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Introduction

Introduction

• To reduce the number of independent couplings of a theory one can
impose a symmetry.

• Also we can adopt a more general approach.

• We reduce this number by imposing relations between the couplings.

• The relations between the dimensionless couplings are such that
renormalizability is preserved and are independent of the renormalization
point.

• The method is developed for the reduction from n+1 coupling
parameters g0, g1, ..., gn to a description in terms of g0 only. (W.
Zimermann, 1985)
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General Method of Reduction

General Method of Reduction

Our aim is to express g1, g2, ..., gn as functions of g0 so that a model
involving a single coupling parameter λ0 is obtained which is again
invariant under the renormalization group. They can be written as

gj = gj(g0) j = 1, ..., n (1)

Invariance of the Green’s functions of the original system under
renormalization group impliesM

∂

∂M
+

n∑
j=0

βj
∂

∂gj
+ γ

G (pi ,M, g0, g1, ..., gn) = 0

where M, βj , γ are the renormalization mass, the beta functions and the
anomalous dimension correspondingly.
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General Method of Reduction

And for the reduced system(
M

∂

∂M
+ β′

∂

∂g0
+ γ′

)
G ′(pi ,M, g0, g1(g0), ..., gn(g0)) = 0

We can see that G’ is obtained from G by substituting the functions (1)

G ′ = G (g0, g1(g0), ..., gn(g0))

Differentiating with respect to g0

dG ′

dg0
=
∂G

∂g0
+

n∑
j=1

∂G

∂gj

dgj
dg0

From the above equations we have

β′ = β0, γ
′ = γ, β′

dgj
dg0

= βj

So the functions (1) must satisfy the following differential equations, the
Reduction Equations

βj = β0
dgj
dg0
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General Method of Reduction

For simplicity we assume that the original system has two coupling
parameters, g0 and g1. The beta-functions can be written

β0 = b0g
2
0 + ....

β1 = c1g
2
1 + c2g0g1 + c3g

2
0 ....

The reduction equation is

β1 = β0
dg1
dg0

Assuming power series solution:

g1 = p
(1)
0 g0 +

∑
n=1

p
(1)
n g

(n+1)
0

at lowest order we end up with a quadratic equation:

c1p
2
0 + (c2 − b0)p0 + c3 = 0
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Application in the MSSM

Application in the MSSM

• Assuming that α2 gauge coupling can be related with the α1 gauge

coupling (αi =
g2
i

4π ) we have the following reduction equation

β2 = β1
dα2

dα1
(2)

where

β2 ≡
dα2

dt
=

b2
2π
α2
2, β1 ≡

dα1

dt
=

b1
2π
α2
1, t = logE

and

b2 = 1, b1 = 11
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Application in the MSSM

We can write α2 in lowest order in perturbation theory as

α2 = c0α1

Substituting this relation to the reduction equation (2)

c0 =
β2
β1

=
b2α

2
2

b1α2
1

=
b2c

2
0α

2
1

b1α2
1

⇒

c0 = 11

Hence α2 can be written as

α2 = 11α1
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Application in the MSSM

We can check now if this result is compatible with the experimental values.

1

αem
=

1

α1
+

1

α2
⇒

αem =
11

12
α1

We know that

sin2 θw =
αem

α2
⇒

sin2 θw =
11

12

α1

11α1
=

1

12
= 0.08333

which is unacceptable because

sin2 θexpw = 0.23146± 0.00017
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Application in the MSSM

• Following the same procedure we assume that αtop Yukawa coupling can
be related with the αbottom Yukawa coupling, so they must satisfy the
reduction equation

βtop = βbottom
dαtop

dαbottom
⇒

dαtop

dαbottom
=
βt
βb

=
αt(6αt + αb − 13

15α1 − 3α2 + 16
3 α3)

αb(6αb + αt + ατ − 7
15α1 − 3α2 + 16

3 α3)

We can for simplicity neglect the contribution from the τ and the small
difference between 13

15 and 7
15 , so

βt
βb

=
αt(6αt + αb − 13

15α1 − 3α2 + 16
3 α3)

αb(6αb + αt − 13
15α1 − 3α2 + 16

3 α3)
(3)
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Application in the MSSM

Assuming again power series solution of the reduction equation we can
write

αt = d0αb

The derivative of the ratio of the two Yukawa couplings must be zero

d

dt
(
αt

αb
) = 0⇒

1

α2
t

(αbβt − αtβb) = 0⇒

αt

αb
=
βt
βb
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Application in the MSSM

Eqn. (3) becomes

αt

αb
=
αt(6αt + αb − 13

15α1 − 3α2 + 16
3 α3)

αb(6αb + αt − 13
15α1 − 3α2 + 16

3 α3)
⇒

6αt + αb −
13

15
α1 − 3α2 +

16

3
α3 = 6αb + αt −

13

15
α1 − 3α2 +

16

3
α3 ⇒

αt = αb
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Application in the MSSM

•The next thing to do is to solve numerically the one-loop coupled
differential equations of top and bottom Yukawa couplings taken account
the τ contribution and the difference between the numerical factors, to see
if such a relation like the previous one can exist.

• First, we solve the differential equations for the gauge and Yukawa
couplings in the SM. And then at MSUSY we impose the next boundary
conditions for some values of tanβ

αt(SM) = αt(MSSM) sin2 β

αb(SM) = αb(MSSM) cos2 β

ατ (SM) = ατ (MSSM) cos2 β
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Application in the MSSM
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Application in the MSSM
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Summary

Summary

• No possible reduction between the gauge couplings.

• Assuming tanβ = 56 we can relate top and bottom Yukawa couplings.

• The idea of reduction of couplings in a field theory is very appealing,
since it increases its predictive power. This method has led to Finite
Unified Theories with succesfull calculation of top quark mass.
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