

CLIC: physics and detectors at a future TeV-scale e+e- linear collider

Lucie Linssen, CERN on behalf of the CLIC detector and physics study Lucie Linssen, Corfu, September 2013

Outline

- CLIC accelerator, intro
- Physics motivation
- Motivation/implementation of Vs energy staging
- CLIC detectors + (a bit of) R&D
- Results of benchmark studies
 - Higgs
 - top
 - SUSY
- CLIC strategy and timeline
- Summary

ILC ad CLIC in just a few words

CLIC

•2-beam acceleration scheme, at room temperature
•Gradient 100 MV/m
•√s up to 3 TeV
•Physics + Detector studies for 350 GeV - 3 TeV

Linear e⁺e⁻ colliders Luminosities: few 10³⁴ cm⁻²s⁻¹

ILC

- •Superconducting RF cavities (like XFEL) •Gradient 32 MV/m
- √s ≤ 500 GeV (1 TeV upgrade option)
 Focus on ≤ 500 GeV, Physics studies also for 1 TeV

CLIC two-beam acceleration scheme

Two Beam Scheme:

CLIC layout at 3 TeV

Fig. 3.1: Overview of the CLIC layout at $\sqrt{s} = 3$ TeV.

Lucie Linssen, Corfu, September 2013

Hadron vs. lepton colliders

p-p collisions	e ⁺ e ⁻ collisions
 Proton is compound object → Initial state not known event-by-event → Limits achievable precision 	 e⁺/e⁻ are point-like → Initial state well defined (√s / polarization) → High-precision measurements
Circular colliders feasible	Linear Colliders (avoid synchrotron rad.)
 High rates of QCD backgrounds → Complex triggering schemes → High levels of radiation 	 Cleaner experimental environment → trigger-less readout → Low radiation levels
High cross-sections for colored-states	Superior sensitivity for electro-weak states

Higgs physics at CLIC

Higgs physics at CLIC

Higgs-Strahlung: e⁺e⁻→ZH

- Measure H from Z-recoil mass
- Model-independent meas.: m_{H} , σ
- Yields absolute value of g_{HZZ}

WW fusion: $e^+e^- \rightarrow Hv_ev_e$

- Precise cross-section measurements in ττ, μμ, qq, ... decay modes
- Profits from higher Vs (\gtrsim 350 GeV)

Radiation off top-quarks: $e^+e^- \rightarrow ttH$

- Measure top Yukawa coupling
- Needs √s≥700 GeV

Double-Higgs prod.: $e^+e^- \rightarrow HHv_ev_e$

- Measure tri-linear self coupling
- Needs high vs (\gtrsim 1.4 TeV)

Lucie Linssen, Corfu, September 2013

Physics at CLIC

- Precision SM measurements: Higgs, top → Vs≋350 GeV, and up to 3 TeV
- Discovery of new physics at TeV scale, unique sensitivity to particles with electroweak charge
- New Physics model discrimination, e.g. SUSY \rightarrow up to $\sqrt{s} \sim 3$ TeV

Lucie Linssen, Corfu, September 2013

Physics at CLIC

- Precision SM measurements: Higgs, top → Vs≋350 GeV, and up to 3 TeV
- Discovery of new physics at TeV scale, unique sensitivity to particles with electroweak charge
- New Physics model discrimination, e.g. SUSY \rightarrow up to $\sqrt{s} \sim 3$ TeV

Lucie Linssen, Corfu, September 2013

Motivation for energy staging

CLIC physics potential:

- Good physics at various CM energies
- Most studies require high luminosity

At each energy stage, the centre-of-mass energy can be tuned down by a factor ~3 with limited luminosity loss (e.g. for threshold scans)

Making optimal use of the capacities (luminosity) of CLIC, this is best studied with a collider built in a few successive energy stages.

The choice of the energy stages will depend on the physics scenario, driven by 8 TeV + 14 TeV LHC results.

CLIC, possible implementation

Fig. 7.2: CLIC footprints near CERN, showing various implementation stages [5].

physics aims => detector needs

CLIC machine environment (1)

	CLIC at 3 TeV	
L (cm ⁻² s ⁻¹)	5.9×10 ³⁴	
BX separation	0.5 ns	Crives timing
#BX / train	312	requirements
Train duration (ns)	156	for CLIC detector
Rep. rate	50 Hz	
σ _x / σ _y (nm)	≈ 45 / 1	very small beam size
σ _z (μm)	44	very sman beam size

Beam related background:

Small beam profile at IP leads very high E-field

- Pair-background
- γγ to hadrons

CLIC machine environment (2)

Coherent e⁺e⁻ pairs

• 7 x 10⁸ per BX, very forward

Incoherent e⁺e⁻ pairs

• 3 x 10⁵ per BX, rather forward

$\gamma\gamma \rightarrow$ hadrons

- 3.2 events per BX
- main background in calorimeters
 - ~19 TeV in HCAL per bunch train

Simplified view: **Pair background**

Design issue (high occupancies)

$\gamma\gamma \rightarrow hadrons$

- Impacts on the physics
- Needs suppression in data

Lucie Linssen, Corfu, September 2013

challenges in CLIC detector R&D

These requirements lead to the following challenges:

Vertex and tracker

Very high granularity Dense integration of functionalities Including ~10 ns time-stamping Super-light materials Low-power design + power pulsing Air cooling

ultra – light

Calorimetry

Fine segmentation (lateral + longitudinal) Time resolution ~1 ns Ultra – compact active layers Pushing integration to limits Power pulsing ultra – heavy and compact

CLIC_ILD and CLIC_SiD

Two general-purpose CLIC detector concepts Based on initial ILC concepts (ILD and SiD) Optimised and adapted to CLIC conditions

CLIC_ILD

7 m

CLIC_SiD

18

Compare experiment CLIC \Leftrightarrow LHC

clc

In a nutshell:

CLIC detector:

•High precision:

Jet energy resolution

=> fine-grained calorimetry

Momentum resolution

Impact parameter resolution

•Overlapping beam-induced background:

- •High background rates, medium energies
- High occupancies
- •Cannot use vertex separation
- •Need very precise timing (1ns, 10ns)

•"No" issue of radiation damage (10⁻⁴ LHC)

•Beam crossings "sporadic"

•No trigger, read-out of full 156 ns train

LHC detector:

•Medium-high precision:

Very precise ECAL (CMS)Very precise muon tracking (ATLAS)

•Overlapping minimum-bias events:

- High background rates, high energiesHigh occupancies
- •Can use vertex separation in z
- •Need precise time-stamping (25 ns)
- •Severe challenge of radiation damage
- •Continuous beam crossings
- Trigger has to achieve huge data reduction

CLIC vertex detector

- ~25×25 μm pixel size => ~2 Giga-pixels
- 0.2% X₀ material par layer <= very thin !
 - Very thin materials/sensors
 - Low-power design, power pulsing, air cooling
 - Aim: 50 mW/cm²
- Time stamping 10 ns
- Radiation level $<10^{11} n_{eq} \text{ cm}^{-2} \text{ year}^{-1} \le 10^4 \text{ lower than LHC}$

Very challenging R&D project !

Lucie Linssen, Corfu, September 2013

CLIC vertex detector R&D

Hybrid approach pursued: (<= other options possible)

- Thin (~50 µm) silicon sensors
- Thinned High density ASIC in very-deep-sub-micron:
 - TimePix3, Smallpix <= R&D steps</p>
 - CLICpix
- Low-mass interconnect
 - Micro-bump-bonding (Cu-pillar option, Advacam)
 - Through-Silicon-Vias (R&D with CEA-Leti)

25 µm

CLICpix

64×64 pixel demonstrator

- **Fully functional**
- 65 nm technology
- 25×25 µm² pixels
- 4-bit TOA and TOT information
 - 10 nsec time-slicing
- Power 2 W/cm² (continuous)
- With sequential power pulsing
 - 50 mW/cm²

64×64 pixels

1.6 mm

thin pixel sensor assemblies

- Micron (UK) + IZM (DE) and VTT/Advacam (FI) Timepix sensor assemblies with 55 μm pitch
 - · test feasibility of ultra-thin sensors and assemblies
 - Assemblies delivered: 50-200
 µm sensor thickness
 - Sensor calibration (non-linear TOT response)
 - Test beam at DESY in August 2013
- assemblies with thinned (100 μ m) Timepix \rightarrow in the pipeline
- sensors matching 25 μm² CLICpix footprint → end 2013?
- ultimate goal: 50 μm thick sensors + 50 μm thick ASICs

50 µm dummy

CLIC vertex R&D: power pulsing

Power-delivery + pulsing

- low-mass Al-Kapton cables
- power pulsing with local energy storage and voltage regulation
- prototype for analog powering of CLICpix ladder:
 - I_{ladder}~20-60 mA; 10 mW/cm²
 - voltage stability: ∆V~10 mV
 - 0.064% X₀ material contrib.
 - can be reduced to ~0.03% X₀

CLIC_ILD w and CLIC_SiD >> tracker

all-silicon tracker in 5 Tesla field 1.3 m 577 1063 16290 777 1344chip on sensor

calorimetry and PFA

Jet energy resolution and background rejection drive the overall detector design

=> => fine-grained calorimetry + Particle Flow Analysis (PFA)

PFA calorimetry at CLIC

ECAL

Si or Scint. (active) + Tungsten (absorber) cell sizes 13 mm² or 25 mm² 30 layers in depth

HCAL

Several technology options: scint. + gas **Tungsten (barrel)**, steel (endcap) cell sizes 9 cm² (analog) or 1 cm² (digital) 60-75 layers in depth Total depth 7.5 Λ_i

(no jet clustering, without background overlay)

CALICO Analog HCAL: scintillator/tungsten

HCAL tests with 10 mm thick **Tungsten absorber** plates, Tests in 2010+2011 with scintillator active layers, 3×3 cm² cells => analog readout

CERN SPS 2011

good agreement with Geant4

Digital HCAL: scintillator/RPC

Steel DHCAL Tungsten DHCAL 500'000 readout channels

54 glass RPC chambers, 1m² each PAD size 1×1 cm² Digital readout (1 threshold) 100 ns time-slicing Fully integrated electronics Main DHCAL stack (39) + tail catcher (15) Total 500'000 readout channels

Successfully tested:

2010+2011 Fermilab Steel absorber 2012 CERN PS + SPS Tungsten absorber

CERN test setup includes fast readout RPC after (T3B)

Next slides: Results of physics benchmark studies

Detailed detector simulations with GEANT4

Including overlay of beam-induced backgrounds

Physics signals and physics backgrounds

Reconstruction and analysis

Double Higgs production

	1.4 TeV	3 TeV
∆(g _{HHWW})	7% (preliminary)	3% (preliminary)
$\Delta(\lambda)$	28%	16%
$\Delta(\lambda)$ for p(e ⁻) = 80%	21%	12%

Summary of Higgs measurements

			Stat	istical precis	sion
Channel	Measurement	Observable	350 GeV	1.4 TeV	3.0 TeV
			$500 {\rm fb}^{-1}$	1.5 ab^{-1}	2.0 ab^{-1}
ZH	Recoil mass distribution	m _H	120 MeV	_	_
ZH	$\sigma(\text{HZ}) \times BR(\text{H} \rightarrow \text{invisible})$	$\Gamma_{\rm inv}$	tbd	_	_
ZH	$H \rightarrow b\overline{b}$ mass distribution	m _H	tbd	_	_
$H\nu_e\overline{\nu}_e$	$H \rightarrow b \overline{b}$ mass distribution	m _H	-	40 MeV*	33 MeV*
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{Z} \to \ell^+ \ell^-)$	$g^2_{\rm HZZ}$	4.2%	_	_
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g_{ m HZZ}^2 g_{ m Hbb}^2 / \Gamma_{ m H}$	$1\%^{\dagger}$	_	_
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \rightarrow \mathrm{c}\bar{\mathrm{c}})$	$g_{\rm HZZ}^2 g_{\rm Hcc}^2 / \Gamma_{\rm H}$	$5\%^{\dagger}$	_	_
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{gg})$		$6\%^{\dagger}$	_	_
ZH	$\sigma(HZ) \times BR(H \rightarrow \tau^+ \tau^-)$	$g^2_{ m HZZ} g^2_{ m H au au}/\Gamma_{ m H}$	5.7%	_	_
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{WW}^*)$	$g_{\rm HZZ}^2 g_{\rm HWW}^2 / \Gamma_{\rm H}$	$2\%^\dagger$	_	_
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{ZZ}^*)$	$g_{\rm HZZ}^2 g_{\rm HZZ}^2 / \Gamma_{\rm H}$	tbd	_	_
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g_{\rm HWW}^2 g_{\rm Hbb}^2 / \Gamma_{\rm H}$	3%†	0.3%	0.2%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \rightarrow \mathrm{c}\overline{\mathrm{c}})$	$g_{\rm HWW}^2 g_{\rm Hcc}^2 / \Gamma_{\rm H}$	_	2.9%	2.7%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{gg})$		_	1.8%	1.8%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \tau^{+}\tau^{-})$	$g_{\rm HWW}^2 g_{\rm H\tau\tau}^2 / \Gamma_{\rm H}$	_	3.7%	tbd
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{e}\overline{\mathrm{v}}_{e}) \times BR(\mathrm{H} \to \mu^{+}\mu^{-})$	$g_{\rm HWW}^2 g_{\rm Hum}^2 / \Gamma_{\rm H}$	_	28%*	16%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \gamma\gamma)$		_	15%*	tbd
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{Z}\gamma)$		_	tbd	tbd
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{WW}^{*})$	$g_{\rm HWW}^4/\Gamma_{\rm H}$	tbd	$1\%^{\dagger}$	0.7% [†]
$Hv_e \overline{v}_e$	$\sigma(Hv_e \overline{v}_e) \times BR(H \to ZZ^*)$	$g_{\rm HWW}^2 g_{\rm HZZ}^2 / \Gamma_{\rm H}$	_	3%†	$2\%^{\dagger}$
He ⁺ e ⁻	$\sigma(\mathrm{He^+e^-}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g_{ m HZZ}^2 g_{ m Hbb}^2 / \Gamma_{ m H}$	_	$1\%^\dagger$	$0.7\%^{\dagger}$
tīH	$\sigma(t\bar{t}H) \times BR(H \rightarrow b\bar{b})$	$g_{ m Htt}^2 g_{ m Hbb}^2 / \Gamma_{ m H}$	_	8% †	tbd
$HHv_e \overline{v}_e$	$\sigma(\mathrm{HHv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}})$	g HHWW	_	7%*	3%*
$HHv_e \overline{v}_e$	$\sigma(\mathrm{HHv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}})$	λ	_	28%	16%
HHv _e v _e	with $-80\% e^{-}$ polarization	λ	_	21%	12%

Summary of results from detailed Higgs benchmark simulation studies, with fulldetector simulation and overlay of beaminduced backgrounds

<= work in progress

Global fits to Higgs results

Model-independent global fit to all of the experimental measurements involving the Higgs boson couplings

Parameter	Measurement precision			
	350 GeV 500 fb ⁻¹	$+1.4 \text{ TeV} +1.5 \text{ ab}^{-1}$	$+3.0 \text{ TeV} \\ +2.0 \text{ ab}^{-1}$	
m _H	120 MeV	30 MeV	20 MeV	
$\Gamma_{ m H}$	9.2%	8.5%	8.4%	
λ	_	21%	10%	
8HZZ	2.1%	2.1%	2.1%	
8HWW	2.6%	2.1%	2.1%	
8 ^{Hbb}	2.7%	2.1%	2.1%	
8Hcc	3.8%	2.3%	2.2%	
8HTT	4.0%	2.5%	tbd	
8 Нµµ	_	10.7%	5.6%	
8 _{Htt}	-	4.5%	tbd	

... however precision on couplings is constrained by precision on \mathbf{g}_{HZZ}

Alternative=> constrained fit

Assuming no invisible Higgs decays, define coupling scaling factors and total width

$$\kappa_i^2 = \frac{\Gamma_i}{\Gamma_i|_{\rm SM}} \qquad \Gamma_{\rm H,md} = \sum_i \kappa_i^2 BR_i$$

\rightarrow Model-dependent global fit

Parameter	Measurement precision			
	350 GeV +1.4 TeV		+3.0 TeV	
	500 fb^{-1}	$+1.5 \text{ ab}^{-1}$	$+2.0 \text{ ab}^{-1}$	
$\Gamma_{\rm H,model}$	1.6%	0.29%	0.22%	
$\kappa_{\rm HZZ}$	0.49%	0.33%	0.24%	
$\kappa_{\rm HWW}$	1.5%	0.15%	0.11%	
$\kappa_{ m Hbb}$	1.7%	0.32%	0.19%	
$\kappa_{\rm Hcc}$	3.1%	1.1%	0.75%	
$\kappa_{H\tau\tau}$	3.5%	1.4%	tbd	
$\kappa_{\rm H\mu\mu}$	_	10.5%	5.2%	
K Htt	_	4.0%	tbd	
$\kappa_{\rm Hgg}$	3.6%	0.79%	0.56%	
$\kappa_{\rm H\gamma\gamma}$	_	5.5%	tbd	

assumes -80% e- polarisation above 1 TeV

Higgs as probe for New Physics

Typical deviations of the Higgs couplings from SM predictions in a 2-Higgs doublet model.

Top physics at CLIC

results of top benchmark studies

Final result is dominated by systematic errors (theor. normalisation, beam-energy systematics, translation of 1S mass to \overline{MS} scheme) => 100 MeV error on top mass

gaugino pair production, 3 TeV

SUSY "model II":
$$m(\tilde{\chi}_{1}^{0}) = 340 \,\text{GeV} \quad m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{+}) \approx 643 \,\text{GeV}$$

results of SUSY benchmarks

Table 8: Summary table of the CLIC SUSY benchmark analyses results obtained with full-detector simulations with background overlaid. All studies are performed at a center-of-mass energy of 3 TeV (1.4 TeV) and for an integrated luminosity of 2 ab^{-1} (1.5 ab^{-1}) [21, 22, 23, 24, 25, 26, 27].

\sqrt{s} (TeV)	Process	Decay mode	SUSY model	Measured quantity	Generator value (GeV)	Stat. uncertainty
		$\widetilde{\mu}^+_R \widetilde{\mu}^R \to \mu^+ \mu^- \widetilde{\chi}^0_1 \widetilde{\chi}^0_1$		$\tilde{\ell} \text{ mass}$ $\tilde{\chi}_1^0 \text{ mass}$	1010.8 340.3	0.6% 1.9%
3.0	Sleptons	$\widetilde{e}_{p}^{+}\widetilde{e}_{p}^{-} \rightarrow e^{+}e^{-}\widetilde{\gamma}_{e}^{0}\widetilde{\gamma}_{e}^{0}$	П	$\tilde{\ell}$ mass	1010.8	0.3%
				$\widetilde{\chi}_1^0$ mass	340.3	1.0%
		$\widetilde{\nu}_{1}\widetilde{\nu}_{1} \rightarrow \widetilde{\gamma}_{1}^{0}\widetilde{\gamma}_{1}^{0}e^{+}e^{-}W^{+}W^{-}$		ℓ mass	1097.2	0.4%
				$\widetilde{\chi}_1^{\pm}$ mass	643.2	0.6%
2.0	Chargino	$\widetilde{\chi}_{1}^{+}\widetilde{\chi}_{1}^{-} ightarrow \widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}W^{+}W^{-}$	п	$\widetilde{\chi}_1^{\pm}$ mass	643.2	1.1%
5.0	Neutralino	$\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{2}^{0} \rightarrow h/Z^{0}h/Z^{0}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}$	п	$\widetilde{\chi}_2^0$ mass	643.1	1.5%
3.0	Squarks	$\widetilde{q}_{R}\widetilde{q}_{R} \rightarrow q\overline{q}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}$	Ι	\widetilde{q}_R mass	1123.7	0.52%
2.0		$H^0A^0 \rightarrow b\overline{b}b\overline{b}$		H^0/A^0 mass	902.4/902.6	0.3%
3.0 Heavy Higgs	Heavy Higgs	$H^+H^- \rightarrow t\overline{b}b\overline{t}$	1	H^{\pm} mass	906.3	0.3%
		~+~- + _~0~0		$\widetilde{\ell}$ mass	560.8	0.1%
		$\mu_{R}^{+}\mu_{R}^{-} \rightarrow \mu^{+}\mu^{-}\chi_{1}^{-}\chi_{1}^{-}$		$\widetilde{\chi}_1^0$ mass	357.8	0.1%
14	Sleptons	~+~+-~~0~0	ш	$\tilde{\ell}$ mass	558.1	0.1%
1.4	Steptons	$e_R e_R \rightarrow e^+ e^- \chi_1 \chi_1$		$\widetilde{\chi}_1^0$ mass	357.1	0.1%
		$\widetilde{v}, \widetilde{v} \rightarrow \widetilde{v}^0 \widetilde{v}^0 e^+ e^- W^+ W^-$		$\tilde{\ell}$ mass	644.3	2.5%
		$v_e v_e \rightarrow \chi_1 \chi_1 e^+ e^- w^+ w$		$\widetilde{\chi}_1^{\pm}$ mass	487.6	2.7%
1.4	Stau	$\widetilde{\tau}_1^+ \widetilde{\tau}_1^- \to \tau^+ \tau^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	III	$\widetilde{\tau}_1$ mass	517	2.0%
1.4	Chargino	$\widetilde{\chi}_1^+ \widetilde{\chi}_1^- \rightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 W^+ W^-$		$\widetilde{\chi}_1^{\pm}$ mass	487	0.2%
1.4	Neutralino	$\widetilde{\chi}_2^0 \widetilde{\chi}_2^0 \rightarrow h/Z^0 h/Z^0 \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	111	$\widetilde{\chi}_2^0$ mass	487	0.1%

indirect Z' search

Indirect Z' search in $e^+e^- \Rightarrow \mu^+\mu^-$

Fig. 14: 5σ limit for a $M_{Z'}$ discovery as function of the integrated luminosity for different values of the couplings g'_{Y} and g'_{BL} . The limits shown are determined from the combined observables σ and A_{FB} at $\sqrt{s} = 3$ TeV and 1.4 TeV.

CLIC reach for New Physics

New particle	LHC (14 TeV)	HL-LHC	CLIC3
squarks [TeV]	2.5	3	$\lesssim 1.5$
sleptons [TeV]	0.3	-	$\lesssim 1.5$
Z' (SM couplings) [TeV]	5	7	20
2 extra dims M _D [TeV]	9	12	20-30
TGC (95%) (λ_y coupling)	0.001	0.0006	0.0001
μ contact scale [TeV]	15	-	60
Higgs composite scale [TeV]	5–7	9–12	70

Table 9: Discovery reach of various theory models for different colliders [5]. LHC at $\sqrt{s} = 14$ TeV assumes 100 fb⁻¹ of integrated luminosity, while HL-LHC is with 1 ab⁻¹, and CLIC3 is $\sqrt{s} = 3$ TeV with up to 2 ab⁻¹. TGC is short for Triple Gauge Coupling, and " μ contact scale" is short for LL μ contact interaction scale Λ with g = 1.

CLIC strategy and objectives

2012-16 Development Phase

Develop a Project Plan for a staged implementation in agreement with LHC findings; further technical developments with industry, performance studies for accelerator parts and systems, as well as for detectors.

On the basis of LHC data and Project Plans (for CLIC and other potential projects), take decisions about next project(s) at the Energy Frontier.

2017-22 Preparation Phase

Finalise implementation parameters, Drive Beam Facility and other system verifications, site authorisation and preparation for industrial procurement.

Prepare detailed Technical Proposals for the detector-systems.

2022-23 Construction Start

Ready for full construction and main tunnel excavation.

2023-2030 Construction Phase

Stage 1 construction of a 500 GeV CLIC, in parallel with detector construction.

Preparation for implementation of further stages.

Faster implementation possible, (e.g. for lower-energy Higgs factory): klystron-based initial stage

Lucie Linssen, Corfu, September 2013

CLIC detector and physics study

- Pre-collaboration structure based on "Memorandum of Cooperation" (MoC): <u>http://lcd.web.cern.ch/lcd/Home/MoC.html</u>
- CERN acts as host laboratory
- At the moment 17 institutes from 14 countries, more contributors most welcome! [The accelerator R&D is being conducted in collaboration with ~48 institutes]

further reading

- CLIC CDR (#1), A Multi-TeV Linear Collider based on CLIC Technology, CERN-2012-007, <u>https://edms.cern.ch/document/1234244/</u>
- CLIC CDR (#2), Physics and Detectors at CLIC, CERN-2012-003, <u>arXiv:1202.5940</u>
- CLIC CDR (#3), The CLIC Programme: towards a staged e⁺e⁻ Linear Collider exploring the Terascale, CERN-2012-005, <u>http://arxiv.org/abs/1209.2543</u>
- Physics at the CLIC e+e- Linear Collider, Input to the Snowmass process 2013, <u>http://arxiv.org/abs/1307.5288</u>

summary

- CLIC is the only mature option for a multi-TeV e⁺e⁻ collider
- Very active R&D projects for accelerator and physics/detector technor
- Energy staging will allow for optimal physics exploration, with possible stages at 350 GeV, 1.4, and 3 TeV
- CLIC @ 350 GeV
 - Precision Higgs measurements: mass, branching ratios, absolute coulping...
 - Top physics (precision on top mass at O(100 MeV))
- CLIC @ 1.4 and 3 TeV
 - Improved precision of many observables and access to rare Higgs decays
 - Trilinear Higgs self-coupling at the 10% level
 - Top Yukawa coupling with ttH
 - As a discovery machine for BSM physics at the energy frontier
 - Direct sensitivity to strong and electroweak particles up to ~ 1.5 TeV (SUSY)
 - Indirect sensitivity up to tens of TeV (ex: heavy Z')

THANK YOU !

lcd.web.cern.ch/lcd/

SPARE SLIDES

details of forward detector region

Fig. 3.5: Simplified upgrade scheme for CLIC staging scenario A. The coloured lines indicate the required movement of the modules from one stage to the next.

Lucie Linssen, Corfu, September 2013

CLIC layout at 500 GeV

Fig. 3.2: Overview of the CLIC layout at $\sqrt{s} = 500$ GeV. (scenario A)

Lucie Linssen, Corfu, September 2013

parameters, scenario A

Table 3.3: Parameters for the CLIC energy stages of scenario A.

Parameter	Symbol	Unit			
Centre-of-mass energy	\sqrt{s}	GeV	500	1400	3000
Repetition frequency	frep	Hz	50	50	50
Number of bunches per train	n_b		354	312	312
Bunch separation	Δ_t	ns	0.5	0.5	0.5
Accelerating gradient	G	MV/m	80	80/100	100
Total luminosity	L	$10^{34} \mathrm{cm}^{-2}\mathrm{s}^{-1}$	2.3	3.2	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2}\mathrm{s}^{-1}$	1.4	1.3	2
Main tunnel length		km	13.2	27.2	48.3
Charge per bunch	Ν	10 ⁹	6.8	3.7	3.7
Bunch length	σ_z	μm	72	44	44
IP beam size	σ_x/σ_y	nm	200/2.6	pprox 60/1.5	pprox 40/1
Normalised emittance (end of linac)	$\varepsilon_x/\varepsilon_y$	nm	2350/20	660/20	660/20
Normalised emittance (IP)	$\varepsilon_x/\varepsilon_y$	nm	2400/25	_	_
Estimated power consumption	Pwall	MW	272	364	589

parameters, scenario B

Table 3.4: Parameters for the CLIC energy stages of scenario B.

Parameter	Symbol	Unit			
Centre-of-mass energy	\sqrt{s}	GeV	500	(1500)	3000
Repetition frequency	frep	Hz	50	50	50
Number of bunches per train	n_b		312	312	312
Bunch separation	Δ_t	ns	0.5	0.5	0.5
Accelerating gradient	G	MV/m	100	100	100
Total luminosity	L	$10^{34} \mathrm{cm}^{-2}\mathrm{s}^{-1}$	1.3	(3.7)	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.7	1.4	2
Main tunnel length		km	11.4	27.2	48.3
Charge per bunch	Ν	10 ⁹	3.7	3.7	3.7
Bunch length	σ_z	μm	44	44	44
IP beam size	σ_x/σ_y	nm	100/2.6	pprox 60/1.5	pprox 40/1
Normalised emittance (end of linac)	$\varepsilon_x/\varepsilon_y$	nm		660/20	660/20
Normalised emittance	$\varepsilon_x/\varepsilon_y$	nm	660/25	_	
Estimated power consumption	Pwall	MW	235	364	589

integrated luminosity

Possible scenarios "A" and "B", these are "just examples"

Fig. 5.2: Integrated luminosity in the scenarios optimised for luminosity in the first energy stage (left) and optimised for entry costs (right). Years are counted from the start of beam commissioning. These figures include luminosity ramp-up of four years (5%, 25%, 50%, 75%) in the first stage and two years (25%, 50%) in subsequent stages.

Based on 200 days/year at 50% efficiency (accelerator + data taking combined)

=> CLIC can provide an evolving and rich physics program over several decades

Lucie Linssen, Corfu, September 2013

Higgs Decay Processes

- SM Higgs branching ratios depend only on the Higgs mass
- 125 GeV Higgs has sizable branching ratios to large number of final states
 - $H \rightarrow b\overline{b}$: 58%
 - $H \rightarrow WW^*$: 22%
 - $H \rightarrow gg: 8.5\%$
 - $H \rightarrow \tau^+ \tau^-$: 6.4%
 - $H \rightarrow ZZ^*$: 2.7%
 - $H \rightarrow c\overline{c}$: 2.7%
 - $H \rightarrow \gamma \gamma$: 0.23%
 - $H \rightarrow Z\gamma$: 0.15%
 - $H \rightarrow \mu^+ \mu^-$: 0.022%
- Measuring all these decay channels is excellent test of Standard Model

background suppression at CLIC

• Allows to protect high- p_T physics objects

┢

• Use well-adapted jet clustering algorithms

• Making use of LHC experience (FastJet)

time window / time resolution

The event reconstruction software uses: hit resolution Subdetector Reconstruction window 10 ns ECAL 1 nsHCAL Endcaps 10 ns 1 nsHCAL Barrel 100 ns 1 ns $10/\sqrt{12}$ ns Silicon Detectors 10 ns TPC entire bunch train n/a \mathbf{K} t_o physics event (offline)

Translates in precise **timing requirements** of the sub-detectors

combined p_T and timing cuts

$e^+e^- \rightarrow H^+H^- \rightarrow t\bar{b}b\bar{t} \rightarrow 8 \text{ jets}$

1.2 TeV background in reconstruction time window

100 GeV background after tight cuts

PFO-based timing cuts

Region	p _t range	Time cut	
	Photons		
central	$0.75~{ m GeV} \le p_t < 4.0~{ m GeV}$	t < 2.0 nsec	
$(\cos\theta \le 0.975)$	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.0 nsec	
forward	$0.75 { m ~GeV} \le p_t < 4.0 { m ~GeV}$	t < 2.0 nsec	
$(\cos \theta > 0.975)$	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.0 nsec	
Neutral hadrons			
central	$0.75~{ m GeV} \le p_t < 8.0~{ m GeV}$	t < 2.5 nsec	
$(\cos\theta \le 0.975)$	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.5 nsec	
forward	$0.75 { m ~GeV} \le p_t < 8.0 { m ~GeV}$	t < 2.0 nsec	
$(\cos \theta > 0.975)$	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.0 nsec	
Charged PFOs			
all	$0.75~{ m GeV} \le p_t < 4.0~{ m GeV}$	t < 3.0 nsec	
	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.5 nsec	

- Track-only minimum *p*_t: 0.5 GeV
- Track-only maximum time at ECAL: 10 nsec