1 -~ ~ o~
St X1 = [ @ [ (6 iy + 5(& ) i

+ 000X + i dX! — N



Nambu gauge theory

Nambu-Poisson map
add fluctuations: p-form gauge potential A with field strength F = dA

gauge action of F on IT:
N—nf=@-NFHIN=@1-(N,F) N

with inner product (M, F) = trMFT

Nambu-Poisson map ppa; (change of coordinates) relates M and N*

gauge tr. A = d\ = Jpa) generated by Xpy 4 = MY(dAp 4),0;

~ (—ﬁntF(A) + at)k(A)
Apa = ; (k+1)! =0’




Nambu gauge theory

Covariant functions and coordinates:

A:p[A](f) ~ 5?:£n(d5\)?22{?,;\(1),,:\(p)}

R = p[A](Xi) =X LA o~ A= Z{ + A A® Ry
(dA =3 dAD AL A dAP)

Jacobian of ppay @ X+ &

Using the decomposability of 1 for p > 1 and fact that the degenerate
matrix FM7 acts non-trivially only on a (p + 1)-dimensional subspace
(via multiplication by ([, F)):

Ox p+1
195

N
Nl

det(1 — FI'IT) =(1—(n, F>)p+1 _




Membrane actions

Nambu-Goto p-brane action

SX] =T, / 07 [det(g;0a X10:X)
bx
classically equivalent: p-brane sigma model action
T . .
S[X, h] = 7"/ dPlo /det h [g,-jho‘ﬁaaX’c%XJ —(p— 1)>\]
by

where T, = A\"Z T, and A > 0



Membrane actions

gauge fix
hao = hop = 0 and hoo = AP~ " det(hap)
(valid globally for ¥ of form £, x R, £, x [ or £, x S1)

eliminate h,p, =
T ) . ) )
Sef[X] = 7,) / dPtly [g,-j(‘?oX’aoXJ + det(g,-jaaX’abXJ)]
introduce multi-index notation

8u = E : sgn(ﬂ)gl}ru)ﬁ * Bin(oyp
TeES,



Membrane actions

gauge-fixed p-brane action in multi-index notation
Tp
Syl X] = / dP o [gideX 80X + E1yX' aX]

add background C,1-field

1

T Gij,..j,dx' dx 1. dxe

with field strength H = dC — membrane o model

S[X] = / 0”10 [ 00X 00X + gydX'oX

_i / d* e 3 C,Jaox"éF(J]
iJ



Membrane versus Nambu sigma model

Closed-open membrane relations

g+CgCT =G +oG o7
g+CTgic=G+o"G o
g lC=G1o-—NG+o"G 1)
Cgl=0G1-(G+oGtoMN

1 1
L0 (forp=1
g+C GC+o & (for p=1)



Nambu-Poisson and Membranes

Nambu-Dirac-Born-Infeld action

(B Jurco & PS 2012)

commutative <> non-commutative duality implies

1 P 1
Sp-pBI = /d”xg— det 270 [g] det >0 [g + (C + F)g ' (C+ F)T]

1 _p i~ N PP A

= /d"xG— det 20 [G] det 0 [G+(D+F) G (B+F)7]
m

This action interpolates between early proposals based on supersymmetry

and more recent work featuring higher geometric structures.



Nambu-Poisson and Membranes

Expansion of action
ignore a cosmological constant term and let ¥ = C + F

I 1 1 A 1T
Sp_DB|—/d X2(p+1)gmdet (g)tr[g " FEIFT] + ...

the coupling constant g, is dimensionless for:
» strings on D3 with 2-form field strength (Maxwell/Yang-Mills)
» 2-branes on 5-brane with 3-form field strength (~» M2-M5 system)
» p-branes on 2(p + 1)-brane with p + 1 form field strength

consider p =2, p’ =5 and expand further (k = F Fy):

. 1 1 1
S(14+ k) =1/1+ =tk — Ztrk2 + —(tr k)2 +.. ..
dets (1 + k) \/ +gtrk— gt +18(tr )2 +

= exact match with k-symmetry computation of
Cederwall, Nilsson, Sundell, “An Action for the superfive-brane” (1998)



Nambu-Poisson and Membranes

From higher gauge theory to matrix model. . .
dual NC model in background independent gauge MCT = —1

expanding to lowest order (ignore a non-cosmological constant) =

semi-classical /infinite-dimensional version of a matrix model

/dp+1X 11 1 _
InjzT 2(p + 1)gm
-g,-ojo---g,-pjp{)?j",...,)A<J'P}{)A<"°,...,5\<"P}

quantize:

1 . PR .
s T (8o [XP X [XPL X))
RECE G



