

Contraction of the CNS experiment

Joao Varela

Summer School and Workshop on the Standard Model and Beyond Corfu, Greece, September 1-11, 2013

June 2013 - photo by Michael.Hoch@CERN.ch

- Data and pileup
- Higgs
- Jets and vector bosons
- Top physics
- Search for SUSY
- Other searches
- Future perspectives

Data taking in 2011-12

Pileup in 2012

Lepton, jets, MET & pileup

5 decay modes exploited:

- and searches in $Z\gamma$

M_H [GeV]

CMS Experiment at the LHC, CERN Data recorded: 2012-May-27 23:35:47.271030 GMT Run/Event: 195099 / 137440354

Results from $H \rightarrow ZZ \rightarrow 4I$

HIG-13-002

Four lepton mass resolution

Additional material

data

4 lepton mass resolution = 1 - 2% with uncertainty: 20%

Validated in situ with Z(4I)

Background modeling and event selection

Additional material

Background models:

- irreducible ZZ^(*)
 - Estimated using simulation
 - Corrected for data/simulation scale
- reducible Z+jets, ttbar, WZ
 - Estimated from control samples

Event selection:

requires the highest possible efficiencies (lepton Reco/ID/ Isolation).

Four lepton mass spectrum

 K_D distribution is similar for different signal models: $J^P = 0^+, 0^-, 1^-, 1^+, 2^+_{mgg} 2^+_{mqq}$

Several parameterizations of matrix elements have been studied with similar results

 $\sigma/\sigma SM (m_{H}=125.7 \text{ GeV}) = 0.92 \pm 0.28$

CMS Experiment at the LHC, CERN Data recorded: 2012-May-13 20:08:14.621490 GMT Run/Event: 194108 / 564224000

Results from $H \rightarrow \gamma \gamma$

HIG-13-001

Signature:

- Two energetic and isolated photons
- Narrow mass peak on top of a large steeply falling background

Relevant aspects:

- Photon identification/ background rejection
- Di-photon mass resolution
- Background estimation
- Primary vertex determination (pile-up!)

- Two inclusive analyses:
 - MVA: photons selected with a BDT. Variable in the BDT: photon kinematics, photon ID MVA score (shower shape, isolation), di-photon mass resolution.
 4 MVA categories with different S/B
 - Cut-based: photons selected with cuts. 4 categories based on: γ in Barrel/Endcap, (un)converted γ. Each category has different mass resolution and S/B
- 3 VH channels (e, μ and MET tag) + VBF (2 dijet categories)

MVA

Cut-based

Significance at 125.0 GeV: **3.2** σ (4.2 exp.)

Significance at 124.5 GeV: **3.9** σ **(3.5 exp.)**

New data, new analysis: Significance decreased compared to previously published results Corfu 2013, Recent results of the CMS experiment, J. Varela

$H \rightarrow \gamma \gamma$: combined mass plot

MVA

HIG-13-003

Additional material $H \rightarrow WW \rightarrow IvIv$

- Channel with very high σ .BR
- Clean signature:
 - 2 isolated, high p_T leptons with small opening angle
 - High Missing E_T
 - Analysis performed on exclusive jet multiplicities (0, 1, 2-jet bins)
 - Different Flavour, Same Flavour leptons
- Discriminant Variables:
 - $\quad p_T{}^I, \, M_I, \, M_T, \, \Delta \varphi$
 - VBF selections for the 2-jets case
- Cut-based and Shape analysis in $(M_{\parallel}-M_{T})$ plane

good sensitivity to spin small opening angle between leptons

$H \rightarrow WW \rightarrow I_V I_V$: backgrounds

All the backgrounds are estimated from data

in "control regions"

- Drell –Yan: Suppressed by M_{II} and ME_T cuts
- W+jets (with one jet faking a lepton): lepton ID is important
- **Top (tt and single top):** b-tag veto (or additional soft muon)
- WW: M(II), M_T and $\Delta \phi$

m_{II} (0 jet, DF)

Significance at 125 GeV: 4.0 σ (5.1 expected)

Large excess at low mass compatible with the expected Higgs signal

$\sigma/\sigma_{\text{SM}}$ at 125 GeV = 0.76 \pm 0.21

Additional material $H \rightarrow \tau \tau$ analysis

- Reconstructed τ decays: e, μ , τ_{had}
- Categorize events based on number of jets and τp_{T} (VH, VBF)
- Template fit to m_{ττ} shape

ττ mass spectrum

First strong indication of Higgs decay to fermions

Significance: **2.9 σ** @ m_H=125 GeV

Signal strength: μ **= 1.1 ± 0.4**

 $m_{H} = 120^{+9}_{-7}$ (stat+syst) GeV

HEP Workshop, Sao Paulo 2013, CMS first results, J. Varela

Results from VH →bb + X

- 2 central b jets plus V (W, Z) decaying into leptons
- Background from V+jets, VV, top+X
- Improved dijet mass resolution
- BDT shape analysis: jets and V kinematics, b tagging

$VH \rightarrow bb$ results

ttH channel and combined fits

Fit to 5 Higgs channels:

Higgs production via gluon fusion and Higgs decay in two photons depend on Yukawa coupling to top quark

31

Higgs properties

HIG-13-005

$H \rightarrow ZZ \rightarrow 4I$:

Mass estimation with $m_{4|}$, KD and $\sigma(m_{4|})$ Very small systematics due the very good control of the leptons scale and resolution: $m_{\rm H} = 125.8 \pm 0.5$ (stat.) ± 0.2 (syst.) GeV

$H \rightarrow_{\gamma\gamma}:$

Systematics on the extrapolation from the $Z \rightarrow ee$ to $H \rightarrow \gamma\gamma$ (0.25% from e to γ , 0.4% from Z to H):

*m*_H = 125.4 ± 0.5 (stat.) ±0.6 (syst.) GeV

$m_X = 125.7 \pm 0.3^{(stat)} \pm 0.3^{(syst)} \text{ GeV}$ = 125.7 ± 0.4 GeV

Consistency of signal with SM

 μ signal strength: ratio of $\sigma.BR$ measurement and SM prediction

- LHC XS WG benchmark models:
 - Fermionic vs bosonic couplings modifiers: $\kappa_{\rm V}\,\kappa_{\rm f}$
 - Search for asymmetries: λ_{WZ} , λ_{du} , λ_{Iq}
 - Search for new physics in loops: $\kappa_{g}\,\kappa_{\gamma}\,BR_{BSM}$

Corfu 2013, Recent results of the CMS experiment, J. Varela

 λ_{WZ} [0.73,1.00] @ 68% CL

 $\Gamma_{\rm BSM} = 0.$

Effective couplings to gluons and photons.

Loop-induced couplings free (κ_{γ} , κ_{g} profiled).

The data disfavours 0⁻ (pseudoscalar) hypothesis with a CLs value of 0.16%

The data disfavours $2^+_m(gg)$ hypothesis with a CLs value of 0.6%

The observations are compatible with the SM Higgs expectation (scalar)

Additional material Spin-Parity: 0* vs 0-Kinematic Discriminant : $D_{JP} = P_{SM} / (P_{SM} + P_{JP})$ $H \rightarrow ZZ^{(*)} \rightarrow 4I$ Second observable: $D_{bkg} = P_{sig}/(P_{sig} + P_{bkg})$ P_{bkq} and P_{siq} include the m_{4l} parameterizations Likelihood fit of events to 2D distributions (D_{JP} , D_{bka}) CMS preliminary $\sqrt{s} = 7 \text{ TeV}, L = 5.1 \text{ fb}^{-1} \sqrt{s} = 8 \text{ TeV}, L = 19.6 \text{ fb}^{-1} \sqrt{s}$ CMS preliminary s = 7 TeV, L = 5.1 fb⁻¹ s = 8 TeV, L = 19.6 fb⁻¹ Events ^oseudoexperiments 0.1⊦ 0 The distribution of the likelihood data 0⁺ vs 0⁻ 0⁺, m_=126 GeV ratio $q = -2\ln(L_{IP}/L_{SM})$ is J^P=0[°], m_u=126 GeV CMS data obtained with generated 0.08 $ZZ/Z\gamma$ Z+X samples of background and signal of seven types (SM 0⁺ 0.06 and six J^{P}) for m_H=126 GeV. 0.04 More J^P $CL_{s} = 0.16\%$ hypotheses tested 0.02 CLs 0^{-} 0.16% 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0_{h}^{+} 8.1% -30 -20 -10 10 20 30 0 D_0 $-2 \times \ln(L_{0^{-}} / L_{0^{+}})$ 1.5% $2^+_{mq\bar{q}}$

The data disfavours 0⁻ (pseudoscalar) hypothesis with a CLs value of 0.16%

Corfu 2013, Recent results of the CMS experiment, J. Varela

< 0.1%

<0.1%

<0.1%

1-

 1^{+}

CLs values for $2^{+}_{m}(gg)$:

Observed results at measured μ ZZ WW Comb 1.4% 14% 0.6%

- WW: observed results weaker than expected due to best fit µ < 1
- ZZ: observed better than expected due to a fluctuation

The data disfavours $2_{m}^{+}(gg)$ hypothesis with a CLs value of 0.6%

The observations are compatible with SM Higgs expectation (scalar)

Jets and vector bosons

3-jet to 2-jet cross section

42

First determination of α_s at momentum scales > 0.4 TeV

- Comparing the ratio in the range 0.42< <p>T1,2
 <1.39 TeV to the predictions of perturbative
- QCD at next-to-leading order

 Measurement dominated by TH uncertainty: PDF & scale

 $\alpha_s(M_Z) = 0.1148 \pm 0.0014(\text{exp.}) \pm 0.0018(\text{PDF})^{+0.0050}_{-0.0000}(\text{scale})$

W, Z, WW, and ZZ cross sections at 7 and 8 TeV:

SMP-12-011 SMP-12-013 SMP-12-014

Measured σ (ZZ) = 8.4 ± 1.3 pb SM (NLO) σ (ZZ) = 7.7 ± 0.4 pb

Measured σ (WW) =69.9 ± 7.0 pb SM (NLO) σ (WW) = 57.3 ± 2.0 pb

W+c production with exclusive charm tagging via full reconstruction of D[±], D^{*}, and semileptonic decays

Direct access to the strange-quark PDF

W+bb and Z+bb cross section measurements:

- $\sigma \text{ x Br}(W \rightarrow \mu v) = 0.53 \pm 0.12 \text{ pb} @ 7 \text{ TeV}$ ($p_T^{b,\mu} > 25 \text{ GeV}$), in good agreement with NLO prediction of 0.52 ± 0.03 pb
- σ x Br(Z→II) = 0.36 ± 0.07 pb @ 7 TeV (p_T^b > 25 GeV) <u>SMP-13-004</u>

۲

First-time ever observed !

Benchmark for VBF Higgs searches

VBF Z production

u

đ

W

Dominant background from standard DY production W^+ \rightarrow BDT discriminant used to extract the signal EWK $=154 \pm 24(\text{stat.}) \pm 46(\text{exp.syst.}) \pm 27(\text{th.syst.}) \pm 3(\text{lumi.}) \text{ fb}$ meas, *µµ+ee* _o01 د روس , Nevents CMS preliminary eejj CMS preliminary µµjj EWK DY ttbar WZ ZZ WW EWK only_ Data EWK DY ttbar WZ ZZ WW EWK only Data Agreement with NLO $\sqrt{s} = 7$ TeV, L = 5.0 fb⁻¹ $\sqrt{s} = 7$ TeV, L = 5.1 fb⁻¹ 10⁴ prediction (σ_{NLO} =166 fb, VBFNLO, CT10) 10³ 10³ 10² 10² 10 10 7 TeV 1.8 1.8 1.6 Data/MC Data/MC JES up JES Up 1.6 JES down JES Dow 1.4 1.2 1.4 FSQ-12-019 1.2 0.8 0.8 0.6 0.6 0.4 0.4 -0.4 -0.2 0.2 0.4 0.6 -0.4 -0.2 0.2 0.4 0.6 45 BDTD output **BDTD** output

Anomalous TGCs

 σ = 21.3 ± 4.2 (stat.) ± 4.3 (syst.) ± 0.5 (lumi.) fb

In good agreement with the theoretical prediction of 21.9 ± 1.1 fb (BAUR).

Forbidden in SM

aTGCs in CMS: EWK-11-009 (Vγ), SMP-12-015 (WW,WZ) SMP-12-007 (ZZ), SMP-12-020 (Ζγ)

Anomalous TGCs (cont.)

Neutral TGCs

Feb 2013			
			ATLAS Limits H CMS Limits H CDF Limit H
h ^γ	H	Zγ	-0.015 - 0.016 4.6 fb ⁻¹
13	н	Zγ	-0.003 - 0.003 5.0 fb ⁻¹
	⊢−−−−−	Zγ	-0.022 - 0.020 5.1 fb ⁻¹
ьZ	H	Zγ	-0.013 - 0.014 4.6 fb ⁻¹
п ₃	н	Zγ	-0.003 - 0.003 5.0 fb ⁻¹
	⊢−−−− −	Zγ	-0.020 - 0.021 5.1 fb ⁻¹
h ^y v100	⊢——I	Zγ	-0.009 - 0.009 4.6 fb ⁻¹
n ₄ x100	н	Zγ	-0.001 - 0.001 5.0 fb ⁻¹
h ^Z v100	⊢ −−−1	Zγ	-0.009 - 0.009 4.6 fb ⁻¹
1 ₄ ×100	н	Zγ	-0.001 - 0.001 5.0 fb ⁻¹
-0.5	0	0.5	1 1.5 x10 ⁻
			aTGC Limits @95% C L

aTGC	Limits	@95%	C.L.

Feb 2013			
			CMS Limits
٤Ŷ	⊢I	ZZ	-0.015 - 0.015 4.6 fb ⁻¹
4	H	ZZ	-0.013 - 0.015 5.0 fb ⁻¹
۴Z	⊢I	ZZ	-0.013 - 0.013 4.6 fb ⁻¹
4	FI	ZZ	-0.011 - 0.012 5.0 fb ⁻¹
fγ	⊢I	ZZ	-0.016 - 0.015 4.6 fb ⁻¹
5	⊢−−−−− I	ZZ	-0.014 - 0.014 5.0 fb ⁻¹
۴Z	⊢I	ZZ	-0.013 - 0.013 4.6 fb ⁻¹
5	H1	ZZ	-0.012 - 0.012 5.0 fb ⁻¹
-0.5	0	0.5	1 1.5 x10
	-	. –	aTGC Limits @95% C.L

LHC measurements already exceeded LEP sensitivities

Charged T	GCs
-----------	-----

Feb 2013			
			ATLAS Limits CMS Limits D0 Limit LEP Limit
Ar	\vdash	WW	-0.043 - 0.043 4.6 fb ⁻¹
	H	WV	-0.043 - 0.033 5.0 fb ⁻¹
	⊢●⊣	LEP Combination	-0.074 - 0.051 0.7 fb ⁻¹
2	\vdash	WW	-0.062 - 0.059 4.6 fb ⁻¹
ⁿ z	H	WW	-0.048 - 0.048 4.9 fb ⁻¹
	\vdash	WZ	-0.046 - 0.047 4.6 fb ⁻¹
	H	WV	-0.038 - 0.030 5.0 fb ⁻¹
	юн	D0 Combination	-0.036 - 0.044 8.6 fb ⁻¹
	HeH	LEP Combination	-0.059 - 0.017 0.7 fb ⁻¹
۸qZ	\vdash	WW	-0.039 - 0.052 4.6 fb ⁻¹
<u></u>	⊢−−−−	WW	-0.095 - 0.095 4.9 fb ⁻¹
	⊢ −−1	WZ	-0.057 - 0.093 4.6 fb ⁻¹
	HOH	D0 Combination	-0.034 - 0.084 8.6 fb ⁻¹
	H	LEP Combination	-0.054 - 0.021 0.7 fb ⁻¹
-0.5	0	0.5 1	1.5
		aTGC I	Limits @95% C.L
-HC n	neasurei	ments ap	proaching

LHC measurements approaching LHC measurements LEP sensitivities LEP sensitivities Corfu 2013, Recent results of the CMS experiment, J. Varela

Top quark

Top quark physics

The top quark is an interesting object:

- The heaviest elementary particle (mass ~ 173 GeV, similar to tungsten atom)
- The largest Yukawa coupling to Higgs boson $(y_t \ge 1)$
- The only quark that doesn't hadronize $(\tau(had) \sim h/\Lambda_{QCD} \sim 2.10^{-24} s; \tau(top) \sim h/\Gamma_{top} \sim 5.10^{-25} s)$

Top pair production:

Consistent with SM predictions? Polarizations and spin correlations? Charge asymmetries? Resonant production?

Single top production:

V_{tb} from cross-section t-channel, s-channel, associated production

Top decay:

Is V_{tb} = 1? Anomalous couplings in Wtb vertex? Rare decays by FCNC to γq , Zq, qg ? $t \rightarrow H^+b$?

Top-Higgs coupling:

Coupling to Higgs boson as predicted in SM?

Mass measurement:

Compatible with SM relation to $m_{W \text{ and }} m_{H}$? CPT invariance in top sector $m_{top} = m_{anti-top}$?

CMS experiment, J. Varela

Top mass in the standard model

The CMS measurement has reached the same precision of the Tevatron.

0.5% precision

CMS Preliminary

- Excellent agreement of Tevatron and LHC measurements with QCD
- Comparable experimental and theoretical uncertainties ~ ±5%

t-channel 7 TeV : $\sigma_t = 67.2 \pm 6.1 \text{ pb}$ (CMS) $|Vtb| = 1.020 \pm 0.046 \text{ (exp.)} \pm 0.017 \text{ (th.)}$

t-channel 8 TeV: $\sigma_t = 80.1 \pm 13 \text{ pb}$ (CMS-PAS-TOP-12-011) |Vtb| = 0.96 ± 0.08 (exp.) ± 0.02 (th.) pb

Top pair cross section at 7 TeV

dditional material

Dileptons:

Most precise measurement at 7 TeV (CMS dilepton) σ_{tt} =162 ± 2 (stat.) ± 5 (syst.) ± 4 (lumi.) pb ±4 %

Main systematics:

- Jet energy scale
- W branching fractions
- Lepton efficiencies

NNLO+NNLL predictions (mt=173.3 GeV)

Collider	$\sigma_{\rm tot}$ [pb]	scales [pb]	pdf [pb]	1 / 0/
LHC 7 TeV	172.0	$^{+4.4(2.6\%)}_{-5.8(3.4\%)}$	+4.7(2.7%) -4.8(2.8%)	±4 %

Corfu 2013, Recent results of the CMS experiment, J. Varela

Czakon, Fiedler, Mitov, arXiv:1303.6254

Top pair cross section at 8 TeV

Additional material

- CMS preliminary measurements at 8 TeV are available
- Excellent agreement of Tevatron and LHC measurements with QCD
- Comparable experimental and theoretical uncertainties $\sim \pm 5\%$

Corfu 2013, Recent results of the CMS experiment, J. Varela

Top pair differential cross sections

Measurement of top pairs in different regions of the phase space at LHC

- Constrain MC predictions
- Contribute to PDF determination
- Sensitivity to new physics

Experimental aspects:

- detector effects unfolded allow direct comparison to predictions
- full reconstruction of top quark kinematics
- measurements are systematics dominated; full covariance matrix is provided

p_T(t), I+jets

p_T(tt), dilepton

m(tt), dilepton

Single top production

Main systematics:

- generator, ISR/FSR
- b-tagging

SM calculation at 8TeV:

 $\sigma_t^{\text{th}} = 87.2^{+2.1}_{-0.7} \text{(scale)}^{+1.5}_{-1.7} \text{(PDF) pb}$

N. Kidonakis, arXiv:1205.3453

Corfu 2013, Recent results of the CMS experiment, J. Varela

Multivariate techniques using full event properties to optimize sensitivity

t-channel 7 TeV : (*CMS arXiv:1209.4533*) Vtb uncert. $\sigma_t = 67.2 \pm 6.1 \text{ pb}$ (CMS) $|Vtb| = 1.020 \pm 0.046 \text{ (exp.)} \pm 0.017 \text{ (th.)} \pm 5\%$

t-channel 8 TeV:

 $\sigma_t = 80.1 \pm 13 \text{ pb}$ (CMS-PAS-TOP-12-011) |Vtb| = 0.96 ± 0.08 (exp.) ± 0.02 (th.) pb $\pm 8\%$

Top pair associated production

Additional jets from QCD radiation

- top mass measurement systematics
- background in searches for new physics

Additional heavy flavor jets in di-lepton events

- additional bbar jets (CMS-PAS-TOP-12-024) $\sigma(t\bar{t}b\bar{b})/\sigma(t\bar{t}jj) = 3.6 \pm 1.1(\text{stat.}) \pm 0.9(\text{syst.})\%$
- larger than the predictions using MADGRAPH (1.2%) and POWHEG (1.3 %)

Top pair associated to V and to Z

measures coupling between t and Z

Ratio B(t→Wb) / B(t→Wq)

- Top events in dilepton channel
- Requires good understanding of b-tagging efficiency and ISR/FSR background jets
- Background estimated from data

 $R \rightarrow |V_{tb}|$ with the assumption of CKM unitarity and 3 generations:

$$R = \frac{B(t \to Wb)}{\sum_{q=d,s,b} B(t \to Wq)} = |V_{tb}|^2$$

$$R = 1.023_{-0.034}^{+0.036} (stat. + syst.)$$

R > 0.945 @ 95% CL

$$|V_{tb}| = 1.011_{-0.017}^{+0.018} (stat. + syst.)$$

 $|V_{tb}| > 0.972 @ 95\% CL$

Search for FCNC in top decays

- In the SM, decay t \rightarrow Zq (q=u,c) is highly suppressed O(10⁻¹⁴)
- In some model (e.g. RPV SUSY) branching fraction O(10⁻⁴)
- Search for FCNC in top quark decays $t \to Zq$
 - Event topology: tt \rightarrow Wb+Zq \rightarrow Ivb + Ilq

Previous results in 2012 (7 TeV)

• CMS: BR($t \rightarrow Zq$) < 2.1x10⁻³ 5.0 fb⁻¹

New result (CMS 8 TeV, 19.5 fb⁻¹)

BR($t \rightarrow Zq$) < 7x10⁻⁴ at 95% CL

Selection	data-driven estimation	SM MC prediction
$t \rightarrow Zq (B = 0.1\%)$	—	$6.36 \pm 0.08 \pm 1.27$
WZ		$0.87 \pm 0.10 \pm 0.62$
ZZ	$1.54 \pm 0.12 \pm 0.74$	$0.07 \pm 0.01 \pm 0.05$
Drell-Yan		$0.00 \pm 0.03 \pm 0.02$
tī		$0.74 \pm 0.70 \pm 0.52$
Ztī	$1.60 \pm 4.06 \pm 0.44$	$1.09 \pm 0.13 \pm 0.77$
Wtī	$1.00 \pm 4.90 \pm 0.44$	$0.09 \pm 0.05 \pm 0.06$
tbZ		$0.33 \pm 0.02 \pm 0.23$
Total background	$3.14 \pm 4.97 \pm 1.17$	$3.19 \pm 0.72 \pm 2.26$
Observed events	1	_
Expected limit	$\mathcal{B}(t \rightarrow Zq) < 0.10\%$	
Observed limit	$\mathcal{B}(t \rightarrow Zq) < 0.07\%$	

Corfu 2013, Recent results of the CMS experiment, J. Varela

CMS-PAS-TOP-12-037

000

- Search for decays of the top quark in light charged Higgs
- Assumes BR(H⁺ $\rightarrow \tau \nu$) = 100%
- Upper limits on the branching fraction B(t → H⁺ b) in the range of 1-3 %

Search for BNV in top quark decays

Additional material

- Search for **baryon number violating** top-quark decays
 - BNV occurs in several models of physics beyond the SM
 - Search for $t
 ightarrow {ar b} {ar c} \mu^+$ $t
 ightarrow {ar b} {ar u} e^+$
- CMS study of events with low ET_{miss}, one isolated lepton and five jets, one of which is b-tagged.
 - No significant excess is observed over SM expectations

Probing Wtb vertex:

- W helicity is sensitive to the V-A coupling
- Measure dσ/dcosθ*, the angle between the lepton and the b directions (in the W rest frame)

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\ell}^{*}} = \frac{3}{8} (1 + \cos\theta_{\ell}^{*})^{2} F_{R} + \frac{3}{8} (1 - \cos\theta_{\ell}^{*})^{2} F_{L} + \frac{3}{4} \sin^{2}\theta_{\ell}^{*} F_{0}$$

W polarization fractions calculated at 300 NNLO QCD: CMS vs = 7 TeV, 5.0 fb μ+jets $F_0 = 0.687 \pm 0.005$ 250 Czarnecki et al.. $F_1 = 0.311 \pm 0.005$ PR D 81 (2010) 111503 200 $F_{R} = 0.0017 \pm 0.0001$ Entries tī muon+jets 150 tī bka Right-handed (+) Left-handed (-) Longitudinal W+jets & DY+jets 100 Single Top Muon+jets 50 +1/2 -1/2 +1/2MC/data 0.2 0.8 -0.20 0.4 0.6 0.8 F_L=0.311 cos(θ*) $F_{R}=0.0017$ F₀=0.687

W polarization in top pair events

• First LHC combination:

 $F_0=0.626 \pm 0.034 \text{ (stat.)} \pm 0.048 \text{ (syst.)}$ $F_L=0.359 \pm 0.021 \text{ (stat.)} \pm 0.028 \text{ (syst.)}$

CMS dilepton

PAS-TOP-12-015

 $F_L = 0.288 \pm 0.035(stat.) \pm 0.050(syst.)$ $F_0 = 0.698 \pm 0.057(stat.) \pm 0.063(syst.)$ $F_R = -0.014 \pm 0.027(stat.) \pm 0.055(syst.)$

 Results are in agreement with predictions from NNLO QCD

Exclusion limits on anomalous Wtb couplings:

$$\mathcal{L} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (V_L P_L + V_R P_R) t W_{\mu}^{-}$$
$$-\frac{g}{\sqrt{2}} \bar{b} \frac{i\sigma^{\mu\nu} q_{\nu}}{M_W} (Q_L P_L + Q_R P_R) t W_{\mu}^{-} + \text{h.c.}$$

W polarization in single top events

Additional material

First measurement in single-top events

- 7 and 8 TeV, μ+jets events
- Helicity fractions and W+jets contribution simultaneously extracted.
- Consistent with the SM and with the measurement in ttbar channels

 $F_L = 0.293 \pm 0.069(stat.) \pm 0.030(syst.)$ $F_0 = 0.713 \pm 0.114(stat.) \pm 0.023(syst.)$ $F_R = -0.006 \pm 0.057(stat.) \pm 0.027(syst.)$

CMS PAS-TOP-12-020

In the SM, **in top pair events**, the top quark is produce unpolarized Some models that predict large top quark forward-backward asymmetry have different predictions of the top quark polarization.

Distribution of polar angle of the charged lepton in the top quark's rest frame: Background-subtracted

 $W(\cos\theta_i) \propto 1 + \alpha_i p \cos\theta_i$

 α_i spin analyzing power (α_{lepton} =1)

Measurements of top polarization in the helicity basis:

(dilepton channel)

$$p = -0.009 \pm 0.029$$
 (stat.) ± 0.041 (syst.)

CMS PAS-TOP-12-016

Background-subtracted and unfolded distribution

Top spin correlations

Additional material

SM predicts correlation of spin of the top and antitop

- Measured from angular distributions of the top decay products (in dilepton events)
- Use $\Delta \phi$ between leptons which don't require top reconstruction
- Sensitive to New Physics

Spin correlation coefficient:

 $A = \frac{N(\uparrow\uparrow) + N(\downarrow\downarrow) - N(\uparrow\downarrow) - N(\downarrow\uparrow)}{N(\uparrow\uparrow) + N(\downarrow\downarrow) + N(\uparrow\downarrow) + N(\downarrow\uparrow)}$

Measurement (helicity basis): A= 0.24±0.02(stat.)±0.08(syst.)

Standard model prediction: A=0.31

CMS PAS TOP-12-004

ppbar collisions at Tevatron

- Pair production dominated by qqbar annihilation
- Forward-backward asymmetry of topantitop production

pp collisions at LHC

- Despite symmetric collisions it is possible to define a charge asymmetry
- top quarks are preferably emitted at larger rapidities than antitop quarks in qq annihilation
- charge asymmetry at the LHC can be enhanced by selecting events with large rapidities, large Mtt, and/or small P_T^{tt}

Tevatron

ŋ

Charge asymmetries

Charge asymmetries with detector effects unfolded

Good agreement with data within uncertainties

To be followed in 2015 with more statistics.

CMS (7 TeV, 5 fb ⁻¹)				
Di-leptons	$0.050 \pm 0.043 + 0.010 - 0.039$	CMS PAS-TOP-12-010		
Lepton+jets	0.004 ± 0.010 ± 0.012	Phys. Lett. B717 (2012) 129		
SM	0.0115 ± 0.0006	Kühn et al., JHEP 1201 (2012) 063		

B physics

Almost 30 years of searching for $B_{d/s} \rightarrow \mu \mu$

Forbidden at tree level SM prediction $BR(B_s \rightarrow \mu\mu) = (3.56 \pm 0.18) \times 10^{-9}$

Possible enhancements from new physics via loop/box contributions.

- 2HDM: BR(Bs/d→µµ) ∝ tan⁴β and m(H+)
 - J. R. Ellis et al, JHEP 05 (2006) 063
- MSSM: BR(Bs/d→μμ) ∝ tan⁶β
 - J.Parry, Nucl. Phys. B 760 (2007) 38
- Leptoquarks
 - S. Davidson and S. Descotes-Genon
 - JHEP 11 (2010) 073
 - 4th generation top
 - Wei-Shu Hou, Masaya Kohda, Fanrong Xu,
 - Phys. Rev. D87, 094005 (2013).

- The results:
 - $B(B_s \rightarrow \mu\mu) = (3.0^{+1.0}_{-0.9}) \times 10^{-9}$
 - $B(B_d \rightarrow \mu\mu) < 1.1 \times 10^{-9}$

Significance: 4.3σ (4.8σ exp.)

- Preliminary combination with LHCb:
 - $B(B_s \rightarrow \mu\mu) = (2.9 \pm 0.7) \times 10^{-9}$

Corfu 2013, Recent results of the CMS experiment, J. Varela

arXiv:1307.5025, PRL

Prompt J/\Psi and Y Polarization

10

1^{st} meas. of prompt J/ Ψ and Y(nS) polarization at the LHC

- Now extended to $\Psi(2S)$ polarization measurement

No evidence for large polarizations

An issue for NRQCD that needs to be resolved!

Corfu 2013, Recent results of the CMS experiment, J. Varela

9.5

10

10.5

11

Dimuon mass [GeV]

9

Searches Beyond the Standard Model

The standard model and beyond

Standard Model:

the astonishing brain power of a certain ape species

Higgs mass is a huge problem:

Miraculous cancelations are needed to keep the Higgs mass < 1 TeV

The connection to cosmology

Precision cosmology measurements give strong motivations for new physics: Galaxies rotations, accelerating expansion, CMB uniformity, space flatness

Search for SUSY

gluino \rightarrow stop searches

General SUSY searches: Simplified Model Spectra (SMS)

Assumption:

$$BR(\tilde{g} \to t\bar{t}\tilde{\chi}_1^0) = 100\%$$

CMS PAS SUS-12-024, SUS-13-007 SUS-13-008, SUS-13-013

gluino \rightarrow sbottom searches

Search for gluino decaying to sbottom then bottom quarks and neutralinos

Search for direct stop production

- Single isolated, high pT electron or muon, > 4 jets, > 1 b-tagged jet, large missing ET and transverse mass (MT);
- Search using razor variables in events with b-jets

Limits on the top-squark and neutralino masses vary 10–20 GeV depending on the top-quark polarization.

Corfu 2013, Recent results of the CMS experiment, J. Varela

Limits depend on mass hierarchy:

Models with decays into sleptons

- Trilepton + MET
- Same-sign dileptons

Models with decays into W and Z

- $Z \rightarrow \ell \ell + \ell + MET$
- $Z \rightarrow \ell \ell + W/Z \rightarrow jet-jet + MET$
- Four leptons

Corfu 2013, Recent results of the CMS experiment, J. Varela

SUS-12-022

Search for RPV stop

Additional material

- R-parity violation
 - No stable SUSY particle \rightarrow less MET than conventional SUSY
- ≥3 leptons+b
 - − Including up to $1 \tau \rightarrow$ had

RPV Gluinos in 3 jets

Searches for long-lived SUSY

10

10

10

10

10

10

1500

Mass (GeV/c2)

-*- gluino: 50% ĝg

- gluino: 10% gg

Pair Prod. stat.

1500

Mass (GeV/2)

GMSB stau

+- Q=2e/3

O=16

1000

500

- stor

luino; 50%-00

gluino; 10% ĝa

Pair Prod. stau

stop

stop; CS

GMSB stau

Q=26/3

1000

500

gluino; 10% pg; CS

10

10-2

10-3

10

10

10

- Gluinos, stops, and staus
 - Use combination of tracker+TOF and tracker-only analyses

EXO-12-026

SUSY (no show) tables

Other searches

Dijet resonance search

- $Z' \rightarrow e + e /\mu + \mu$ -
- Data to almost 2 TeV, limits to almost 3 TeV

EXO-12-061

Heavy W'

- Predicted by little Higgs, extra dimensions, technicolor, etc

Lepton+jets+MET signature

Use W,t mass constraints to solve for neutrino momentum and reconstruct W' mass

Search for tt resonances

Search for resonant top-pair production

Event kinematics strongly depend on the mass of the intermediate state

- Low mass analyses: standard tt reconstruction
- High mass analyses: top tagging from jet substructure

KK gluon (R-S) > 2.7 TeV

Additional material

CMS PAS-B2G-12-005 CMS PAS-B2G-12-006

- Can also look for evidence of KK Gravitons
 - ADD Extra Dimensions

Additional material

CMS-PAS-EXO-12-048

Search for Top partners

Search for vector-like T quark in various possible decay modes in the combinations of I+jets and dileptons

Additional material

93

Exotica (no show) tables

Future perspectives

LHC projections

What's beyond the Standard Model?

Nominal LHC beam energy (14 TeV) will allow the full exploitation of the Terascale:

- search for SUSY, Extra Dimensions, etc.
- search for the unknown

High luminosity will allow very precise measurements of the Higgs sector:

 look for deviations to the Standard Model at the level of a few percent.

- LHC achieved an astonishing performance in Run 1.
- CMS succeeded to meet all challenges, and to produce an unprecedented wave of physics results.
- Many new measurements with full proton-proton dataset collected in 2011-12 (~25 fb⁻¹).
- The agreement of data with the Standard Model is impressive.
- In the H \rightarrow ZZ(4I) channel, a signal significance of 6.7 σ is now observed. In H $\rightarrow \gamma\gamma$ updated results on the signal strength, $\mu = \sigma/\sigma_{SM} \sim 0.8 \pm 0.3$.
- Two independent determinations of the Higgs mass: 125.8±0.6 GeV, in H \rightarrow ZZ(4I); and 125.4±0.8 GeV, in H $\rightarrow \gamma\gamma$.

- The pure pseudoscalar hypothesis is excluded at 99.8%
 C.L. and simple spin 2 models are excluded with greater than 99.4%
 C.L.
- Strong evidence is seen in $H \rightarrow \tau \tau$ channel (significance ~3 σ).
- These measurements strongly indicates that the new particle is a Higgs boson, responsible for the Electroweak Symmetry Breaking.
- However they are still fall from the precision required to rule out all BSM scenarios.
- No evidence of new physics in the 7-8 TeV data creates a big expectation on the LHC restart at 14 TeV in 2015.