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I 170

GeV: prediction of the Higgs mass from the description of the standard
model of elementary particles [SM] in noncommutative geometry [NCG].
Ruled out by Tevratron in August 2008.

Connes: “I’ll end with these verses of Lucretius: Suave, mari magno turbantibus
aequora ventis, e terra magnum alterius spectare laborem; non quia vexari
quemquamst jucunda voluptas, sed quibus ipse malis careas quia cernere suave est.
———————————————–

[Pleasant it is, when over a great sea the winds trouble the waters, to gaze from

shore upon another’s tribulation: not because any man’s troubles are a delectable

joy, but because to perceive from what ills you are free yourself is pleasant.]

I 126

GeV: mass of the Higgs boson, official since July 2012.

I 128

= 32× 4 = 2× (2× 4)2 where

I 32 is the number of particles per generation in the SM:
(2 quarks× 3 colours + 2 leptons)× 2 chiralities = 16 + antiparticles,

I 4 = 2
4
2 is the dimension of the spinor representation on a 4 dimensional

manifold.
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Spectral triple: ∗-algebra A, faithful representation on H, operator D on H
such that [D, a] is bounded and a[D − λI]−1 is compact for all a ∈ A and
λ /∈ Sp D.

With extra-conditions (dimension, regularity, finitude, first order,
orientability, reality, Poincaré duality):

Theorem Connes 1996-2008-2013

M compact Riemann spin manifold, then (C∞(M), L2(M,S), ∂/) is a spectral
triple.

(A,H,D) a spectral triple with A unital commutative, then there exists a
compact Riemannian spin manifold M such that A = C∞(M).

Standard model: product of a manifold by a finite dimensional spectral triple

Asm = C⊕H⊕M3(C), HF = C96=3×32

DF : fermions masses, Yukama coupling, neutrino mixing matrix

A = C∞ (M)⊗Asm, H = L2(M,S)⊗HF , D = ∂/⊗ IF + γ5 ⊗ DF .

Spectral action Tr f ( D2

Λ ) yields the Lagrangian of the SM minimally coupled with
Einstein-Hilbert action.
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The new field σ and the Higgs mass

Spectral action requires a unique unification scale. With Λ = 1017GeV, the
running of the Higgs quartic selfcoupling λH under the big desert hypothesis yields

mH ' 170 GeV.

A new scalar field σ - that lives at high energy and gives mass to the neutrinos -
has been introduced by phenomenologists† to solve some instability due to the
low mass of the Higgs (radiative corrections may drive λH negative and
destabilize the electroweak vacuum):

V (H, σ) =
1

4
(λHH4 + λσσ

4 + 2λHσH
2σ2).

As a bonus, it pulls mH back to 126 GeV.
Resilience of the spectral SM, Chamseddine, Connes 2012

Is σ natural in NCG, or is it just an artifact for solving the model ?

†
Elias-Miro, Espinosa, Guidice, Lee and Sturmia, Stabilization of the Electroweak Vacuum by a Scalar Threshold effect, JHEP 1206 (2012) 031;

Degrassi, Di Vita, Elias-Miro, Espinosa, Guidice, Isidori and A. Sturmia, Higgs mass and Vacuum Stability in the SM at NNLO, arXiv:1205.6497;
Chian-Shu Chen and Yong Tang, Vacuum Stability, Neutrinos and Dark matter, JHEP 1204 (2012) 019;
Oleg Lebedev, On Stability of the Higgs Potential and the Higgs Portal, JHEP, arXiv:1203.0156.
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Gauge fields and the first order condition

The gauge fields of the SM (including the Higgs) are obtained by fluctuation of
the metric

[D, a] = [∂/⊗ I + γ5 ⊗ DF , f
i ⊗mi ],

allowing to turn the constant components of DF into fields on the manifold M.

The field σ is obtained by turning the entry corresponding to the neutrino mass
into a field. Unfortunately, the first order conditon

[[D, a], JbJ−1] = 0 ∀a, b ∈ A

prevents to do so by fluctuation of the metric. Indeed, for DM the Dirac with
only the neutrino mass,

[[DM , a], JbJ−1] = 0 ∀a, b ∈ Asm =⇒ [DM , a] = 0.



The finite dimensional algebras of the SM

Connes, Chamseddine, Marcolli: the finite dimensional algebra is of the form

Ma(H)⊕M2a(C) a ∈ N

and acts on an Hilbert space of dimension d = 2× (2× a)2.

I a = 1: too small to get the gauge group as unitaries of M(H)⊕M2(C).
I a = 2 yields d = 32 = #particles per generation.

Grading condition [Γ, a] = 0 (coming from the orientability axiom) imposes

AF = M2(H)⊕M4(C) −→ ALR = HL ⊕HR ⊕M4(C).

1st-order condition without neutrino mass (DF = D0) further imposes

ALR −→ HL ⊕HR ⊕M3(C)⊕ C.

1st-order condition with neutrino mass (DF = D0 + DM ) finally gives

HL ⊕HR ⊕M3(C)⊕ C. −→ HL ⊕ C′ ⊕M3(C)⊕ C

with C = C′. Hence the the reduction

AF → Asm = C⊕H⊕M3(C).
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Grand algebra
I a=3: d = 72. No obvious relation with 32 particles/generation.

I a=4: d = 128 = dimension 4× 32 of the total Hilbert space for 1 generation:

H = L2(M,S)⊗HF = L2(M)⊗ HF where HF = C4 ⊗HF = C4 ⊗ C32 = C128.

By mixing the spin
s = l , r , ṡ = 0̇, 1̇

and the internal

C = p, a α = uR , dR , uL, dL (I = 1, 2, 3), eR , νR , eL, νL (I = 0)

degrees of freedom, the Hilbert space H of the standard model allows to
represent the grand algebra

C∞ (M)⊗AG where AG = M4(H)⊕M8(C)

without touching the particle contents of the SM, and in a way satisfying the
order 0 condition (coming from the reality axiom)

[a, JbJ−1] = 0.

I M2(H) and M4(C) now have a non-diagonal action on the spin indices s, ṡ.
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Reduction of the grand algebra: emergence of geometry

The Dirac operator is unchanged

D = ∂/⊗ IHF
+ γ5 IL2(M,S) ⊗ DF = ∂µ ⊗ γµsṡ ICIα + IL2(M) ⊗ γ5

sṡ DCIα
F ,

so is the Hilbert space

H = L2(M,S)⊗HF = L2(M)⊗ HF .

However the representation of the grand algebra AG is not Lorentz (i.e. Spin(4))
invariant.

The grading condition imposes the reduction

AG = M4(H)⊕M8(C) −→ A′G = (M2(H)L ⊕M2(H)R )⊕ (M4(C)l ⊕M4(C)r ).

The 1st-order condition for the free Dirac operator ∂µ ⊗ γµsṡ ICIα further yields

A′G → ALR

with a representation now diagonal on the spin indices. The algebra of the
standard model Asm follows as before, by the first order condition of DF .

I We start with a topological phase. The metric structure emerges dynamically
(work in progress), by the first order condition of the free Dirac operator.

I In the SM, one deals with a product of spectral triples, so the 1st-order
condition for the free Dirac is automatically satisfied.
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Reduction of the grand algebra bis: fiat neutrino !

Consider the grand algebra AG reduced by the grading condition to

A′G = (M2(H)L ⊕M2(H)R )⊕ (M4(C)l ⊕M4(C)r ).

A solution of the 1st-order condition of the Majorana mass only (IL2(M)⊗DCIα
M ) is

A′G −→ A′′G = (HL ⊕H′L ⊕ CR ⊕ C′R )⊕ (Cl ⊕M3(C)l ⊕ Cr ⊕M3(C)r )

with CR = Cr = Cl .

1st-order for the free Dirac operator yields C′R = CR ,H′L = HL,M3(C)l = M3(C)r :

A′′G → Asm = C⊕H⊕M3(C).

I By inverting the order of the reductions, one can generate the field σ by a
fluctuation of DM , respecting the 1st-order condition imposed by DM :
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Conclusion

Almost simultaneously, Chamseddine, Connes and van Suijlekom proposed a
definition of “inner fluctuation without first order condition”.

Starting with M2(H)⊕M4(C), they generate the field σ, and retrieve the
1st-order condition dynamically, by minimizing the spectral action.

I The grand symmetry allows to dissociate the Majorana 1st-order condition
from the free Dirac 1st-order condition.

The phenomenological consequences are under investigation.
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