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We are interested in studying �non-commutative spaces�, where

[Xµ,X ν ] = Θµν(X ) = Θµν
(0)︸︷︷︸

Moyal plane

+ Θµν
(1)ρX

ρ︸ ︷︷ ︸
Lie algebra-type

+ · · · .

κ-Minkowski as a �toy model� for spacetime in quantum gravity:

space on which deformed symmetries (κ-Poincaré) act,
contains features of 2+1d quantum gravity,
related to deformed special relativity (DSR) proposal.

Can we describe (the Euclidean version) using spectral triples?

I will try to argue that one needs to use a framework which
accomodates the modular properties of this geometry.



The κ-Poincaré algebra Pκ is a deformation of the Poincaré algebra
[Lukierski, Nowicki, Ruegg, Tolstoy (1991)]. In two dimensions it
satis�es the commutation relations (here λ := κ−1)

[Pµ,Pν ] = 0 , [N,P0] = P1 ,

[N,P1] =
1

2λ
(1− e−2λP0)− λ

2
P2

1 .

The coproduct is de�ned by the relations

∆(P0) = P0 ⊗ 1 + 1⊗ P0 , ∆(P1) = P1 ⊗ 1 + e−λP0 ⊗ P1 .

To avoid formal series we de�ne the element E := e−λP0 , for which
∆(E) = E ⊗ E . The subalgebra generated by Pµ and E is the
extended momentum algebra Tκ.
κ-Minkowski space is introduced as a dual Hopf algebra to Tκ
[Majid, Ruegg (1991)]. One obtains the relation [X 0,X 1] = −λX 1.



The notion of spectral triple provides the basis for non-commutative
geometry in the sense of Alain Connes [Connes (1994)].

De�nition

A compact spectral triple (A,H,D) is the data of a unital ∗-algebra A, a
faithful ∗-representation π on a Hilbert space H, and a self-adjoint
operator D such that

[D, π(a)] extends to a bounded operator for all a ∈ A.
(D − µ)−1 is compact for all µ /∈ spD.

With some extra conditions one has the reconstruction theorem for
compact spin manifolds, where D is the Dirac operator.

Modi�cations needed to treat non-compact cases. We require
π(a)(D − µ)−1 to be compact.



The starting point is the introduction of a ∗-algebra associated with
the commutation relations [X 0,X 1] = −λX 1. We use the algebra
and ?-product formulation given in [Durhuus, Sitarz (2011)].

Theorem (Durhuus-Sitarz 2011)

The algebra A is a left Tκ-module ∗-algebra with respect to the following

representation of the extended momentum algebra

(Pµ . f )(x) = −i(∂µf )(x) , (E . f )(x) = f (x0 + iλ, x1) .

This means compatibility with the κ-Poincaré symmetries. That is
for all h ∈ Tκ and f , g ∈ A, we have

h . (fg) = (h(1) . f )(h(2) . g) ,

(h . f )∗ = S(h)∗ . f ∗ .



Now we want to introduce a Hilbert space, on which the algebra A
is represented as bounded operators.

Use the GNS construction by choosing a weight ω on A. Choose

ω(f ) :=

ˆ
f (x)d2x .

Motivated by simplicity, same as in the commutative case, but more
importantly by the following invariance property.

Proposition (Durhuus-Sitarz 2011)

We have that ω is invariant under the action of Pκ. This means that for

any h ∈ Pκ and f ∈ A we have ω(h . f ) = ε(h)ω(f ).
It also satis�es the twisted trace property ω(fg) = ω((E . g)f ).



Recall the KMS condition, which can be written as

ψ(fg) = ψ(α−i (g)f ) .

We can restate the twisted trace property in this language.

Proposition

The weight ω satis�es the KMS condition at inverse temperature β = 1
with respect to α, de�ned by αt(f )(x) = f (x0 − λt, x1).

The corresponding modular operator is given by ∆ω = e−λP̂0 .

This means that for f ∈ A we have

∆it
ωπ(f )∆−it

ω = π(αt(f ))

The modular properties of this geometry appear naturally by
choosing the invariant weight ω.



In this non-commutative geometry framework there is a notion of
non-commutative integral, which we de�ne by

ϕ(f ) = Ress=nTr

(
f (D2 + µ2)−s/2

)
.

Here n is the spectral dimension (to be de�ned shortly).

It satis�es the trace property ϕ(fg) = ϕ(gf ) (hypertrace).

We know from examples that, if we have a trace τ on the algebra,
then ϕ(f ) reduces to τ(f ) up to a constant.

In the situation ω(fg) 6= ω(gf ) (that is, the generic one) we can not
recover ω from ϕ. But ω is a natural notion of integration!

Modi�cations are needed to handle these cases.



Twisted spectral triples [Connes, Moscovici (2006)].
Require [D, f ]σ = Df − σ(f )D to be bounded, where σ is an
automorphism of A. The non-commutative integral then obeys

ϕ(fg) = ϕ (σn(g)f ) .

Modular spectral triples [Carey, Phillips, Rennie (2010)].
Use a weight Φ instead of the operator trace

ϕ(f ) = Ress=nΦ
(
f (D2 + µ2)−s/2

)
,

where Φ(·) = Tr(∆Φ·). Then we have the modular property

ϕ(fg) = ϕ
(
σΦ
i (g)f

)
where σΦ

t (f ) = ∆it
Φf ∆−it

Φ is the modular group of Φ.
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We now need a self-adjoint operator D such that, for any f ∈ A, the
commutator [D, f ] extends to a bounded operator.

Consider the classical Dirac operator D = ΓµP̂µ, where P̂µ = −i∂µ.
Using the equivariance of the representation π we obtain

P̂1π(f )ψ = ρ(P1)π(f )ψ = π(P1 . f )ψ + π(E . f )ρ(P1)ψ .

As a result the commutator is unbounded, since P0 is a derivation
while P1 is a twisted derivation.

Instead we require the boundedness of the twisted commutator

[D, f ]σ = Df − σ(f )D .

Here σ is an automorphism of A.



D is self-adjoint on H⊗ C2 and {D, χ} = 0. This implies that
D = ΓµD̂µ, where D̂µ are self-adjoint operators.

D should obey the classical limit. We require that for all ψ ∈ A we
have lim D̂µψ = P̂µψ, for λ→ 0.

D and σ are determined by the symmetries. This means that
D̂µ = ρ(Dµ) and σ(f ) = σ . f , for some Dµ, σ ∈ Tκ.

Theorem

Under the previous assumptions we have that [D, π(f )]σ is bounded if

and only if we have D0 = 1

λ (1− E), D1 = P1 and σ = E .

Recall that E = e−λP̂0 , so formally 1

λ (1− E)→ P0 for λ→ 0.

D has nice compatibility properties (and related to the Casimir).
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What about compactness? And summability?

Since we are in the non-compact case we use the de�nition given in
[Carey, Gayral, Rennie, Sukochev (2012)].

De�nition

Let (A,H,D) be a non-compact spectral triple. We let

p := inf{s > 0 : ∀f ∈ A, f ≥ 0, Tr
(
f (D2 + 1)−s/2

)
<∞}

and, when it exists, we say that the triple has spectral dimension p. In
addition we say that it is Zp-summable if for all a ∈ A we have

lim sup
s↓p

∣∣∣(s − p)Tr
(
f (D2 + 1)−s/2

)∣∣∣ <∞ .



Proposition

The operator f (D2 + 1)−s/2 is not trace class for any s > 0.

We can give an heuristic explanation. For a twisted spectral triple
the non-commutative integral satis�es

ϕ(fg) = ϕ(σn(g)f ) .

Suppose we had a �nite spectral dimension n = 2. Since the twist is
given by σ = E this would imply that

ϕ(fg) = ϕ
(
(E2 . g)f

)
.

But then on the other hand the weight ω satis�es

ω(fg) = ω ((E . g)f ) .



This mismatch indicates that we might be able to solve the problem
by replacing Tr with Φ in the non-commutative integral.

In this case we expect to have the following modular property

ϕ(fg) = ϕ
(
σΦ
i (σn(g)) f

)
,

where n is the spectral dimension and σΦ
t (f ) = ∆it

Φf ∆−it
Φ .

If we choose Φ(·) = Tr(∆Φ·) with ∆Φ = e−λP̂0 then we expect

ϕ(fg) = ϕ
(
(En−1 . g)f

)
.

Therefore if n = 2 the non-commutative integral has the same
modular property as the weight ω(fg) = ω ((E . g)f ).



Theorem

The non-compact modular spectral triple (A,H,D) with weight Φ has

spectral dimension n = 2. Moreover for all f ∈ A and µ 6= 0 we have

Ress=2Φ
(
f (D2 + µ2)−s/2

)
=

1

2π
ω(f ) .

The spectral dimension coincides with the classical dimension.

We recover the weight ω from the residue at s = 2 of the zeta
function. Expected (but not obvious!) since

ϕ(f ) = Ress=2Φ
(
f (D2 + µ2)−s/2

)
was constructed to have the same modular properties of ω.



In n dimensions we have ∆(P0) = P0 ⊗ 1 + 1⊗ P0 and
∆(Pk) = Pk ⊗ 1 + E ⊗ Pk , with k = 1, · · · , n − 1.

Repeat the construction. The weight is ω(f ) =
´
f (x)dnx and we

have ω(fg) = ω((En−1 . g)f ).

The twisted commutator [D, f ]σ is bounded if and only if we have
D0 = 1

λ (1− E), Dk = Pk and σ = E .

Repeating the previous considerations we set again ∆Φ = e−λP̂0 .
Then we �nd the spectral dimension equal to n and

Ress=nΦ
(
f (D2 + µ2)−s/2

)
= cnω(f ) .

The ingredients are the same, little changes!



We can look more in detail at the associated zeta function.

Proposition

Let f ∈ A and Re(z) > n. Then we have

ζf (z) := Φ
(
f (D2 + µ2)−z/2

)
=

2[n/2]

(2π)n
I (z)

ˆ
f (x)dnx ,

where I (z) = 1

2
(Ic(z) + Iλ(z)), Ic(z) is the classical result and

Iλ(z) = π(n−1)/2µ(n−1)−z

Γ
(

z−(n−1)
2

)
Γ
(
z

2

) λ−1

2F1

(
1

2
,
z − (n − 1)

2
;
3

2
;− 1

(λµ)2

)
.

The function I (z) reduces to the classical one Ic(z) in the limit λ→ 0.

Analytical continuation with only simple poles.



Another notion of dimension is given by the homological dimension.

We consider the twisted Hochschild homology of U(gκ). This is
de�ned as H∗(U(gκ), σU(gκ)), where σU(gκ) the algebra U(gκ)
with the bimodule structure a · b · c = σ(a)bc.

The twisted Hochschild dimension is de�ned as the maximum of the
homological dimension over all the automorphisms of U(g) [Brown,
Zhang (2008)].

Theorem

The twisted homological dimension of U(gκ) is equal to n.

There are two features worth pointing out:

1 without the twist we have a dimension drop,
2 the simplest twist is the inverse modular group of ω.
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