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Matrix models

1 2D quantum gravity is the enumeration of random
triangulations of surfaces.

Its asymptotic behaviour is captured by the matrix
model partition function

Z =

∫

dM exp
(

−N
∑

n

tn tr(Mn)
)

, M = M∗ ∈ MN (C)

For N → ∞, this series in (tn) is evaluated in terms of
the τ -function for the Korteweg-de Vries (KdV) hierarchy.

2 2D topological quantum gravity has correlation functions
which are intersection numbers of complex curves.

They can be arranged into a generating functional with
series parameters (tn).

[Witten, 1990] conjectured that both (tn)-series are the same.
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The Kontsevich model

[Kontsevich, 1992] computed the intersection numbers in
terms of weighted sums over ribbon graphs.

He proved these graphs to be generated from the Airy
function matrix model (Kontsevich model)

Z[E ] =

∫

dM exp
(
− 1

2 tr(EM2) + i
6 tr(M3)

)

∫

dM exp
(
− 1

2 tr(EM2)
)

, M=M∗∈MN (C)

for E = E∗ > 0 and tn = (2n−1)!!tr(E−(2n−1)).

Limit N → ∞ of Z[E ] gives the KdV evolution equation,
thus proving Witten’s conjecture.
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A matrix model inspired by noncommutative QFT

The simplest QFT on a 4D noncommutative manifold can
be written as a matrix model

Z[E , J, λ] =

∫

dM exp
(
− tr(EM2) + tr(JM)− λ

4 tr(M4)
)

∫

dM exp
(
− tr(EM2)− λ

4 tr(M4)
)

,

where E = E∗ ∈ MN (C) is the 4D Laplacian, λ ≥ 0 and
J ∈ MN (C) generates correlation functions.
In joint work with Raimar Wulkenhaar [arXiv:1205.0465v4]
we achieved the exact solution of Z[E , J, λ] for N → ∞
and after renormalisation of E , λ.
Schwinger functions describe a commutative 4D QFT
[arXiv:1306.2816]. “Particles” interact without momentum
transfer. There are non-trivial topological sectors.
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Field-theoretical matrix models

classical scalar field φ ∈ C0(R
d) ⊂ B(H), with m

2

∫

Rd dx φ2(x)

translates to tr(φ2) < ∞, i.e. nc scalar field is
Hilbert-Schmidt compact operator on Hilbert space H = L2(I, µ)

realise as integral kernel operators: M = (Mab) ∈ L2(I×I, µ×µ)

product: (MN)ab =
∫

I dµ(c) MacMcb

trace: tr(M) =
∫

I dµ(a) Maa

adjoint: (M∗)ab = Mba

action = non-linear functional S for φ = φ∗ in volume V :

S[φ] = V tr(Eφ2 + P[φ])

E – unbounded positive selfadjoint op. with compact resolvent,
P[φ] – polynomial in φ with scalar coefficients

partition function Z[J] =
∫

Dφ exp(−S[φ] + V tr(φJ))
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Topological expansion

Connected Feynman graphs in matrix models are ribbon
graphs.

Viewed as simplicial complexes, they encode the topology
(B,g) of a genus-g Riemann surface with B boundary
components (or punctures, marked points, holes, faces).

The k th boundary component carries a cycle
JNk

p1...pNk
:=
∏Nk

j=1 Jpj pj+1 of Nk external sources, Nk + 1 ≡ 1.

Expand logZ[J] =
∑ 1

S V 2−BG|p1...pN1
|...|q1...qNB

|J
N1
p1...pN1

· · ·JNB
q1...qNB

according to the cycle structure.
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Ward identity

Unitary transformation φ 7→ UφU∗ leads to Ward identity

0 =

∫

Dφ
[

Eφφ− φφE − Jφ+ φJ
]

exp(−S[φ] + V tr(φJ))

that describes how E , J break the invariance of the action.

. . . choose E (but not J) diagonal, use φab = ∂
V∂Jba

:

Proposition [Disertori-Gurau-Magnen-Rivasseau, 2006]

The partition function Z[J] of the matrix model defined by the
external matrix E satisfies the |I| × |I| Ward identities

0 =
∑

n∈I

( (Ea − Ep)

V
∂2Z

∂Jan∂Jnp
+ Jpn

∂Z
∂Jan

− Jna
∂Z
∂Jnp

)

For E of compact resolvent we can always assume that
m 7→ Em > 0 is injective!
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We turn the Ward identity for E injective into formula for
∑

n∈I
∂2Z[J]
∂Jan∂Jnp

. The J-cycle structure in logZ creates

singular contributions ∼ δap

regular contributions present for all a,p

Theorem (Ward identity for injective E )
∑

n∈I

∂2Z[J ]
∂Jan∂Jnp

= δap

{

V
∑

(K )

JP1 · · · JPK

SK

(∑

n∈I

G|an|P1|...|PK |+G|a|a|P1|...|PK |

+
∑

r≥1

∑

q1....qr∈I

G|q1aq1...qr |P1|...|PK |J
r
q1...qr

)

+V 2
∑

(K ),(K ′)

JP1 · · ·JPK JQ1 · · ·JQK ′

SK SK ′

G|a|P1|...|PK |G|a|Q1|...|QK ′ |
}

Z[J ]

+
V

Ep − Ea

∑

n∈I

(

Jpn
∂Z[J ]
∂Jan

−Jna
∂Z[J ]
∂Jnp

)
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How to use the Ward identity

Write S = V
2

∑

a,b(Ea + Eb)φabφba + VSint [φ].
Functional integration yields, up to irrelevant constant,

Z[J] = e−VSint [
∂

V∂J ]e
V
2 〈J,J〉E , 〈J, J〉E :=

∑

m,n∈I

JmnJnm

Em + En

Example: G|ab| (for a 6= b)

G|ab| =
1

VZ[0]
∂2Z[J]
∂Jba∂Jab

∣
∣
∣
J=0

=
1

VZ[0]

{ ∂

∂Jba
e−VSint

[
∂

V∂J

]
∂

∂Jab
e

V
2 〈J,J〉E

}

J=0

=
1

Ea + Eb
+

1
(Ea + Eb)Z[0]

{(

φab
∂(−VSint)

∂φab

)[ ∂

V∂J

]}

Z[J]
∣
∣
∣
J=0

∂(−VSint)

∂φab
contains, for any P[φ], the derivative

∑

n
∂2

∂Jan∂Jnp
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Schwinger-Dyson equations (for Sint [φ] =
λ
4 tr(φ4))

The previous formula lets the usually infinite tower of
Schwinger-Dyson equations collapse:
after genus expansion G... =

∑∞
g=0 V−2gG(g)

... :

1. A closed non-linear equation for G(0)
ab (planar+regular):

G(0)
|ab| =

1
Ea + Eb

− λ

V (Ea + Eb)

∑

p∈I

(

G(0)
|ab|G

(0)
|ap| −

G(0)
|pb| − G(0)

|ab|
Ep−Ea

)

2. For every other G(g)
a1...aN

an equation which only depends on

G(g)
a1...ak

for k ≤ N,

G(h)
a1...ak

with h < g and k ≤ N + 2;

this dependence is linear in the top degree (N,g)

Some G... need renormalisation of E , M, and λ!
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Exact solution for φ = φ∗

Reality implies invariance under orientation reversal

G|p1
0p1

1...p
1
N1−1|...|pB

0 pB
1 ...p

B
NB−1|

= G|p1
0p1

N1−1...p
1
1|...|pB

0 pB
NB−1...p

B
1 |

empty for G|ab|
cancellations in (Ea+Eb1)Gab1b2...bN−1

−(Ea+EbN−1
)GabN−1...b2b1

Theorem (universal algebraic recursion formula)
G|b0b1...bN−1|

= (−λ)

N−2
2∑

l=1

G|b0b1...b2l−1|G|b2lb2l+1...bN−1| − G|b2l b1...b2l−1|G|b0b2l+1...bN−1|
(Eb0 − Eb2l )(Eb1 − EbN−1)

+
(−λ)

V

N−1∑

k=1

G|b0b1...bk−1|bk bk+1...bN−1| − G|bk b1...bk−1|b0bk+1...bN−1|
(Eb0 − Ebk )(Eb1 − EbN−1)

Last line increases the genus and is absent in G(0)
|b0b1...bN−1|
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Further observations
Non-planar contributions with genus g ≥ 1 are suppressed
by V−2g . In limit V → ∞, full function and its restriction to
planar sector satisfy the same equations.

The non-linear equation

G(0)
|ab| =

1
Ea + Eb

− λ

V (Ea + Eb)

∑

p∈I

(

G(0)
|ab|G

(0)
|ap| −

G(0)
|pb| − G(0)

|ab|
Ep−Ea

)

is not algebraic and to be solved case by case for given E.

Divergent index sums can possibly be renormalised by

Ea 7→ Z (Ea +
µ2

2 − µ2
bare
2 ) and λ 7→ Z 2λ.

Pattern extends to B ≥ 2 boundary components: Equation
for (N1+ . . .+ . . .NB)-point functions G|p1

1...p
1
N1

|...|pB
1 ...p

B
NB

| is

1 universally algebraic if one Ni ≥ 3
2 an affine equation to be solved case by case if all Ni ≤ 2.

The coefficients are known by induction.
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Renormalisation theorem
The renormalisation leaves algebraic equations invariant:

Theorem

Given a real scalar matrix model with S = V tr(Eφ2 + λ
4φ

4) and
m 7→ Em injective, which determines the set G|p1

1...p
1
N1

|...|pB
1 ...p

B
NB

|
of (N1+ . . .+ . . .NB)-point functions.

Assume the basic functions with all Ni ≤ 2 are turned finite by

Ea 7→ Z (Ea +
µ2

2 − µ2
bare
2 ) and λ 7→ Z 2λ.

Then all functions with one Ni ≥ 3

1 are finite without further need of a renormalisation of λ, i.e.
all renormalisable quartic matrix models have vanishing
β-function.

2 are given by algebraic recursion formulae in terms of
renormalised basic functions with Ni ≤ 2.
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Graphical realisation (B = 1, g = 0)

Gb0b1b2b3
= (−λ)

Gb0b1
Gb2b3

−Gb0b3
Gb2b1

(Eb0 − Eb2)(Eb1 − Eb3)
= −λ

{

•
•

+ •
•

}

Gb0...b5 = λ2

{

•
•

+
••

+
•

•

+

(

•
•

+ •
•

+ •
• )

+

( ••
+

••
+

•• )}

bi bj = Gbibj
leads to non-crossing chord diagrams; these are
counted by the Catalan number C N

2
= N!

(N
2 +1)!N

2 !
bi bj = 1

Ebi
−Ebj

leads to rooted trees connecting the even or odd
vertices, intersecting the chords only at vertices
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φ4
4 on Moyal space with harmonic propagation

Moyal product (f ⋆ g)(x) =
∫

Rd×Rd

dx dk
(2π)d f (x+ 1

2Θk) g(x+y) ei〈k ,y〉

S[φ]=64π2
∫

d4x
(Z

2
φ⋆
(
−∆+Ω2(2Θ−1x)2 + µ2

bare

)
φ+

λZ 2

4
φ⋆φ⋆φ⋆φ

)

(x)

renormalisable as formal power series in λ

[HG+R.Wulkenhaar, 2004]

(renormalisation of µ2
bare, λ,Z ∈ R+ and Ω ∈ [0,1])

means: well-defined perturbative quantum field theory
Langmann-Szabo duality (2002): theories at Ω and Ω∗ = 1

Ω
are the same; self-dual case Ω = 1 is matrix model
β-function vanishes to all orders in λ for Ω = 1
[Disertori-Gurau-Magnen-Rivasseau, 2006]
means: almost scale-invariant

Is the self-dual (critical) model integrable?
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Matrix basis and thermodynamic limit
Moyal algebra has matrix basis [Gracia-Bondı́a+Várilly, 1988]:

φ(x)=
∑

m,n∈N2

φmnfmn(x), fmn(x) = fm1n1(x
0, x1)fm2n2(x

3, x4)

fmn(y0, y1)= 2(−1)m

√

m!

n!

(
√

2
θ

y
)n−m

Ln−m
m

(2|y |2)
θ

)

e− |y|2

θ , y = y0+iy1

satisfies (fkl ⋆ fmn)(x) = δml fkn(x),
∫

R4 dx fmn(x) = (2πθ)2δmn

previous action becomes for Ω = 1

S[φ] = V
(

∑

m,n∈N2
N

Em φmnφnm +
Z 2λ

4

∑

m,n,k,l∈N2
N

φmnφnkφklφlm

)

Em= Z
( |m|√

V
+

µ2
bare

2

)

, |m| := m1 + m2 ≤ N

V =
(
θ
4

)2 is for Ω = 1 the volume of the noncommutative
manifold which is sent to ∞ in the thermodynamic limit.

We do this in a scaling limit N√
V
= Λ2µ2 = const
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Integral equations

Matrix indices become continuous
|p|√

V
7→ µ2p with p ∈ [0,Λ2]

Normalised planar 2-point function Gab = µ2G(0)
|ab|, a,b ∈ [0,Λ2]

Difference of eqns for Gab and Ga0 cancels worst divergence

Renormalisation µbare 7→ µ and Z−1 7→ (1 + Y) by
normalisation conditions G00 = 1 and dGab

db

∣
∣
a=b=0 = −(1 + Y)

Integral equation for Hölder-continuous Gab and Λ → ∞
(b

a
+

1 + λπaHa
[
G•0

]

aGa0

)

Dab − λπHa
[
D•b

]
= −Ga0

where

Dab := a
b (Gab − Ga0), Y = −λ

∫∞
0

dp
p Dp0

Hilbert transform Ha[f (•)] := 1
π

lim
ǫ→0

(

∫ a−ǫ

0
+

∫ ∞

a+ǫ

) f (q)dq
q − a
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The Carleman equation

Theorem [Carleman 1922, Tricomi 1957]

The singular linear integral equation

h(x)y(x) − λπHx [y ] = f (x) , x ∈ [−1,1]
is for h(x) continuous + Hölder near ±1 and f ∈ Lp solved by

y(x)=
sin(ϑ(x))

λπ

(

f (x) cos(ϑ(x))

+eHx [ϑ]Hx

[

e−H•[ϑ]f (•) sin(ϑ(•))
]

+
CeHx [ϑ]

1 − x

)

ϑ(x) = arctan
[0, π]

( λπ

h(x)

)

, sin(ϑ(x)) =
|λπ|

√

(h(x))2 + (λπ)2

where C is an arbitrary constant.

Assumption: C = 0
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Solution

angle ϑb(a) := arctan
[0, π]

(

λπa

b + 1+λπaHa[G•0]
Ga0

)

Ga0 is solved for ϑ0(a): Ga0 = sin(ϑ0(a))
|λ|πa eHa[ϑ0(•)]−H0[ϑ0(•)]

Addition theorems and Tricomi’s identity

e−Ha[ϑb] cos(ϑb(a)) +Ha

[

e−H•[ϑb] sin(ϑb(•)
]

= 1 give:

Theorem

Gab=
sin(ϑb(a))

|λ|πa
eHa[ϑb]−H0[ϑ0] =

eHa[ϑb(•)]−H0[ϑ0(•)]
√

(λπa)2 +
(
b+1+λπaHa[G•0]

Ga0

)2

Consequence: Gab ≥ 0!

Y = λ

∫ ∞

0

dp

(λπp)2 +
(1+λπpHp[G•0]

Gp0

)2
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The self-consistency equation

Given boundary value Ga0,

-

6

a

b

Λ2

Λ2

0

Gab

Carleman computes Gab,
in particular G0b

symmetry forces Gb0 = G0b

Master equation

The theory is completely determined by the solution of the fixed
point equation G = TG

Gb0 =
1

1+b
exp

(

− λ

∫ b

0
dt
∫ ∞

0

dp

(λπp)2 +
(
t + 1+λπpHp [G•0]

Gρ0

)2

)
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Existence proof

The operator T satisfies assumptions of Schauder fixed point
theorem. Define

Kλ :=
{

f ∈ C1
0(R+) : f (0) = 1 , 0 < f (b) ≤ 1

1+b ,

0 ≤ −f ′(b) ≤
( 1

1+b + Cλ

)
f (b)

}

with Cλ from 2λP2
λ(1+Cλ)eCλPλ = 1 at Pλ =

exp(− 1
λπ2 )√

1+4λ
. Then:

1 Kλ convex

2 TKλ ⊂ Kλ

3 (Tf )′′(b) ≤
(23

4 + 2
π
+ 7+8π

2
1

(λπ2Pλ)2

)
(Tf )(b) for any f ∈ Kλ.

⇒ TKλ is relatively compact in Kλ by variant of Arzelá-Ascoli

4 T : Kλ → Kλ is continuous

This provides exact solution of φ4-QFT on 4D Moyal space at θ→∞
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Translation to 4D Euclidean QFT model
infinite volume limit V → ∞ requires densities

Schwinger functions

µNSc(µx1, . . . , µxN)

:= lim
Vµ4→∞

∑

m1,n1,...,mN ,nN∈N2

fm1n1(x1) · · · fmNnN (xN)
µ4N∂NF [J]

∂Jm1n1 . . . ∂JmNnN

∣
∣
∣
∣
J=0

F [J] :=
1

64π2V 2µ8 log





∫
D[φ] e−S[φ]+V

∑
a,b∈N2 φabJba

∫
D[φ] e−S[φ]





Zµ2
bare

7→µ2

Z 7→(1+Y)

J-cycle structure in F produces fmn-cycles for every face:
∑

m1,...,mj
fm1m2 · · · fmj−1mj fmjm1G|...|m1...mj |...|

Write G|...|m1...mj |...| for every face as Laplace transform in
|m1|+···+|mj |√

V
and Fourier transform in |mi+1|−|mi |√

V
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Lemma
(with J + i ≡ i , |zi | < 1)

∞∑

m1,...,mJ=0

J∏

i=1

zmi
i Lmi+1−mi

mi
(ri) =

exp

(

−
∑J

i,k=1 ri(zk+i · · · zJ+i)

1 − (z1 · · · zJ)

)

1 − (z1 · · · zJ)

1−(z1· · ·zJ)
V→∞−→

{

2 (J odd)
t√
V

(J even) (t – Laplace par., r ∝ x2
√

V
)

gives factor V #(even faces), and G gives factor V−#(all faces)

Proposition
Sc(µx1, . . . , µxN)

=
1

64π2

∑

j1+···+jB=N
jβ even

∑

σ∈SN

( B∏

β=1

4jβ

jβ

∫

R4

d4pβ

4π2µ4 ei
〈

pβ
µ
,
∑jβ

i=1(−1)i−1µxσ(j1+···+jβ−1+i)

〉)

× G
(

‖p1‖2

2µ2(1+Y)
, · · · , ‖p1‖2

2µ2(1+Y)
︸ ︷︷ ︸

j1

∣
∣ . . .

∣
∣ ‖pB‖2

2µ2(1+Y)
, · · · , ‖pB‖2

2µ2(1+Y)
︸ ︷︷ ︸

jB

)
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Results

Only a restricted sector of the matrix model contributes to
position space: All faces have common matrix indices.

Schwinger functions are symmetric and invariant under the
full Euclidean group (this is limit θ → ∞!)

Most interesting sector: every face has ji = 2 indices. This
describes propagation and interaction of B particles,
without any momentum exchange

Similar to free particles, but (N1+ . . .+NB)-point functions
violate clustering. There are non-trivial topological sectors.

Analytic continuation to Minkowski space and
Osterwalder-Schrader reflection positivity would follow (at
least for 2-point function) if a 7→ Gaa is a Stieltjes function.
f Stieltjes ⇔ f -smooth, f (x) ≥ 0, (−1)n d2n+1

dx2n+1 (xn+1f (x)) ≥ 0

This can at best be the case for wrong sign λ < 0.
Harald Grosse Exact solution of the quartic matrix model and application to 4D NCQFT



Introduction Solution of quartic matrix model Moyal φ4
4-theory in matrix basis Position space Outlook Appendix

Next steps

(Analysis): The homogeneous Carleman equation has
non-trivial solutions not taken into account. They arise from a
winding number and seem to be relevant for λ > 1

π
.

We are currently performing computer simulations.

The (important!) uniqueness proof needs prior clarification of
this freedom.
(2D model): Carrying these methods and results over to 2D
Moyal space is easy. But the master equation has a singularity
at a = 0 (infrared) so that the Schauder existence proof does
not work in the same way.
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Future steps

(2D quantum gravity) should have equivalent descriptions as
cubic and quartic matrix model.
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Quartic models show positivity and boundedness from below.
They admit techniques from constructive QFT (loop vertex
expansion) not possible in cubic model.

Our solution of the quartic matrix model might be useful in 2D
quantum gravity and algebraic geometry.

(Coloured tensor models) extend these methods to quantum
gravity in D ≥ 3. They have Schwinger-Dyson equations and
action of U(∞) group. Our method might generalise to this class.
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Computer simulations

We implement Ga0 for a ∈ [0,Λ2] as piecewise-linear
function with edges arranged as geometric progression.

We find numerically that the operator T in the fixed point
equation G = TG satisfies the assumptions of the Banach
fixed point theorem in Lipschitz space.

Convergence of the sequence Gn+1
a0 = (TGn)a0 is

established for λ ≥ −1.

There is no discontinuity of Ga0(λ) at λ = 0.

The required symmetry Gab = Gba is numerically
– verified for 0 ≤ λ ≤ 1

π

– increasingly violated for λ > 1
π

Solution of homogenous equation to be added for λ < 0
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asymmetry supa,b |Gab − Gba|
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log Ga0 and log Gaa as function of log(1 + a)
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For 0 ≤ λ ≤ 1
π

we have Gaa ≈ C
(1+a)1+η with η > λ.

Such functions are not Stieltjes.

For λ ≥ 1.1
π

the function Gaa suddenly bends (here at
a ≈ 105) and increases the (negative) slope by 1.

This signals necessity of the non-trivial solution
of the homogeneous Carleman equation
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Taking the non-trivial solution into account

Gab is parametrised by a constant C and possibly an arbitrary
function f (b). These may depend on (λ,Λ2).

Gab =
eHΛ

a[ϑb]−HΛ
0[ϑ0] sin(ϑb(a))
|λ|πa

(

1 +
Λ2
(
aC + bf (b)

)

Λ2 − a

)

Assuming f (b) = 0, then the fixed-point equation is unchanged,
and C can be computed from Ga0

G0a
:
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