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IIB matrix model is one of the promising 
candidates of the non-perturbative definition of 
superstring, and many interesting aspects will be 
discussed by several speakers in this school.  

In my talk, first I would like to explain how the 
large-N reduction appears in general large-N 
gauge theory, and then discuss why we expect 
that the IIB matrix model describes superstring 
correctly. 

In order to examine the dynamics of this model, it 
is useful to understand the large-N reduction, 
which is one of the universal features of large-N 
gauge theory. 



PART 1   How does the Large- 
                 N reduction appear? 



1. What is Large-N reduction 

Roughly speaking, 

Physics of the large-N gauge theory 
with periodic boundary condition 
does not depend on the volume of the 
space-time. 



Consider U(N) or SU(N) lattice gauge theoy 
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Take the large-N limit , : fixed.N λ→ ∞

More precisely, 

The physics of the system does not depend 
on the size, at least in the strong coupling 
region: 
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we can consider the minimum 
size of the box 
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the large-N reduced model 

In particular, 
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Then the system is reduced to 
a d-matrix model  
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The meaning of “physics” 

In particular,  

(1) Free energy per unit volume Ff
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(2) Wilson loop 

Consider a closed loop C in the infinitely 
extended lattice space   
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Define the corresponding loop in the 
periodic box by the same expression 

The Wilson loop is given by 
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Here we assume †
ˆ, , .n nU Uµ µ µ− −= nˆn µ−

Wilson loop in a periodic box: 



The Wilson loop defined in this manner 
does not depend on the size of the periodic 
box L’s. 
In particular the Wilson loop in the 
infinitely extended space is given by the 
reduced model: 

Because of the translational invariance 
W(C) does not depend on the position n. 
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The Large-N reduction 

The large-N gauge theory with periodic 
boundary condition does not depend on the 
volume of the space-time. 
 
In particular, the theory in the infinite 
space-time is equivalent to that on one point. 
 
The space-time emerges from the internal 
degrees of freedom of the reduced model. 



2. Strong coupling analysis 

We show that the coefficients of the strong 
coupling expansion of the Wilson action and 
the reduced model agree in the large-N limit. 
 
It indicates that two theories are equivalent 
at least in the convergence radius of the 
strong coupling expansion. 
 
               Contents of this section 
                (a) Weingarten model 
                (b) Wilson action 



a) Weingarten model 

The Weingarten model is a modification of 
the Wilson action in which the strong 
coupling expansion is easily examined: 
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Obtained from the Wilson action by changing 
the integration measure 
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We will show that this model is equivalent to 
the reduced Weingarten model: 
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The arguments are the same for the free 
energy and Wilson loop. 



Wilson loop in Weingarten model 
Wilson loop is defined as usual:  
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where †
ˆ, , .n nV Vµ µ µ− −=

For a loop in the lattice space  



Hopping parameter expansion of surfaces 

We regard the quadratic term as the free 
Lagrangian and the quartic term as the 
interaction Lagrangian. 
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In the path integral, we keep      in the 
exponential function, and expand           
with respect to       .  
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Then we have the following perturbation 
series: 
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S runs over all surfaces with boundary C 
in the lattice space. 
A(S) : the number of plaquettes in S. 
         : the Euler characteristic of S. ( )χ S



Large-N limit 
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In the large-N limit, only planar surfaces,  
              , survives.   ( )χ 1S =

Wilson loop of the large-N Weingarten 
model is given by the sum of planar 
random surfaces with boundary C. 



Feynman diagram 

We can visualize the surfaces by 
depicting the Feynman diagrams as 



An example  
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interaction term = square          (next slide)  
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• To each vertex of the square a lattice 
site is assigned. 

• Each edge of the square has a label μ 
(μ =1,2, .. ,d) and a direction indicated 
by an arrow. 

• Each square has a circular direction 
along which        are multiplied. 

      If the circular direction is the same 
      as that of the edge we take       . 
      If not, take       . †

,nV µ

,nV µ

,nV µ



propagator = gluing two edges 

The quadratic part      glues two edges 
corresponding to                     . 
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The Feynman diagrams for the Wilson loop are 
characterized by                                  (next slide) 
(i) Each diagram is a segmentation of a surface 

S with boundary C into a set of squares. 
(ii) Each edge of S has a label (1,2, .. ,d) and a 

direction. The opposite edges of each square 
have the same label and direction. 

(iii) If two squares are glued, their circular 
directions along the common edge are 
opposite. 

(iv) A lattice site is assigned to each vertex.  
This assignment should be compatible with 
the labels and directions of  the edges. 
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(iv) cont’d    
More precisely, suppose that vertices 
A and B are the endpoints of an edge with 
label μ , and the arrow points from A to B. 
Then the sites m and n assigned to A and B, 
respectively, should satisfy 
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Value of each Feynman diagram  
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In the large-N limit, only the planar surfaces 
survive, and we have the additional condition: 
(0) The surface S is planar:  ( )χ 1.S =

crucial fact:  
If the conditions (0) ~ (iii) are satisfied, (iv) is 
automatically satisfied.                   (next slide) 

Large-N limit  



(0)  The surface is planar. 
(i) Each diagram is a segmentation of a surface 

S with boundary C into a set of squares. 
(ii) Each edge of S has a label (1,2, .. ,d) and a 

direction. The opposite edges of each square 
have the same label and direction. 

(iii) If two squares are glued, their circular 
directions along the common edge are 
opposite. 

(iv) A lattice site is assigned to each vertex.  
This assignment should be compatible with 
the labels and directions of  the edges. 



The conditions (0) ~ (iii) tell nothing about 
the sites.  
However, once a site is assigned to one of the 
vertices, we can uniquely assign sites to the 
other vertices in a compatible manner with 
the edges. 
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The sum of the displacement vectors 
around each square is zero. ⇔ rotation free 
The sites are consistently determined by the 
edges, and the condition (iv) is redundant. 



This situation is analogous to the well 
known fact about the existence of the 
potential. 
“A rotation free vector field        on a planar 
surface has a potential        that is unique up 
to an additive constant.” 
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In the case of the reduced Weingarten model, 
the Feynman diagrams are characterized by 
(i) ~ (iii).  
The condition (iv) is not there, because we do 
not have “site”. 
However, if we take the large-N limit, the 
planarity condition (0) is added. 
Then the Feynman diagrams of the reduced 
Weingarten model have one-to-one 
correspondence with those of the Weingarten 
model (up to an overall translation of site.) 

Wilson loop in the reduced Weingarten model   



More precisely,   
Suppose a planar Feynman diagram of the reduced 
Weingarten model is given.  
Pick up one vertex A and assign a site n to it. 
For any vertex B find a path P from A to B, 
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assigned to B is obtained by 
summing up the displacement 
vectors along P: 
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because the sum of the displacement vectors 
around each square is zero and we can deform P. 

This does not depend on 
the choice of P, 



We have seen  
“The large-N limits of the Weingarten model 
and the reduced Weingarten model are the 
same at laest in the convergence radius of 
the hopping parameter expansion.” 



b) Wilson action 
A similar analysis can be applied to the case 
of Wilson action. The problem is reduced to 
the case of the Weingarten model by using 
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f(J) is expanded as the polynomial of J: 
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We have multiple trace terms, but each term 
is of order N2 if we assume each trace is of 
order N . 

We can show that only planar diagrams 
survive in the large-N limit, and the previous 
argument for the large-N reduction holds. 



We find that the coefficients of the strong 
coupling expansion of the Wilson action and 
the reduced model agree in the large-N limit. 
 
Two theories are equivalent at least in the 
convergence radius of the strong coupling 
expansion. 



3. Schwinger-Dyson equation 

We show  
“In the large-N limit, the Schwinger-Dyson 
equation for the Wilson loops (the loop 
equations) of the reduced model becomes 
equivalent to that of the Wilson action  
as long as the center invariance 
 
is not spontaneously broken.” 

iU e Uµθµ µ→

So far we have considered strong coupling 
expansion. But we can make the argument a 
bit stronger by using the SD equation. 



Loop equations 
Consider 
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For example, if we start with the operator 

The splitting terms appear if one of the link 
variables in the Wilson loop 
coincides with                     .  
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By contracting a and b , and using 
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The splitting term for the previous example 
becomes 
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Here we have used the factorization of single 
trace operators which generally holds in 
large-N theories: 

( ) ( ) ( ) ( )1 2 1 2 .Tr O Tr O Tr O Tr O=



In this way, splitting terms become a product of 
Wilson loops in the large-N limit, and the SD 
equation gives a set of closed relations between 
Wilson loops. 
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Splitting terms appear when the loop passes 
through the link we are considering.   



Loop equations of the reduced model 
We start with 
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← “Site”  
      does not  
      appear. 



These loop equations are formally obtained 
from those of the Wilson action by 
identifying all the         that have the same μ , 
but splitting terms have different structures. 

,nU µ

In the reduced model, the splitting terms 
appear if one of the U’s in the Wilson loop,                         
                       coincides with                . , , ,U U Uα β ω

† or U Uα α

Because this time only the directions are 
relevant, there appear splitting terms that do 
not exit in the original Wilson theory.    



We can show that those additional terms 
vanish in the large-N limit as follows: 

An additional term is a product of Wilson 
loops that do not close in the real space, 
because otherwise such term appears in the 
case of the Wilson action. 
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However, for such Wilson loop the number 
of       and        are different at least for one 
direction μ . 
 
Therefore if the center invariance 
 
is not spontaneously broken, such Wilson 
loop is zero. 

Uµ
†Uµ

iU e Uµθµ µ→



The loop equations of the large-N reduced 
model are equivalent to those of the Wilson 
action if the center invariance is not broken. 

The same argument can be applied to the 
general periodic boundary condition: 
The large-N gauge theory with periodic 
boundary condition does not depend on 
the size of the space-time as long as the 
center invariance is not broken. 



4. Perturbative expansion 

So far we have considered the strong 
coupling expansion and the S-D equation.  
 
The large-N reduction can be also 
understood in the context of the ordinary 
perturbation series. 



(1) Parisi’s rule 
(2) Application to the gauge theory 

Parisi made a general theory that is valid 
for various matrix field theory, which 
becomes the reduced model when we apply 
it to the gauge theory. 



Parisi’s rule 
This rule can be equally applied to both 
the continuum and lattice theories. 
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We consider the expectation values of 
single trace operators such as 
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Corresponding to the action, we construct a 
matrix model in the following way: 

(1) Let                            be N ×N diagonal 
      matrices whose elements distribute   
      uniformly in the d- dimensional space, 
      which we regard as the momentum  
      space. 
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(2) Corresponding to each field           ,  
      introduce a N ×N  hermitian matrix     , 
      and construct the corresponding action 
      and operators by substituting 
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We can show that the expectation value 
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agrees with the original field theory. 
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For simplicity, we consider the free energy, 
The generalization to the expextation 
values are straightforward. 
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Feynman diagrams are something like 
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In the large-N limit we can replace D
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It might have a wrong overall factor. 

But it is actually correct, if we take the 
prefactor of the action into accout. 

   

       

3

1 2 2 2 2 2 2 2
1 2 1 2

3 1 2
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d

d d
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d
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d k d kN
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2 2 2 31 1 1ˆ , ,
2 2

2
3

d

S Tr iP mµ φ φ κφπ   = + + 
 



  

Λ
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1 2 1 2

1
( )2 2
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d k d kN

k m k m k k m
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free energy per unit cell 



Parisi’s rule 
(1) Let                            be N ×N diagonal 
      matrices whose elements distribute   
      uniformly in the d- dimensional space. 

( )ˆ 1, ,P dµ µ = 

Application to the gauge theory (naive) 
We apply Parisi’s rule to gauge theory. 



(2) Corresponding to each field           ,  
      introduce a N ×N  hermitian matrix     . 
      Define the action and operators by  
      substituting 

( ) ( ) ( ) ( )ˆ ˆexp exp ,x x i P x i P xµ µ
µ µφ φ φ→ = − 

( )xφ
φ

in the original field theory. 

21 .
d

dd x π →  Λ ∫

Space-time integral of 1 should be replaced 
by the volume of the unit cell: 



The expectation value in the matrix model 

( )
( )

exp

exp

d O S
O

d S

φ

φ

−
=

−
∫
∫

  



 

agrees with that in the original field theory. 



We apply Parisi’s rule to the continuum 
gauge theory. 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

,

,

ˆ ˆ ˆ ˆexp , , , exp

ˆ ˆ ˆ ˆexp , exp

iF x i A x i A x

i A x i A x A x A x

i P x P A A P A A i P x

i P x P A P A i P x

µν µ µ ν ν

µ ν ν µ µ ν

µ µ
µ µ ν µ ν µ ν µ

µ µ
µ µ µ ν ν µ

 − = − ∂ + − ∂ + 
 = − ∂ + ∂ +  

     → + + −    

 = + + − 

   

 

( ) ( ) ( )ˆ ˆexp expA x i P x A i P xµ µ
µ µ µ µ→ −

( ) ( ) ( )ˆ ˆ ˆexp , expA x i P x i P A i P xµ µ
µ ν µ µ ν µ ∂ → − 



Obtained by replacing ˆ  .i Pµ µ− ∂ →



( )

( )

2

2

4

2 ˆ ˆ,
4

d

d

NS d xTr F x

NS Tr P A P A

µν

µ µ ν ν

λ

π
λ

 =  
 

   → = − + +   Λ 

∫

  



Remark: Any adjoint matters are allowed.  

ˆ ,

1
2

2 1 .
2

d

d

D

i

S d xT

P

r

S Tr A

µ

µ

µ

µµ

ψ γ ψ

π ψγ ψ

 ′ =  
 

   ′→  + =    Λ   

∫

 

 

← adjoint  
     fermion 

( ) ( ) ( )
( ) ( )

( ) ( ) ( ), ( )

ˆ ˆ ˆexp , , exp

ˆ ˆ ˆexp , exp

D x x i A x x

i P x i P i A i P x

i P x i P A i P x

µ µ µ

µ µ
µ µ µ µ

µ µ
µ µ µ µ

ψ ψ ψ

ψ ψ

ψ

 = ∂ +  

   → + −  

 = + − 



 





( ) ( ) ( )
( ) ( ) ( )

ˆ ˆexp exp

ˆ ˆexp exp

A x i P x A i P x

x i P x i P x

µ µ
µ µ µ µ

µ µ
µ µψ ψ

→ −

→ −







ˆ ,A P Aµ µ µ= + 

( )22 , ,
4

d NS Tr A Aµ ν
π

λ
   = −   Λ 



the action becomes 

If we define 

and   ’s disappear from the theory.  

One might conclude that this theory 
is equivalent to the gauge theory in 
d-dimensions. 
But it is too naïve. 

P̂µ



Actually, in Parisi’s rule, the diagonal 
elements are negligible, because we 
have only N such variables while the 
action is of order N2. 
But it is not necessarily true in massless 
theory. 
In that case, the propagators  
for diagonal elements become 
infinite. ikj

        2 2 2( ) ( ) 2 ( ) ( ) 2 ( ) ( ) 2

1 .
i j j k k ii j k p p m p p m p p m     





We have to be careful, when we apply 
Parisi’s rule to a massless theory such 
as gauge theory. 



( )22 , ,
4

d NS Tr A Aµ ν
π

λ
   = −   Λ 



We start with 

Violation of the center invariance 

and see under what circumstances it 
becomes gauge theory in d-dimensions.    

In order to make the problem clearer, 
we go in the opposite direction. 



Because     commute with each other, 
               is a classical minimum of the 
action. 

( )0 ˆA Pµ µ=

P̂µ

Therefore it is natural to consider the 
expansion around it,                    , 
and we then have 

ˆA P Aµ µ µ= + 

( )22 ˆ ˆ, .
4

d NS Tr P A P Aµ µ ν ν
π

λ
   = − + +   Λ 

  

We first consider the classical solutions. 



If the fluctuation      is small and the 
classical solution                is stable, we 
can safely apply Parisi’s rule and 
conclude that the theory is equivalent 
to the gauge theory in d-dimensions.  

Aµ


( )0 ˆA Pµ µ=

In the real world, however, the 
expectation values of the diagonal 
elements of       are so large that the 
classical value               is completely 
cancelled.  

( )0 ˆA Pµ µ=

Aµ




In order to see this, we evaluate the 
one-loop effective Lagrangian for 
the diagonal elements by integrating 
out the off-diagonal elements. 

(1)

( )N

p
A

p

µ

µ

µ

 
 

=  
 
 

∗

∗




The quadratic part of the action in 
the Feynman gauge is 

( )
( ) ( )

( ) ( ) ( ) ( ) ( )( )

2

2

22( ) ( )

,

2 * *( ) ( )
, , , ,

, , ,

,

i j

i j
i j

i j
i j j i i j j i

i j

S Tr P A P b P c

p p A

p p b c b c

µ ν µ µ

µ µ ν

µ µ

<

<

     = +     

= −

+ − +

∑

∑





and the effective Lagrangian is given by 
( ) ( )( )2(1 loop) ( ) ( )

eff 2 log .i j

i j
S d p pµ µ

−

<

= − −∑



If d > 2, the eigenvalues of  
are attractive, and collapse to a 
point. 

ˆA P Aµ µ µ= + 

This indicates the spontaneous breaking 
of the translational invariance of the 
eigenvalues.  

This is the continuum version of the 
center invariance.  

             is of order N2 for N variables. 
It is minimized in the large-N limit. 

(1 loop)
effS −

( )expU ia Aµ µ=
A A cµ µ→ +

iU e Uµθµ µ→



( )22 ,
4

d NS Tr A Aµ ν
π

λ
   = −   Λ 



The large-N reduced model 

5. Emergence of space-time 

describes d-dimensional space-time 
if the eigenvalues of      are uniformly 
distributed. 
However, it is not automatically realized. 
The eigenvalues collapse to one point 
unless we do something. 
Here we consider various ways to make 
the eigenvalues distributed. 

Aµ



Strong coupling 

If the coupling is sufficiently strong,  
the fluctuation may overwhelm the 
attractive force.  
It actually happens at least for the 
lattice version of the reduced model. 

( )† †
reduced

1

, .
d

c
NS Tr U U U Uµ ν µ ν

µ ν

λ λ
λ ≠ =

= − >∑



quenching 
Impose the constraint                 by hand. 
Then the perturbation series formally 
reproduce that of the d-dimensional 
gauge theory.  
However, this is rather formal, and the 
gauge invariance is no longer manifest. 

A lattice version of the quenching that 
keeps the manifest gauge invariance 
was proposed, but it trued out not to 
work. 

( )
,

0
i i

Aµ =

Bhanot-Heller-Neuberger,  
Gross-Kitazawa 



twisting 
  

   

If we expand      around the non-
commutative back ground  

(0) ˆ

ˆ ˆ, ( ),

A p

p p i B B
µ µ

µ ν µν µν

=

  = ∈  

the theory is equivalent to gauge theory in a 
non-commutative space-time. 

Aµ

Gonzalez-Arroyo, Korthals Altes (‘83) 



  

Because the equation of motion of the 
reduced model is given by 

, , 0,A A Aµ µ ν   =  

   

the non-commutative back ground  
 
is a classical solution. 

(0) ˆ ˆ ˆ, , ( ),A p p p i B Bµ µ µ ν µν µν = = ∈  

We expand      around it: Aµ
(0) ˆ .A A aµ µ µ= +

Next we introduce the following 
correspondence between operators 
and functions: 



  

   
ˆ ˆ( )exp( ) ( ) ( )exp( )

(2 ) (2 )

d d

d d
d k d ko o k ik x o x o k ik xµ µ

µ µπ π
= ↔ =∫ ∫ 

ˆ ˆ,B C x C pνλ λ µ µν
µν µ νδ= =where                                      . 

Then we can show the following rules: 

( )
( )

1 2 1 2

/ 2

ˆ ˆ, ,

ˆ ˆ * ,

detˆ ( ).
2

d
d

p o i o

o o o o

BTr o d x o x

µ µ

π

  ↔ ∂ 
↔

= ∫

The matrix model action becomes a field 
theory on the noncommutative space-time: 

( )
2

/ 2

det B 1tr
*42

d
dS d x Fµν

π
 = − 
 ∫



  

   One way to make the configuration  
(0) ˆ ˆ ˆ, , ( ),A p p p i B Bµ µ µ ν µν µν = = ∈  

stable is to modify the model to 

( )( )22 , .
4

d NS Tr A A i Bµ ν µν
π

λ
   = −   −Λ 



The lattice version of this is called the 
twisted reduced model: 

( )† †
reduced

1

.
d

iNS e Tr U U U Uµνθ
µ ν µ ν

µ νλ ≠ =

= − ∑
Gonzalez-Arroyo, Okawa  



  

   In the non-commutative gauge theory 

( )
2

/ 2

det B 1tr
42 *

d
dS d x Fµν

π
 = − 
 ∫

only planar diagrams survive in the high 
energy region, and the theory becomes 
equivalent to the large-N limit at least 
formally. 

Several MC analyses have been made on the 
twisted reduced model, and they found some 
discrepancy from the infinite volume theory. 



PART 2  Why do we expect  
                the IIB matrix model 
                describes superstring? 



1. Worldsheet as phase space 

For simplicity, we start with bosonic string. 

In the Schild action, the worldsheet can be 
regarded as a symplectic manifold, and the 
action is given by the integration of a 
quantity that is expressed in terms of the 
Poisson bracket. 

Worldsheet of string has a structure of 
phase space. 
It becomes manifest when we express the 
string in terms of the Schild action. 



Nambu-Goto action 
2 21 ,

2
ab

NG a bS d X Xµν µ νρ ξ ε= − − Σ Σ = ∂ ∂∫
is equivalent to the Schild action 

}{ 22 2
Schild

1 , ,
2 4 2

S d g X X d gµ να βξ ξ
π π

= −∫ ∫

}{
: volume density on the world sheet

1, : Poisson brac t.keab
a b

g

X Y X Y
g
ε= ∂ ∂

Here we regard the worldsheet as a phase space. 

Because ( )

( )

2

Schild

22
Schild

10
2

1 .
2 2

ab
a b

ab
a b

S g X X
g

S d X X

µ ν

µ ν

δ α ε
βδ

αβ
ξ ε

π

= ⇒ = − ∂ ∂

⇒ = − − ∂ ∂∫

Schild action 



Schild action has a structure of phase space. 

}{ 21 , .
2 4 2

X Xµ να β
π π

−

It is given by the integration over the phase 
space 

of a quantity that is expressed by the Poisson 
bracket 

2d gξ∫

symplectic structure of the worldsheet 

We have functions      on the phase space, 
and the action is written in terms of 
             and         . 

X µ

2d gξ∫ }{ , Worldsheet metric 
plays no role. 



2. Matrix regularization 

We want to regularize or discretize the 
worldsheet in order to perform the path 
integral. 

}{ [ ]

2

-symm

function matrix
1, ,

1

etry ( )-symmet y
2

r

A B A B
i

d g A T

W U N

rAξ
π
∞

→

→

→

→

∫

A natural discretization of phase space is 
the “quantization”. 



Then the Schild action becomes as 

( ) ( )2

Matrix
1 , 1 ,
4

S Tr A A Trµ να β = − 

and the path integral is regularized as 
[ ] ( ) ( )Schild Matrix

1

exp exp .
vol(Diff ) ( )n

dg dX dAZ iS iS
SU n

∞

=

= → ∑∫ ∫
Here we have used the phase space volume   
              is diff. invariant and becomes the 
matrix size               after the regularization. 

2d gξ∫
( )1Tr n=



Multi-string states 
One good point of the matrix regularization is 
that all topologies of the worldsheet are 
automatically included in the matrix integral. 
Disconnected worldsheets are also included as 
block diagonal configurations. 



Furthermore the sum over the size of the 
matrix that corresponds to a worldsheet is 
automatically included, if it is imbedded in a 
larger matrix as a sub matrix. 

( ) ( )2

Matrix
1 , 1 ,
4

S Tr A A Trµ να β = − 



If we take this picture that all the worldsheets 
emerge as sub matrices of a large matrix, the 
second term of   

( ) ( )2

Matrix
1 , 1
4

S Tr A A Trµ να β = − 

can be regarded as describing the chemical 
potential for the block size. 

Thus we expect that the whole universe is 
described by a large matrix that obeys  

( )21 , .
4

S Tr A Aµ να  =  

This is nothing but the large-N reduced model.  



On the other hand, if we start from type IIB 
superstring, we will get the reduced model for  
supersymmetric gauge theory. In this case 
eigenvalues do not collapse, and we can have 
non-trivial space-time. 

However, as we have seen, in this model the 
eigenvalues collapse to a point, and it can not 
describe an extended space-time. 
This might be related to the instability of 
bosonic string by tachyons.  



3. Schild action of IIB string 

We consider the Schild action of the type 
IIB superstring.  
Green-Schwarz action 

(

( )
)

2 2

1 1 2 2

1 1 2 2

1 1 2 2

1
2

,

,

GS

ab
a b b

ab
a b

ab
a b

a a a a

S d

i X

X i i

µ
µ µ

µ
µ

µν µ ν

µ µ µ µ

ρ ξ

ε θ θ θ θ

ε θ θ θ θ

ε

θ θ θ θ

= − − Σ

+ ∂ Γ ∂ + Γ ∂

+ Γ ∂ Γ ∂

Σ = Π Π

Π = ∂ − Γ ∂ + Γ ∂

∫ 1 2

( 0 ~ 9)
, :  10D Mayorana-Weyl

X µ µ

θ θ

=



κ-symmetry 

( )
( )

1 1

2 2

1 1 2 2

1 1

2 2

2

1

1 ,

1
12
2

X i i

κ

κ

µ µ µ
κ

µν
µν

δ θ α

δ θ α

δ θ α θ α

α κ

α κ

=

=

= Γ − Γ

= + Γ

= − Γ

Γ = Σ Γ
− Σ







N=2 SUSY 1 1
SUSY

2 2
SUSY

1 1 2 2
SUSY X i iµ µ µ

δ θ ε

δ θ ε

δ ε θ ε θ

=

=

= Γ − Γ



Gauge fixing for the κ-symmetry 1 2θ θ ψ= =

2 21 2 ,
2

.

ab
GS a b

ab
a b

S d i X

X X

µ
µ

µν µ ν

ρ ξ σ ε ψ ψ

σ ε

 
= − − + ∂ Γ ∂ 

 
= ∂ ∂

∫

N=2 SUSY 
1 1 1

SUSY
2 2 2

SUSY
1 2

SUSY
1 2

1

1 2
2

2

2

X X X

κ

κ

µ µ µ
κ

δ θ δ θ δ θ

δ θ δ θ δ θ

δ δ δ δ θ δ θ

ε εκ

ε εκ

= +

= +

= + ⇒ =

− +
=

−
=



N=2 SUSY 

( )

( )

( )

( )

1 2

1 2

1

2

1

2

2

2

2

1
12
2

0

X i

X

µν
µν

µ µ

µ

ε εξ

ε εε

δ ψ σ ε
σ

δ ε ψ

δ ψ ξ

δ

+
=

−
=

= − Γ
−

= Γ

=

=



Schild action 

N=2 SUSY 

}{ }{
Schild

22 21 , , ,
2 4 2 2

S
id g X X X d gµ ν µ

µ
α βξ ψ ψ ξ
π π

 = − Γ − 
 ∫ ∫

( ) }{
( )

( )

( )

1

1

2

2

1 ,
2

0

X X

X i

X

µ ν
µν

µ µ

µ

δ ψ ε

δ ε ψ

δ ψ ξ

δ

= − Γ

= Γ

=

=

Everything is 
written in terms 
of the Poisson 
bracket. 



Matrix regularization 

( )

( )

( )

( )

1

1

2

2

1
2

0

F

A i

A

µν
µν

µ µ

µ

δ ψ ε

δ ε ψ

δ ψ ξ

δ

= − Γ

= Γ

=

=

( ) ( )2

Matrix
1 1, , 1 .
4 2

S Tr A A A Trµ
µ ν µα ψ ψ β   = − − Γ −     

N=2 SUSY 

Applying the matrix regularization, we have 

,F i A Aµν µ ν ← = −  



IIB matrix model 

( )2

Matrix
1 1, , .
4 2

S Tr A A Aµ
µ ν µα ψ ψ   = − − Γ     

Drop the second term, and consider large-N 

This is the reduced model of 10D super 
YM theory. 
A good point is that the N=2 SUSY is 
maintained after the discretization. 

IIB matrix model 

Ishibashi, HK, 
Kitazawa, Tsuchiya 



N=2 SUSY 

One of the N=2 SUSY is nothing but the 
supersymmety of the 10D super YM theory.  

( )

( )

1

1

1
2

F

A i

µν
µν

µ µ

δ ψ ε

δ ε ψ

= − Γ

= Γ

( )2

Matrix
1 1, ,
4 2

S Tr A A Aµ
µ ν µα ψ ψ   = − − Γ     

Even so, they form non trivial N=2 SUSY: 

( )

( )

2

2 0Aµ

δ ψ ξ

δ

=

=

The other one is almost trivial. 

( ) ( ){ } ( ) ( ){ } ( ) ( ){ }1 1 2 2 1 2, 0, , 0, , .Q Q Q Q Q Q P= = =



4. Open questions 

We expect that the IIB matrix model  
)],[

2
1],[

4
1(1 2

2 ΨΨ+−= µµνµ γ AAATr
g

S

gives a constructive definition of superstring. 

However there are some fundamental 
open questions.  

(1) Is an infrared cutoff  necessary? 
(2) How the large-N limit should be taken? 
(3) How does the space-time emerge? 
(4) Does diff. invariance exist rigorously?  



IS IR cutoff necessary? 
Because of the supersymmetry the force 
between eigenvalues cancels between 
bosons and fermions   

( ) ( )( )2(1 ) ( ) ( )

,
2 log 0loop i j

eff F
i j

S D d p p− = − − − =∑

It seems that we have to impose an infrared 
cutoff by hand to prevent the eigenvalues 
from running away to infinity. 

( )eigenl A lµ− < <



But there is a subtlety. 
The diagonal elements of fermions are zero 
modes of the quadratic part of the action. 
We should keep them when we consider the 
effective Lagrangian.  
The one-loop effective Lagrangian for the 
diagonal elements is given by 

(1)

( )N

p
A

p

µ

µ

µ

 
 

=  
 
 

∗

∗


( )

( )

1

N

ξ
ψ

ξ

 
 

=  
 
 

∗

∗


( ) ( ) ( )

( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )

( ) ( )( )( )

4 8
, ,1-loop

eff

2, 2,

, ,
4 8

.

i j i j

i j

i j
i j i j

i j
i j

S S
S x tr

p pS
p p

µαν α α

µ ν

ξ

ξ ξ ξ ξ

<

 
= +  

 

−
= − Γ −

−

∑

Aoki,  Iso, Kitazawa,  
Tada, HK 



Because of the fermionic degrees of freedom, 
there appears a weak attractive force between 
the eigenvalues, and the partition function 
becomes finite.  
However it is not clear whether all the 
correlation functions are finite or not. 
           ⇒Nishimura’s talk 

Austing and Wheater, 
Krauth, Nicolai and Staudacher, 
Suyama and Tsuchiya, 
Ambjorn, Anagnostopoulos, Bietenholz, Hotta and 
Nishimura, 
Bialas, Burda, Petersson and Tabaczek, 
Green and Gutperle, 
Moore, Nekrasov and Shatashvili. 



( ) ( ) ( )( )1-loop(1 loop) 16 ( )
effexp ,i

i

Z p d S pξ ξ− = −∏∫

( , )i jS ( ) ( )i jξ ξ−

( )( , ) 0, 8n
i jS n= >

 
To estimate the order of this interaction, we 
first integrate out the fermionic variables 

Since   is quadratic in  
which has only 16 components, we have 

and    

( ) ( )( ) ( ) ( )

( ) ( )( )

4 8
, ,1-loop

eff

4 8
( , ) ( , )

exp , exp
4 8

1 tr tr .

i j i j

i j

i j i j
i j

S S
S p tr

a S b S

ξ
<

<

  
 − = −  + 

    

= + +

∑

∏



( ) ( )4 8
( , ) ( , )1, tr , tri j i ja S b S

ξ

16 ( )

1

N
i

i

d ξ
=
∏∫

( ) ( ) ( )( ) ( ) ( )( )
( )( )

(1 loop)

various terms

exp .

i j i jZ p f p p f p p

O N

α α α α
′ ′− = − −∑ 



Therefore, for each pair of i and j we have 3 
choices 

which carry the powers of  
0, 8, 16 respectively.  

Therefore the number of factors other than 1 
should be less than or equal to  2N, and  we 
can estimate as 

. 

 
    

  

On the other hand, we have  16N   dimensional  
fermionic integral              . 

2N≤



. 

 
    

  

This should be compared to the bosonic case  

( ) ( ) ( ) ( )( )
( )

2
(1 loop)

2

exp 2 log

exp ( )

i j

i j
Z p D p p

O N

−

<

 
= − − − 

 
∑



SUSY reduces the attractive force by at least 
a factor 1/N.  
In the naïve large-N limit, simultaneously 
diagonal backgrounds are stable.  
It is not clear what happens in the double 
scaling limit. 



How to take large-N limit 
In the IIB matrix model , A are the space-
time coordinates. 

)],[
2
1],[

4
1(1 2

2 ΨΨ+−= µµνµ γ AAATr
g

S

g has dimensions of length squared. 

How is the Planck scale expressed? 
If it does not depend on the IR cutoff  l, as 
we normally guess, we should have 

1
2

Planck .l N gα=

In other words, we should take the large-N 
limit keeping this combination finite. 

 ?α←

At present we have no definite answer. 



How does the space-time emerge? 

If we regard the IIB matrix model  
)],[

2
1],[

4
1(1 2

2 ΨΨ+−= µµνµ γ AAATr
g

S

as the matrix regularization of the Schild 
action, Aμ are space-time coordinates. 

On the other hand if we regard it as the 
large-N reduced model, the diagonal 
elements of Aμ represent momenta. 
It is not a priori clear how the space-time 
emerges from the matrix degrees of 
freedom. 



   
 

0 1 , 0, ,3
,

0, 4, ,9
kp

A m
m

m
m

   





where       satisfies pm

One interesting possibility is to consider a 
non-commutative back ground such as 

ˆ ˆ, ( ),p p i B Bµ ν µν µν  = ∈  

we have a flat space with SU(k) gauge theory. 

There are many possibilities to realize the 
space-time. 



Actually various models that are close to the 
standard model can be constructed by choosing 
the background properly. 

“Intersecting branes and a standard model realization 
in matrix models.” 

A. Chatzistavrakidis, H. Steinacker,  and G. Zoupanos. 
JHEP09(2011)115   

(ex.) 

⇒Aoki,  Nishimura, Tsuchiya’s talk 



Diff. invariance and gravity 

Because we have exact N=2 SUSY, it is 
natural to expect to have graviton in the 
spectrum of particles.  

There are some evidences. 
(1) Gravitational interaction appears from 

one-loop integral. 
(2) Emergent gravity by Steinacker. Gravity 

is induced on the non-commutative back 
ground. 



However, it would be nicer, if we can 
understand how the diffeomorphism 
invariance is realized in the matrix model. 



5. Prospect 

The IIB matrix model is well defined, and in 
principle it is possible to determine the vacuum 
structure of string theory. 

Although at present we do not know an 
effective scheme to obtain the ground state, at 
least numerical analyses are possible and 
hopefully the problems above will be solved in 
near future. 

It is important to examine string theory in a 
non-perturbative manner. 
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