

String theory across two centuries

Marios Petropoulos Centre de Physique Théorique, Ecole Polytechnique CNRS

Summer school and workshop on the standard model and beyond

Corfu September 2013

First Lecture

FOREWORD

20th century physics emerged from genuine experimental enigmas

- Black-body radiation spectrum: Planck and theory of quanta $\hbar = \frac{h}{2\pi} = 1,05457168(18) \times 10^{-34} \text{ Js}$
- Michelson and Morley experiments: Einstein and special relativity c = 299792458 m/s

Absence of ether, unsuspected microscopic wonderland, new scientific challenges ...

Culminated with the advent of gauge theories and the standard model (70s - 80s)

- $U(1) \times SU(2) \times SU(3)$: γ , Z_0 , W_{\pm} , g
- leptons: v_{e} , e ...
- hadrons quark bound states: u, d ...
- Higgs breaking of symmetry: *H*

 Z_0, W_{\pm} observed in 1983 - *H* observed in 2012 at CERN

```
m_{Z_0} \approx 91, 2 \text{ GeV}/c^2
m_{W_+} \approx 80, 4 \text{ GeV}/c^2
  m_{\nu_{\rm e}} \lesssim O(1) \ {\rm eV}/c^2
  m_{\rm e} \approx 511 \; {\rm KeV}/c^2
  m_{\tau} \approx 1.8 \text{ GeV}/c^2
m_{\rm u} = {\rm O}(1) {\rm MeV}/c^2
m_{\rm t} \approx 174, 3 \, {\rm GeV}/c^2
m_H \approx 125, 3 \text{ GeV}/c^2
```

23 adjustable parameters - extraordinary experimental agreement (LEP, Tevatron, LHC)

21st century challenges are of æsthetic nature ...

- Are *all* SM parameters fundamental?
- Why is electric charge *quantised*?
- Why 3 families of quarks and leptons?
- Could electro-weak and strong interactions be «unified»?
- Are there other elementary particles beyond the top quark?
- Are there more fundamental objects?
- Could one explain the SM mass spectrum from first principles?

Quest of a more *fundamental scheme* - experiment largely anticipated by theory (as opposed to the 1900 era)

... or semi-æsthetic: *gravitation* About gravity ...

- The 4th force Newton's law: $f = G_N mm'/r^2$ $G_N = 6,67428(67) \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$ $= 6,70881 \times 10^{-39} (\text{GeV}/\text{c}^2)^2$
- Experimentally verified up to 56 μ m (2007)
- Relativistic version: *general relativity* gravity as spacetime geometry - successful inside the solar system

... and its caveats

- Cosmological issues: less successful for describing large-scale universe evolution *ad hoc addenda*
 - *– inflation*
 - *dark matter*

$$\Lambda = \frac{8\pi G_{\rm N}}{c^2} \varrho_{\emptyset}$$
$$\varrho_{\emptyset} \approx 2,5 \text{ KeV } c^{-2} \text{ cm}^{-3}$$

No microscopic understanding

- Relationship with other interactions: *why does gravity look so different*?
 - Newton's law ↔ space-time geometry
 - *very weak*

Force between protons at 5 fm -gravitational: 10⁻³⁷ N -other: 10⁻² N to 1000 N

- Quantum properties:
 - quantum scale $L_{\text{Planck}} = \sqrt{G_N \hbar/c^3} \approx 1.6 \times 10^{-25} \text{ Å}$
 - lore: interaction mediated by gravitons

bad ultraviolet behaviour: GR is power-counting non-renormalisable

... no experimental sign/need for these issues

Proposals

- Kaluza-Klein theories (1921-1926)
- Extended objects membranes by Dirac (1962)
- Grand-unified theories (GUTs in '70s)
- Supersymmetry (SUSY in '70s)
- None fully satisfactory
- All natural ingredients of string theory at the cost of growing complexity and (sometimes) problems

THE ADVENT OF EXTENDED OBJECTS

Dirac's membrane (1962)

• Electron as a charged membrane of radius *r*₀

- finite Coulomb energy

$E_{\rm Coul} \propto \int_{r_0}^{\infty} {\rm d}r/r^2$

- spectrum of vibration \rightarrow spectrum of leptons

 $m_0 = m_e, \quad m_1 \approx m_\mu/4, \quad \dots$

• No subsequent developments to this approach

- absence of spin
- success of quantum field theory

Membranes re-emerged in string theory (1995)

Strings

- Prehistory: *dual models* (1967-1974)
- History: *quantum gravity* (1974-1984)
- Modern times: *theory of everything* (1984-2000)
- Age of maturity: *toolbox* (2000-)

Dual models (1967-1974)

Meson resonances in hadronic collisions: Regge trajectories

Described as excitations of a relativistic string

Hadronic physics: SLAC experiments (1969)

- No fundamental string but partons
- Quantum Chromo Dynamics: quarks and gluons
- Asymptotic freedom (1972)

Strongly interacting → specific computational methods

- in the UV, perturbative QFT
- in the IR
 - lattice methods
 - analytic methods: effective QCD string (stretched chromoagnetic tube fluxes) - explains Regge trajectories and the success of dual models

Modern reincarnation of dual models via QCD string: AdS/CFT correspondance

DYNAMICS OF RELATIVISTIC STRINGS

Nambu-Gotto action: worldsheet area

- Worldsheet: $x^{\mu} = x^{\mu}(\zeta^a), \ \zeta^a = \{\tau, \sigma\}$
- Induced metric: $h_{ab} = \partial_a x^{\mu} \partial_b x^{\nu} \eta_{\mu\nu} = \partial_a x \cdot \partial_b x$

$$S_{\rm NG} = \frac{1}{2\pi\alpha'} \int d\tau d\sigma \sqrt{(\partial_{\tau} x \cdot \partial_{\sigma} x)^2 - (\partial_{\tau} x)^2 (\partial_{\sigma} x)^2}$$

- Lorentz-invariant
- Reparameterization-invariant
- Not unique (1st term in derivative expansion involving extrinsic/intrinsic curvature)
- A single parameter: the string tension $T = 1/2\pi \alpha'$ [T] = 2

Reparameterization invariance

- Relativistic strings support only
 - transverse waves
 - propagating at the speed of light
- Special parameterizations:
 - static: $x^0 = \tau$, $x^1 = \sigma$
 - conformal: $h = |\partial_{\tau} x|^2 \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$

Free wave equations in 2 dim: $(\partial_{\tau}^2 - \partial_{\sigma}^2) x^{\mu} = 0$

subject to the conformal constraints

- General solution: $x^{\mu} = f^{\mu}(\tau \sigma) + \tilde{f}^{\mu}(\tau + \sigma)$
 - closed strings: independent f^{μ} , \tilde{f}^{μ}
 - open strings: standing waves

 $f^{\mu} = \pm \tilde{f}^{\mu} \begin{cases} \text{free endpoints (Neumann)} \\ \text{fixed endpoints (Dirichlet)} \end{cases}$

• Conformal-gauge conditions (on initial data)

$$f' \cdot f' = \tilde{f}' \cdot \tilde{f}' = 0$$

$$\begin{cases} f^{\mu}(\tau - \sigma) = \frac{1}{2}x_{0}^{\mu} + \frac{\alpha'}{2}p^{\mu}(\tau - \sigma) + i\sqrt{\alpha'/2}\sum_{n \neq 0}\frac{1}{n}\alpha_{n}^{\mu}e^{in(\tau - \sigma)} \text{ (R)} \\ \tilde{f}^{\mu}(\tau + \sigma) = \frac{1}{2}x_{0}^{\mu} + \frac{\alpha'}{2}p^{\mu}(\tau + \sigma) + i\sqrt{\alpha'/2}\sum_{n \neq 0}\frac{1}{n}\tilde{\alpha}_{n}^{\mu}e^{in(\tau + \sigma)} \text{ (L)} \end{cases}$$

$$\alpha_{-n}^{\mu} = \left(\alpha_{n}^{\mu}\right)^{*} \quad \tilde{\alpha}_{-n}^{\mu} = \left(\tilde{\alpha}_{n}^{\mu}\right)^{*}$$

- Solving the conformal constraints
 - light-cone coordinates: $x^{\pm} = x^0 \pm x^1$
 - light-cone gauge: $x^+ = \alpha' p^+ \tau \Rightarrow f^{+\prime} = \tilde{f}^{+\prime} = 1/2\alpha' p^+$
- Conformal-gauge conditions (on initial data)

 f^-, \tilde{f}^- eliminated \Rightarrow only D - 2 transverse modes

closed strings

$$m^{2} \equiv -p_{\mu}p^{\mu} = \frac{4}{\alpha'} \sum_{n=1}^{\infty} \alpha_{-n}^{i} \alpha_{n}^{j} \delta_{ij} = \frac{4}{\alpha'} \sum_{n=1}^{\infty} \tilde{\alpha}_{-n}^{i} \tilde{\alpha}_{n}^{j} \delta_{ij}$$
open strings
$$m^{2} \equiv -p_{\mu}p^{\mu} = \frac{1}{\alpha'} \sum_{n=1}^{\infty} \alpha_{-n}^{i} \alpha_{n}^{j} \delta_{ij}$$

- Positive and continuous mass spectrum
- Angular momentum $j \leq \alpha' m^2$

Quantization

- Center of mass: $[x^{\mu}, p^{\nu}] = i\eta^{\mu\nu}$
- Creation operators: $\alpha_{n>0}^{\dagger\mu}, \tilde{\alpha}_{n>0}^{\dagger\mu}$
- States: $|\mathbf{p}, i_r, m_r, \dots, j_s, n_s, \dots\rangle = \left(\alpha_{m_r}^{\dagger i_r} \dots\right) \left(\tilde{\alpha}_{n_s}^{\dagger j_s} \dots\right) |\mathbf{p}\rangle$
- Levels: $N = \sum_{r} m_{r}$ $\tilde{N} = \sum_{s} n_{s}$
- String spectrum:
 - closed: $N = \tilde{N}$

$$-p^2 = m^2 = \frac{4}{\alpha'} \left(N - \frac{D-2}{24} \right)$$

open: ignore right

$$-p^2 = m^2 = \frac{1}{\alpha'} \left(N - \frac{D-2}{24} \right)$$

Note: regularization $\sum_{n=1}^{\infty} n/2 = 1/2 \zeta(-1) = -1/24$

String coupling and string amplitudes

- 1st quantized string: each state in a different Poincaré representation - no multiparticle states
- Method: similar to relativistic quantum mechanics
 - asymptotic states & propagators
 - diagramatic rules for computing order by order

$$\mathcal{A}(1,\ldots,N) = \sum_{\gamma=0}^{\infty} g_s^{2\gamma+N-2} \mathcal{A}_{\gamma}(1,\ldots,N)$$

• String coupling $g_s = \exp \Phi$

At large g_s the worldsheet has no meaning

The tachyon

• Level zero: a scalar χ with $m^2 \propto -\frac{D-2}{24}$

🗭 false vacuum

Perturbative instability of Minkowski space-time: ultimate fate - $V(\chi)$? Supersymmetry at rescue!

The photon and critical dimension

• Open-string level one: a vector $|\mathbf{p}, 1, i\rangle = \alpha_{-1}^{i} |\mathbf{p}\rangle$ with mass $m^{2} = \frac{1}{\alpha'} \left(1 - \frac{D-2}{24}\right)$ photon in 26 dim $D - 2 \operatorname{dof} \Rightarrow m = 0 \Rightarrow D = 26$

The graviton *et al*

• Closed-string level one: a rank-two tensor

 $|\mathbf{p}, \mathbf{1}, i, \mathbf{1}, j\rangle = \alpha_{-1}^{i} \tilde{\alpha}_{-1}^{j} |\mathbf{p}\rangle$ with mass $m^{2} = \frac{4}{\alpha'} \left(1 - \frac{D-2}{24}\right)$

 $(D-2)^2 \operatorname{dof} \Rightarrow m = 0 \Rightarrow D = 26$

antisymmetric: axion trace: dilaton

traceless symmetric: graviton

 h^{ij}, b^{ij}, Φ

string theory as quantum gravity [Scherck, Schwarz; Yoneya '74]

• Higher levels: higher-rank tensors

with mass $m \geq 1/\sqrt{\alpha'}$

higher spins

Main features

- Rigid spectrum
 - tachyon
 - no fermions
- Extra dimensions

Note: the original KK method for D > 4

- Fundamental idea of *dimensional reduction* $5 \rightarrow 4$
- Unification of *e* and G_N assuming *R* ~ 100 L_{Planck}
- No solution to the specific problems of gravity
- Worse ultra-violet behaviour

$$E_{\text{Coul}} \propto \int_0^\infty \frac{\mathrm{d}r}{r^3} \text{ versus } \int_0^\infty \frac{\mathrm{d}r}{r^2}$$

Must be embedded in a more adequate framework: *string theory*

The superstring

- Eliminate the tachyon
- Introduce fermions in the spectrum
- A little freedom on the spectrum (GSO)

Neveu–Schwarz–Ramond: $(x^{\mu}, \psi^{\mu}, \tilde{\psi}^{\mu})$

L & R worldsheet real fermions

- N = (1,1) local superconformal invariance (closed)
- Critical dimension D = 10
- 2 main differences wrt the bosonic string

1st difference

- Fermions on the worldsheet (closed string)
 - periodic, integer frequence: Ramond
 - *–* antiperiodic, half-integer: Neveu-Schwarz
- Ramond sector: anticommuting zero-modes

$$\left\{b_0^{\mu}, b_0^{\nu}\right\} = \eta^{\mu\nu}$$

- Dirac matrices
- spinorial ground states (wrt spacetime)

(open strings at each end: $\psi^{\mu} = \tilde{\psi}^{\mu}$, $\psi^{\mu} = \pm \tilde{\psi}^{\mu}$)

2nd difference

Consistency requires definite worldsheet parity: **GSO projection** $(-1)^{F}$ or \tilde{F} [Gliozzi, Scherk, Olive '76]

- separately for left and right sectors
- removes sectors, acts as a chirality projection on Ramond states

Second Lecture

Summary of first lecture

Fermionic string

- D = 10 & Poincaré invariance
- Ground states
 - space-time scalar $|\mathbf{p}\rangle_{\rm NS}$
 - space-time spinor $|\mathbf{p}\rangle_R$
- Oscillator modes $\alpha_n^{\mu}, b_n^{\mu}, b_{n+1/2}^{\mu}$
- L-R duplication for closed string with $N = \tilde{N}$
- Mass-shell condition and GSO projection

Open fermionic string massless spectrum

- Level-0: tachyon projected out $|\mathbf{p}\rangle_{\text{NS}}$, $m^2 = -1/2\alpha'$
- Level-1: massless
 - vector (8): $b_{-1/2}^{j} |\mathbf{p}\rangle_{\rm NS}$
 - Majorana-Weyl spinor (8): $|\mathbf{p}, -\rangle_R$
 - Majorana-Weyl spinor (8) projected out: $|\mathbf{p}, +\rangle_R$

D = 10, *N* = 1 vector multiplet supersymmetric Maxwell spectrum Closed fermionic string massless spectrum

- Level-0: tachyon projected out $|\mathbf{p}\rangle_{\text{NSNS}}$, $m^2 = -2/\alpha'$
- Level-1: massless
 - rank-two tensor (1 + 28 + 35): graviton, dilaton, antisymmetric NSNS $b_{-1/2}^{i} \tilde{b}_{-1/2}^{j} |\mathbf{p}\rangle_{\text{NSNS}}$
 - vector-spinors (2 × (8 + 56)): 2 dila-gravitinos of opposite or equal chirality $b_{-1/2}^{i}|\mathbf{p}\rangle_{\text{NSR}}$, $\tilde{b}_{-1/2}^{j}|\mathbf{p}\rangle_{\text{RNS}}$
 - bispinors (8 + 56 or 1 + 28 + 35): antisymmetric RR tensors $|p\rangle_{RR}$

D = 10, N = 2 IIA or IIB supergravity spectrum

Finally superstring in D = 10

Combining open and closed superstrings

- Type I: closed & open strings
- Type II A & B: closed string
- Heterotic *SO*(32) or $E_8 \times E_8$: closed string

Good and bad...

- Are elementary particle masses following arithmetic sequences?
 - no! but the zero-mass string sector is intriguing
- Existence of an helicity-2 mode: graviton?
 - requirement: introduce G_N in $T = c/2\pi a'$

$$T \sim \hbar c / 2\pi L_{\text{Planck}}^2 = c^4 / 2\pi G_N \approx 1.9 \times 10^{43} \text{ N}$$

- recover general relativity (supergravity) at large length scales $\ell \gg L_{\text{Planck}}$
- Massive spectrum basically unobservable ($m > M_{Planck}$)

- Massless spectrum: spin 0, $\frac{1}{2}$, 1, $\frac{3}{2}$, 2
 - is it reminiscent of the SM spectrum or of any of its extensions SUSY/GU?
 - if yes
 - how to lift mass degeneracy?
 - how to reproduce the correct interactions?
 - How to break SUSY?
- How to go from D = 10 to D = 4? Contact with KK?
- Contact with Dirac-like membranes?

...in a natural way!

Wide programme launched around 1985 ...

String phenomenology

Yes! massless spectrum & interactions are SUGRA-like at low energies - not so suprising

Crucial: non-Abelian gauge group

- 1985-1995: heterotic string
- 1996-2009: orientifolds discovery of D-branes
- 2009-: heterotic/orientifolds/F-theory

- Some facts are surprisingly natural
- The actual implementation is Ptolemaic

Is the spectrum complete?

D-BRANES

Emergence

Two intriguing observations

- Open strings allow for Dirichlet boundary conditions
- Strings are electric sources for the NSNS form

$$\int_{\text{worldsheet}} B_{\mu\nu} \, \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu}$$

For a charged particle coupled to a gauge field: $\int_{\text{worldline}} A_{\mu} dx^{\mu}$

- What are the sources of RR forms?
- Are these sources part of the perturbative string spectrum?

Interpretation [Polchinski '96]

String theory allows for excitations of domain-wall type: *D-branes* D: Dirichlet

- Open strings can be attached to these D-*p*-branes
- The D-*p*-branes are electric sources for (p + 1)-forms

$$\int_{\text{worldvolume}} A_{\mu_1 \dots \mu_{p+1}} \, \mathrm{d} x^{\mu_1} \wedge \dots \wedge \mathrm{d} x^{\mu_{p+1}}$$

and magnetic sources for (D - p - 3)-forms

D-branes

carry RR charge and tension (mass density)

$$T_p = \frac{1}{g_{\rm s}(2\pi)^p \alpha'^{\frac{p+1}{2}}}$$

- are not elementary string modes but *solitonic* objects of type II string analogous to magnetic monopoles
- create RR fields which alter the gravitational background
- alter the string spectrum: closed-string plus open-string branelocalized modes with $m^2 \ll 1/\alpha'$

How to study? BCFT or semi-classically - guide: kink paradigm in the two-scalar field theory The kink solution in field theory

$$\mathcal{L} = \frac{1}{2} (\partial \phi)^2 + \frac{1}{2} (\partial \chi)^2 + \frac{g}{8} \left(\phi^2 + \chi^2 - \frac{m^2}{g} \right)^2 + \frac{g'}{8} \chi^4$$

• 2 translation-invariant vacua: $(\phi, \chi) = (\pm \frac{m}{\sqrt{g}}, 0)$

- 2 interpolating kinks: $(\phi_{\rm K}, \chi_{\rm K}) = \left(\pm \frac{m}{\sqrt{8}} \tanh \frac{m(x_{\perp} a)}{2}, 0\right)$
 - thick membranes of width 1/m
 - the spectrum in the background of a kink: massless χ and long-wavelength transverse modes

expanding around the kink solution one finds the effective action for the low-energy modes

$$\begin{split} \phi(x) &\approx \phi_{\mathrm{K}}(x_{\perp}) + \psi(y)\partial_{\perp}\phi_{\mathrm{K}}(x_{\perp}) \\ S_{\mathrm{eff}} &= \int \mathrm{d}^{4}x \left(\frac{1}{2} (\partial \chi)^{2} + \frac{g + g'}{8} \chi^{4} \right) + \int_{\mathrm{membrane}} \mathrm{d}^{3}y \left(\frac{1}{2} (\partial \psi)^{2} + V(\psi, \chi) \right) \end{split}$$

D-branes in string theory

- No action available for the description of strings
- D-branes do not appear as translation-breaking extrema
- No direct way to obtain the D-brane-modes effective action

How to describe the string spectrum in the background of a D-brane and its dynamics?

- Determine the open-string modes localized on the brane
- Recast conformal-invariance requirement as an effective action

 $S_{\rm DBI} = \int \mathrm{d}^{p+1} y \sqrt{-\det\left(\hat{g} + \hat{F}\right)}$

Back to Dirac's membrane ... '62

Open string on a D-*p*-brane: *p* + 1 dimensionally reduced Maxwell field (photon & 9 – *p* massless scalars & gauginos)

What can *N* D-branes do?

- Open strings can be attached between them
 - low-energy effective field theory: U(N) Yang-Mills
 (spontaneously broken to U(1)^N if separated)
 - novel expectations in string phenomenology
- If *N* is macroscopic: emergence of RR expectation values
 - new gravitational/RR backgrounds example: D-3branes in IIB \rightarrow AdS₅ × S⁵ plus self-dual $F_{[5]}$
 - advent of AdS/CFT holographic duality

LET'S PAUSE: UNIFICATION, STANDARD MODEL AND BEYOND

Remember: original questions

- Are *all* SM parameters fundamental?
- Why is electric charge *quantised*?
- Why 3 families of quarks and leptons?
- Could electro-weak and strong interactions be «unified»?
- Are there other elementary particles beyond the top quark?
- Are there more fundamental objects?
- Could one explain the SM mass spectrum from first principles?

String theory does not provide definite and direct answers - some and only via GUTs and SUSY

Grand unification (70s)

Paradigm of electro-weak unification: extension of gauge symmetry group \rightarrow GUT

- $SU(3)_C \times SU(2)_L \times U(1)_Y \subset \text{min-rank-4 semi-simple}$ group with complex representations
 - no U(1) factor \Rightarrow charge quantization
 - extra gauge bosons *X* (besides of *Z* and *W*)
 - Higgs sector: two-stage BEH mechanism with $M_X > M_Z$ by 12 orders of magnitude

● Quarks & leptons ⊂ appropriate multiplets

- Y and T_3 embedded to reproduce Q
- fermion assignments s.t. anomaly-free couplings to all gauge bosons
- potentially new matter: leptoquarks

Archetype - simplest: SU(5) [Georgi, Glashow '74]
More general: SO(10), E₆ [Georgi '74; Fritzsch, Minkowski; Gursey et al '75]

SU(5)

Rational basis for understanding particle charges and weak hypercharge assignments in the SM

rank 4, dimension 24

- 12 extra gauge bosons
- Fermion family (1, 2) + (1, 1) + (3, 2) + (3*, 1) + (3*, 1)
 fits *exactly* in 5* + 10 of *SU*(5) and *reproduces* electric
 charges *without anomalies*
- Scalar sector: adjoint plus vector

Some prominent features of GUTs

- Majorana neutrino masses via effective dimension-5 operators
- Prediction for Weinberg angle
- No explanation for family replication, uncertainty on mixing angles
- Arbitriness in the choice of representations and in the Yukawa couplings
- Large uncertainty on the BEH symmetry breaking sector
- Extra ultra-massive gauge bosons ⇒ baryon-number nonconservation: effective 4-fermion interaction ⇒ proton decay (and baryon asymmetry - good cosmological feature)

Other often quoted *bad* features of GUTs

$$\alpha_{i}^{-1}(M_{Z}) = \alpha_{GUT}^{-1}(M_{U}) + \frac{b_{i}}{2\pi} \log(M_{Z}/M_{U}) + \delta_{i}$$

b_i: beta-function running parameters («massless» spectrum) *δ_i*: threshold corrections («massive» spectrum)

- Couplings do not meet: is this a problem?
- What does unification mean?
- What is the degree of confidence of such a plot?
 - assumptions on the spectrum over > 10 orders of magnitude
 - large uncertainties on threshold corrections
- 12 orders of magnitude in $M_X > M_Z$: is this a problem?

Hierarchy problem: fine tunning order by order

- particle physics *is* fine-tuned (over 11 orders of magnitude) not number theory!
- strictly: absent in the SM only one scale M_Z

```
Supersymmetry (70s)
```

Paradigm of electric- and magnetic-field unification: extension of space-time symmetry → supersymmetry [Gervais-Sakita 1971, Gol'fand-Likhtman-Volkov-Akulov 1971, Wess-Zumino 1974]

Conceptually appealing

• Practically: many shortcomings/drawbacks

Natural embedding of SUSY in *string theory*

Some features of SUSY theories

- Couplings seem to meet *simultaneously*
 - impressionistic (as the non-SUSY)
 - not required from first principles
- Hierarchy is stabilized *not explained*

- Supermultiplets cannot contain more that 1 known particle
 - inflation of superpartners yet to be discovered
 - Achilles'heel: supersymetry breaking *with sociologically determined scale*

MSSM: more than 110 parameters

BACK TO STRINGS

Heterotic string [Gross, Harvey, Martinec, Rohm '84]

- Soon after Green-Schwarz anomaly cancellation in '84
- Closed oriented string: supersymmetric on the left and bosonic on the right
 - no tachyon
 - D = 10 & N = 1
 - massless spectrum & effective theory: D = 10, N = 1
 supergravity with vector multiplets
 - rank-16 gauge groups: $E_8 \times E_8$ or SO(32)
- As opposed to SUSY GUTs
 - much less freedom for the gauge groups and representations
 - huge freedom for compactifications

Interesting feature

• Effective low-energy Lagrangian $\mathcal{L} = \frac{M_s^8 V_6}{g_s^2} R_{(4)} + \frac{k M_s^6 V_6}{8 g_s^2} F^2 + \dots = \frac{1}{2\kappa^2} R_{(4)} + \frac{1}{2g_{YM}^2} F^2 + \dots$ $M_s = 1/\sqrt{\alpha'} \quad \kappa^2 = 8\pi G_N \quad g_{YM}^2 = 4\pi \alpha_{YM}$ $\kappa^2 = \alpha_{YM} \frac{k\pi \alpha'}{2}$

• If $M_U \approx M_s \approx 10^{16}$ GeV and if $\alpha_{\rm YM}$ results from the SM

 $1/\kappa \approx 10^{17}$ instead of 10^{18} GeV

Appealing but not exact

- No way to do much better (thresholds, higher-order corrections ...)
- Simple argument to rule out heterotic string (?)

Orientifolds [precursor: Sagnotti '84, review and book by Blumenhagen *et al*]

Closed and open strings plus D-branes and orientifold planes in type II theories

- Intersecting/magnetized D-brane models
 - chiral matter on intersections
 - unbroben gauge symmetry from coincident branes
 - broken from distant branes
- Generic features
 - large freedom for matter representation: less restrictive than heterotic

- extra U(1)s some massive via anomalous couplings but some massless: way to rule out orientifold models
- no prediction for Newton's constant

$$\frac{1}{2\kappa^2} = \frac{M_s^8 V_6}{g_s^2} \quad \frac{1}{2g_{\rm YM}^2} = \frac{M_s^{p-3} V_{p-3}}{n_p g_s}$$

- exotic possibility (consistency?) [ADD; AADD '98]

 $M_s \approx 1 \text{ TeV} \quad p = 7 \quad V_\perp = V_6 / V_{p-3} \approx 100 \,\mu\text{m}^2$

Ruled out by microgravity experiments?

Weakness of gravity: flux lines spread in the transverse space
Gauge hierarchy under the large transverse carpet

What does betray the presence of a compact dimension?

• Mass spectrum: *Kaluza-Klein* pattern

$$m^{2} = m_{0}^{2} + n^{2} \left(\frac{\hbar}{Rc}\right)^{2}$$
$$\Delta m^{2} = 1 \left(\text{TeV}/c^{2}\right)^{2} \Leftrightarrow R = 1,9 \times 10^{-19} \text{ m}$$

• Deviations with respect to Newton's law $r \gg R \rightarrow f = G_N \frac{mm'}{r^2}$ $r \ll R \rightarrow f = 4\pi R G_N \frac{mm'}{r^3}$

Exact law:

$$f = G_{\rm N} \frac{mm'}{r^2} \left(\coth \frac{r}{2\pi R} + \frac{r}{2\pi R} \sinh^{-2} \frac{r}{2\pi R} \right)$$

Common 30-year caveats

- Vacuum selection & stability
 - absence of guiding principle (such as symmetry and renormalisability in field theory)
 - presence of numerous massless scalar fields: moduli
 - ruled out e.g. by microgravity experiments
 - potentially stabilized by fluxes (vevs of NS, R, geometric, ... antisymmetric tensors)? [review by Graña '05]
- At the end the treatment is phenomenological (e.g. for the (super)symmetry-breaking sector)
 - no accurate predictions
 - no exclusive signatures

IN SUMMARY

String theory: TM for unification since 1984

- Contains a theory of quantum gravity: *true*
- Unifies gauge & gravity: *true*
- Is UV finite / controllable: *probably*
- Gives a handle on Λ : *not really*
- Is better than GUTS & SUSY: *debatable*
 - same weakness: (super)symmetry-breaking sectors
 - freedom in representation/gauge group & hierarchy
 → freedom in compactification/intersection
 - unnaturalness of the SM «realizations», hidden sectors

Are we addressing the right questions?

Conceptual advantages damped by the plethora of options, parameters and new particles - we should maybe

- disentangle gravity quantization and gravity unification
- abandon supersymmetry reconsider dark matter
- come back to 4 space-time dimensions

reconsider what is a «more fundamental theory» - *should it provide all SM parameters plus* Λ *out of a single one - too much pythagorean perspective?*

Unification/strings: (anesthetic) ether of 20th century?

A first step has been taken: holography

String theory

- gives a handle on black-hole degrees of freedom
- puts on firm ground gauge/gravity duality
- sorts perturbative expansions in field theory

New perspectives on gravitational phenomena
New areas of application beyond high-energy
New relations with quantum fields

String/holography: magic tool of 21st century?