On the spectral geometry of κ -Minkowski space

Marco Matassa

SISSA - Trieste

Workshop on Noncommutative Field Theory and Gravity, Corfu Summer Institute, September 8-15, 2013 We are interested in studying "non-commutative spaces", where

$$[X^{\mu}, X^{\nu}] = \Theta^{\mu\nu}(X) = \underbrace{\Theta^{\mu\nu}_{(0)}}_{\text{Moval plane}} + \underbrace{\Theta^{\mu\nu}_{(1)\rho}X^{\rho}_{(1)\rho}}_{\text{Lie algebra-type}} + \cdots$$

κ-Minkowski as a "toy model" for spacetime in quantum gravity:

- space on which deformed symmetries (κ-Poincaré) act,
- contains features of 2+1d quantum gravity,
- related to deformed special relativity (DSR) proposal.
- Can we describe (the Euclidean version) using spectral triples?
- I will try to argue that one needs to use a framework which accomodates the modular properties of this geometry.

• The κ -Poincaré algebra \mathcal{P}_{κ} is a deformation of the Poincaré algebra [Lukierski, Nowicki, Ruegg, Tolstoy (1991)]. In two dimensions it satisfies the commutation relations (here $\lambda := \kappa^{-1}$)

$$\begin{split} & [P_{\mu}, P_{\nu}] = 0 , \quad [N, P_0] = P_1 , \\ & [N, P_1] = \frac{1}{2\lambda} (1 - e^{-2\lambda P_0}) - \frac{\lambda}{2} P_1^2 . \end{split}$$

The coproduct is defined by the relations

$$\Delta(P_0) = P_0 \otimes 1 + 1 \otimes P_0 , \quad \Delta(P_1) = P_1 \otimes 1 + e^{-\lambda P_0} \otimes P_1 .$$

- To avoid formal series we define the element $\mathcal{E} := e^{-\lambda P_0}$, for which $\Delta(\mathcal{E}) = \mathcal{E} \otimes \mathcal{E}$. The subalgebra generated by P_{μ} and \mathcal{E} is the extended momentum algebra \mathcal{T}_{κ} .
- κ -Minkowski space is introduced as a dual Hopf algebra to \mathcal{T}_{κ} [Majid, Ruegg (1991)]. One obtains the relation $[X^0, X^1] = -\lambda X^1$.

The notion of spectral triple provides the basis for non-commutative geometry in the sense of Alain Connes [Connes (1994)].

Definition

A compact spectral triple $(\mathcal{A}, \mathcal{H}, D)$ is the data of a unital *-algebra \mathcal{A} , a faithful *-representation π on a Hilbert space \mathcal{H} , and a self-adjoint operator D such that

- $[D, \pi(a)]$ extends to a bounded operator for all $a \in \mathcal{A}$.
- $(D \mu)^{-1}$ is compact for all $\mu \notin \operatorname{sp} D$.
- With some extra conditions one has the reconstruction theorem for compact spin manifolds, where *D* is the Dirac operator.
- Modifications needed to treat non-compact cases. We require $\pi(a)(D-\mu)^{-1}$ to be compact.

• The starting point is the introduction of a *-algebra associated with the commutation relations $[X^0, X^1] = -\lambda X^1$. We use the algebra and *-product formulation given in [Durhuus, Sitarz (2011)].

Theorem (Durhuus-Sitarz 2011)

The algebra A is a left T_{κ} -module *-algebra with respect to the following representation of the extended momentum algebra

$$(P_{\mu} \triangleright f)(x) = -i(\partial_{\mu}f)(x)$$
, $(\mathcal{E} \triangleright f)(x) = f(x_0 + i\lambda, x_1)$

■ This means compatibility with the κ-Poincaré symmetries. That is for all h ∈ T_κ and f, g ∈ A, we have

$$h \triangleright (fg) = (h_{(1)} \triangleright f)(h_{(2)} \triangleright g) ,$$

 $(h \triangleright f)^* = S(h)^* \triangleright f^* .$

- Now we want to introduce a Hilbert space, on which the algebra A is represented as bounded operators.
- Use the GNS construction by choosing a weight ω on \mathcal{A} . Choose

$$\omega(f) := \int f(x) d^2 x$$
.

Motivated by simplicity, same as in the commutative case, but more importantly by the following invariance property.

Proposition (Durhuus-Sitarz 2011)

We have that ω is invariant under the action of \mathcal{P}_{κ} . This means that for any $h \in \mathcal{P}_{\kappa}$ and $f \in \mathcal{A}$ we have $\omega(h \triangleright f) = \varepsilon(h)\omega(f)$. It also satisfies the twisted trace property $\omega(fg) = \omega((\mathcal{E} \triangleright g)f)$. Recall the KMS condition, which can be written as

$$\psi(fg) = \psi(\alpha_{-i}(g)f) .$$

We can restate the twisted trace property in this language.

Proposition

The weight ω satisfies the KMS condition at inverse temperature $\beta = 1$ with respect to α , defined by $\alpha_t(f)(x) = f(x_0 - \lambda t, x_1)$. The corresponding modular operator is given by $\Delta_{\omega} = e^{-\lambda \hat{P}_0}$.

• This means that for $f \in \mathcal{A}$ we have

$$\Delta_{\omega}^{it}\pi(f)\Delta_{\omega}^{-it}=\pi(\alpha_t(f))$$

The modular properties of this geometry appear naturally by choosing the invariant weight ω. In this non-commutative geometry framework there is a notion of non-commutative integral, which we define by

$$\varphi(f) = \operatorname{Res}_{s=n} \operatorname{Tr} \left(f (D^2 + \mu^2)^{-s/2} \right)$$

Here n is the spectral dimension (to be defined shortly).

- It satisfies the trace property $\varphi(fg) = \varphi(gf)$ (hypertrace).
- We know from examples that, if we have a trace τ on the algebra, then $\varphi(f)$ reduces to $\tau(f)$ up to a constant.
- In the situation $\omega(fg) \neq \omega(gf)$ (that is, the generic one) we can not recover ω from φ . But ω is a natural notion of integration!
- Modifications are needed to handle these cases.

• Twisted spectral triples [Connes, Moscovici (2006)]. Require $[D, f]_{\sigma} = Df - \sigma(f)D$ to be bounded, where σ is an automorphism of A. The non-commutative integral then obeys

$$\varphi(fg) = \varphi\left(\sigma^n(g)f\right)$$

• Twisted spectral triples [Connes, Moscovici (2006)]. Require $[D, f]_{\sigma} = Df - \sigma(f)D$ to be bounded, where σ is an automorphism of A. The non-commutative integral then obeys

$$\varphi(fg) = \varphi(\sigma^n(g)f)$$

Modular spectral triples [Carey, Phillips, Rennie (2010)].
 Use a weight Φ instead of the operator trace

$$\varphi(f) = \operatorname{Res}_{s=n} \Phi\left(f(D^2 + \mu^2)^{-s/2}\right) ,$$

where $\Phi(\cdot) = \operatorname{Tr}(\Delta_{\Phi} \cdot)$. Then we have the modular property

$$\varphi(fg) = \varphi\left(\sigma_i^{\Phi}(g)f\right)$$

where $\sigma_t^{\Phi}(f) = \Delta_{\Phi}^{it} f \Delta_{\Phi}^{-it}$ is the modular group of Φ .

- We now need a self-adjoint operator D such that, for any f ∈ A, the commutator [D, f] extends to a bounded operator.
- Consider the classical Dirac operator $D = \Gamma^{\mu} \hat{P}_{\mu}$, where $\hat{P}_{\mu} = -i\partial_{\mu}$. Using the equivariance of the representation π we obtain

$$\hat{P}_1\pi(f)\psi = \rho(P_1)\pi(f)\psi = \pi(P_1 \triangleright f)\psi + \pi(\mathcal{E} \triangleright f)\rho(P_1)\psi .$$

- As a result the commutator is unbounded, since P₀ is a derivation while P₁ is a twisted derivation.
- Instead we require the boundedness of the twisted commutator

$$[D,f]_{\sigma} = Df - \sigma(f)D .$$

Here σ is an automorphism of A.

- D is self-adjoint on $\mathcal{H} \otimes \mathbb{C}^2$ and $\{D, \chi\} = 0$. This implies that $D = \Gamma^{\mu} \hat{D}_{\mu}$, where \hat{D}_{μ} are self-adjoint operators.
- *D* should obey the classical limit. We require that for all $\psi \in \mathcal{A}$ we have lim $\hat{D}_{\mu}\psi = \hat{P}_{\mu}\psi$, for $\lambda \to 0$.
- *D* and σ are determined by the symmetries. This means that $\hat{D}_{\mu} = \rho(D_{\mu})$ and $\sigma(f) = \sigma \triangleright f$, for some $D_{\mu}, \sigma \in \mathcal{T}_{\kappa}$.

- D is self-adjoint on $\mathcal{H} \otimes \mathbb{C}^2$ and $\{D, \chi\} = 0$. This implies that $D = \Gamma^{\mu} \hat{D}_{\mu}$, where \hat{D}_{μ} are self-adjoint operators.
- *D* should obey the classical limit. We require that for all $\psi \in \mathcal{A}$ we have lim $\hat{D}_{\mu}\psi = \hat{P}_{\mu}\psi$, for $\lambda \to 0$.
- *D* and σ are determined by the symmetries. This means that $\hat{D}_{\mu} = \rho(D_{\mu})$ and $\sigma(f) = \sigma \triangleright f$, for some $D_{\mu}, \sigma \in \mathcal{T}_{\kappa}$.

Theorem

Under the previous assumptions we have that $[D, \pi(f)]_{\sigma}$ is bounded if and only if we have $D_0 = \frac{1}{\lambda}(1 - \mathcal{E})$, $D_1 = P_1$ and $\sigma = \mathcal{E}$.

- Recall that $\mathcal{E} = e^{-\lambda \hat{P}_0}$, so formally $\frac{1}{\lambda}(1-\mathcal{E}) \to P_0$ for $\lambda \to 0$.
- D has nice compatibility properties (and related to the Casimir).

- What about compactness? And summability?
- Since we are in the non-compact case we use the definition given in [Carey, Gayral, Rennie, Sukochev (2012)].

Definition

Let $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ be a non-compact spectral triple. We let

$$arphi:=\inf\{s>0 \ : \ orall f\in \mathcal{A}, \ f\geq 0, \ {\sf Tr}\left(f(D^2+1)^{-s/2}
ight)<\infty\}$$

and, when it exists, we say that the triple has spectral dimension p. In addition we say that it is \mathbb{Z}_p -summable if for all $a \in \mathcal{A}$ we have

$$\limsup_{s\downarrow p} \left| (s-p) \mathrm{Tr} \left(f (D^2+1)^{-s/2} \right) \right| < \infty \; .$$

Proposition

The operator $f(D^2+1)^{-s/2}$ is not trace class for any s > 0.

 We can give an heuristic explanation. For a twisted spectral triple the non-commutative integral satisfies

$$\varphi(fg) = \varphi(\sigma^n(g)f)$$
.

Suppose we had a finite spectral dimension n = 2. Since the twist is given by $\sigma = \mathcal{E}$ this would imply that

$$\varphi(fg) = \varphi\left((\mathcal{E}^2 \triangleright g)f\right) \ .$$

 \blacksquare But then on the other hand the weight ω satisfies

$$\omega(fg) = \omega\left((\mathcal{E} \triangleright g)f\right) \; .$$

- This mismatch indicates that we might be able to solve the problem by replacing Tr with Φ in the non-commutative integral.
- In this case we expect to have the following modular property

$$\varphi(fg) = \varphi\left(\sigma_i^{\Phi}\left(\sigma^n(g)\right)f\right) \;$$

where *n* is the spectral dimension and $\sigma_t^{\Phi}(f) = \Delta_{\Phi}^{it} f \Delta_{\Phi}^{-it}$.

• If we choose $\Phi(\cdot) = \operatorname{Tr}(\Delta_{\Phi} \cdot)$ with $\Delta_{\Phi} = e^{-\lambda \hat{P}_0}$ then we expect

$$\varphi(fg) = \varphi\left((\mathcal{E}^{n-1} \triangleright g)f\right)$$
.

■ Therefore if n = 2 the non-commutative integral has the same modular property as the weight ω(fg) = ω((E ▷ g)f).

Theorem

The non-compact modular spectral triple $(\mathcal{A}, \mathcal{H}, D)$ with weight Φ has spectral dimension n = 2. Moreover for all $f \in \mathcal{A}$ and $\mu \neq 0$ we have

$$\operatorname{Res}_{s=2}\Phi\left(f(D^2+\mu^2)^{-s/2}\right)=\frac{1}{2\pi}\omega(f)\;.$$

- The spectral dimension coincides with the classical dimension.
- We recover the weight ω from the residue at s = 2 of the zeta function. Expected (but not obvious!) since

$$\varphi(f) = \operatorname{Res}_{s=2} \Phi\left(f(D^2 + \mu^2)^{-s/2}\right)$$

was constructed to have the same modular properties of ω .

- In *n* dimensions we have $\Delta(P_0) = P_0 \otimes 1 + 1 \otimes P_0$ and $\Delta(P_k) = P_k \otimes 1 + \mathcal{E} \otimes P_k$, with $k = 1, \dots, n-1$.
- Repeat the construction. The weight is $\omega(f) = \int f(x)d^n x$ and we have $\omega(fg) = \omega((\mathcal{E}^{n-1} \triangleright g)f)$.
- The twisted commutator $[D, f]_{\sigma}$ is bounded if and only if we have $D_0 = \frac{1}{\lambda}(1 \mathcal{E}), D_k = P_k$ and $\sigma = \mathcal{E}$.
- Repeating the previous considerations we set again $\Delta_{\Phi} = e^{-\lambda \hat{P}_0}$. Then we find the spectral dimension equal to *n* and

$$\operatorname{Res}_{s=n}\Phi\left(f(D^2+\mu^2)^{-s/2}\right)=c_n\omega(f)\;.$$

The ingredients are the same, little changes!

• We can look more in detail at the associated zeta function.

Proposition

Let $f \in \mathcal{A}$ and $\operatorname{Re}(z) > n$. Then we have

$$\zeta_f(z) := \Phi\left(f(D^2 + \mu^2)^{-z/2}\right) = \frac{2^{[n/2]}}{(2\pi)^n}I(z)\int f(x)d^n x ,$$

where $I(z) = \frac{1}{2}(I_c(z) + I_\lambda(z))$, $I_c(z)$ is the classical result and

$$I_{\lambda}(z) = \pi^{(n-1)/2} \mu^{(n-1)-z} \frac{\Gamma\left(\frac{z-(n-1)}{2}\right)}{\Gamma\left(\frac{z}{2}\right)} \lambda^{-1} {}_{2}F_{1}\left(\frac{1}{2}, \frac{z-(n-1)}{2}; \frac{3}{2}; -\frac{1}{(\lambda\mu)^{2}}\right) .$$

The function I(z) reduces to the classical one $I_c(z)$ in the limit $\lambda \to 0$.

Analytical continuation with only simple poles.

- Another notion of dimension is given by the homological dimension.
- We consider the twisted Hochschild homology of $U(\mathfrak{g}_{\kappa})$. This is defined as $H_*(U(\mathfrak{g}_{\kappa}), \sigma U(\mathfrak{g}_{\kappa}))$, where $\sigma U(\mathfrak{g}_{\kappa})$ the algebra $U(\mathfrak{g}_{\kappa})$ with the bimodule structure $a \cdot b \cdot c = \sigma(a)bc$.
- The twisted Hochschild dimension is defined as the maximum of the homological dimension over all the automorphisms of U(g) [Brown, Zhang (2008)].

- Another notion of dimension is given by the homological dimension.
- We consider the twisted Hochschild homology of $U(\mathfrak{g}_{\kappa})$. This is defined as $H_*(U(\mathfrak{g}_{\kappa}), \sigma U(\mathfrak{g}_{\kappa}))$, where $\sigma U(\mathfrak{g}_{\kappa})$ the algebra $U(\mathfrak{g}_{\kappa})$ with the bimodule structure $a \cdot b \cdot c = \sigma(a)bc$.
- The twisted Hochschild dimension is defined as the maximum of the homological dimension over all the automorphisms of U(g) [Brown, Zhang (2008)].

Theorem

The twisted homological dimension of $U(\mathfrak{g}_{\kappa})$ is equal to n.

- There are two features worth pointing out:
 - without the twist we have a dimension drop,
 - 2 the simplest twist is the inverse modular group of ω .

- B. Durhuus, A. Sitarz, Star product realizations of κ-Minkowski space, arXiv:1104.0206 (2011).
- A. Connes, H. Moscovici, *Type III and spectral triples*, Traces in Number Theory, Geometry and Quantum Fields 38 (2008), 57.
- A. Carey, J. Phillips, A. Rennie, Twisted cyclic theory and an index theory for the gauge invariant KMS state on the Cuntz algebra O_n, Journal of K-theory 6.02 (2010): 339-380.
- M. Matassa, A modular spectral triple for κ-Minkowski space, arXiv:1212.3462 (2012).
- M. Matassa, On the spectral and homological dimension of κ-Minkowski space, arXiv:1309.1054 (2013).

- B. Durhuus, A. Sitarz, Star product realizations of κ-Minkowski space, arXiv:1104.0206 (2011).
- A. Connes, H. Moscovici, *Type III and spectral triples*, Traces in Number Theory, Geometry and Quantum Fields 38 (2008), 57.
- A. Carey, J. Phillips, A. Rennie, Twisted cyclic theory and an index theory for the gauge invariant KMS state on the Cuntz algebra O_n, Journal of K-theory 6.02 (2010): 339-380.
- M. Matassa, A modular spectral triple for κ-Minkowski space, arXiv:1212.3462 (2012).
- M. Matassa, On the spectral and homological dimension of κ-Minkowski space, arXiv:1309.1054 (2013).

Thank you for you attention!