Beyond the SM and the LHC

Corfu, September, 2013

Graham Ross

Its been a great year: ≏[°] 10⁵ Higgs(?) discovery! Combined observed ATLAS Preliminary III observed γγ+IIII observed γγ+IIII+IvIv observed Combined expected 10^{3} √s = 7TeV, Ldt = 4.6-4.8 fb^{-†} √s = 8TeV, ∫Ldt = 13 fb⁻¹ 10 10⁻¹ 2σ 3σ 10⁻³ $=4\sigma$ 10⁻⁵ 5σ 10-7 6σ 10^{-9} 10⁻¹¹ 7σ 10⁻¹³ 115 120 125 130 135 **ATLAS** Preliminary m_H [GeV] m_H = 125.5 GeV W,Z H \rightarrow bb $\sqrt{s} = 7 \text{ TeV}, L \le 5.1 \text{ fb}^{-1} \sqrt{s} = 8 \text{ TeV}, L \le 19.6 \text{ fb}^{-1}$ $\sqrt{s} = 7 \text{ TeV}: \int Ldt = 4.7 \text{ fb}^{-1}$ CMS Preliminary mu = 125.7 GeV $\sqrt{s} = 8 \text{ TeV}$: $\int Ldt = 13 \text{ fb}^{-1}$ p_{SM} = 0.65 $H \rightarrow \tau \tau$ √s = 7 TeV: ∫Ldt = 4.6 fb⁻¹ $H \rightarrow bb$ √s = 8 TeV: ∫Ldt = 13 fb⁻¹ $\mu = 1.15 \pm 0.62$ $H \rightarrow WW^{(*)} \rightarrow hvhv$ $\sqrt{s} = 7 \text{ TeV}: \int Ldt = 4.6 \text{ fb}^{-1}$ $H \rightarrow \tau \tau$ $\sqrt{s} = 8 \text{ TeV}$: $\int Ldt = 20.7 \text{ fb}^{-1}$ $\mu = 1.10 \pm 0.41$ $H \rightarrow \gamma \gamma$ $\sqrt{s} = 7 \text{ TeV}$: $\int Ldt = 4.8 \text{ fb}^{-1}$ $H \rightarrow \gamma \gamma$ $\sqrt{s} = 8 \text{ TeV}$: $\int Ldt = 20.7 \text{ fb}^{-1}$ $\mu = 0.77 \pm 0.27$ $H \rightarrow ZZ^{(i)} \rightarrow 4I$ $\sqrt{s} = 7 \text{ TeV}: \int Ldt = 4.6 \text{ fb}^{-1}$ $H \rightarrow WW$ $\sqrt{s} = 8 \text{ TeV}$: $\int Ldt = 20.7 \text{ fb}^{-1}$ $\mu = 0.68 \pm 0.20$ Combined $\mu = 1.30 \pm 0.20$ $H \rightarrow ZZ$ $\sqrt{s} = 7 \text{ TeV}: \int Ldt = 4.6 - 4.8 \text{ fb}^{-1}$ $\mu = 0.92 \pm 0.28$ √s = 8 TeV: ∫Ldt = 13 - 20.7 fb⁻¹ 0 0.5 1.5 2.5 1 2 Best fit σ/σ_{SM} -1 0 +1

Signal strength (µ)

Not the only new results

LHC

PLANCK

DARK MATTER

XENON, COGENT, CDMS, LUX...

AMS02, FERMI, PAMELA, ATIC, HESS...

NEUTRINOS

DAYA BAY, RENO, T2K, MINOS, DOUBLE CHOOZ

....

Where are we now?

• Is the Higgs the SM Higgs? $J^{PC} = 0^{++}$

Butterworth, Djouadi

Spin?

YY C+, J×1 : Landau-Yang JX2 Angular dist. J= 0 **V**

---- Data

Signal hypothesis

Pure spin 2 excluded at > 99.9%

• Is the Higgs the SM Higgs? $J^{PC} = 0^{++}$

Butterworth, Djouadi

Spin?

YY C+, J×1 : Landau-Yang J×2 Angular dist. ~ J= 0

Pure spin 2 excluded at > 99.9%

- Data

Signal hypothesis

CP even or CP odd?

 $\mathbf{HV}_{\mu}\mathbf{V}^{\mu}\mathbf{vs}\mathbf{H}\epsilon^{\mu\nu\rho\sigma}\mathbf{Z}_{\mu\nu}\mathbf{Z}_{\rho\sigma}$ $\Rightarrow \frac{\mathrm{d}\Gamma(\mathrm{H}\rightarrow\mathrm{ZZ}^*)}{\mathrm{d}\mathrm{M}_*} \text{ and } \frac{\mathrm{d}\Gamma(\mathrm{H}\rightarrow\mathrm{ZZ})}{\mathrm{d}\phi}$ ATLAS/CMS: $\approx 3\sigma$ for CP-even.

Problem: if H is CP mixture, only 0⁺ component is projected out! (or very large 0^-VV loop cplg).

 \Rightarrow better probe: $\hat{\mu}_{ZZ} = 1.1 \pm 0.4!$

 $H = 0^{++} + \alpha 0^{--} + \beta 0^{+-} + \gamma 0^{-+}$

• Is the Higgs the SM Higgs?

Higgs couplings to elementary particles as predicted by Higgs mechanism • couplings to WW,ZZ, $\gamma\gamma$ roughly as expected for a CP-even Higgs • couplings proportionial to masses as expected for the Higgs boson So, it is not only a "new particle", the "126 GeV boson", a "new state"... IT IS A HIGGS BOSON!

But is it THE SM Higgs boson or A Higgs boson from some extension?

BSM physics?

ATLAS Summary

Maee limit

ATLAS SUSY Searches* - 95% CL Lower Limits

e. H. T. Y. Lote E^{mbs} (Cdub-1)

Status: EPS 2013

ATLAS Preliminary

Doto no noo

 $\int \mathcal{L} dt = (4.4 - 22.9) \text{ fb}^{-1} \quad \sqrt{s} = 7,8 \text{ TeV}$

			0010	-T	1.5 ordine		rio le le li de
n. 1. Inclusive Searches	$\begin{array}{c} \text{MSUGRACMSSM} \\ \text{MSUGRACMSSM} \\ \text{MSUGRACMSSM} \\ \overline{q}\bar{q}, \overline{q} \rightarrow q \overline{q}^2 \\ \overline{g}, \overline{g} \rightarrow q \overline{g} \\ \overline{g} \rightarrow q \overline{g} $	0 1 α, μ 0 0 1 α, μ 2 α, μ(SS) 2 α, μ 1 α, μ + γ 2 γ 2 α, μ + γ 2 α, μ (Z) 0 0	2-6 jots 3-6 jots 3-6 jots 2-6 jots 3-6 jots 3-6 jots 3-6 jots 3-6 jots 0-2 jots 0 0 0 1-5 0-3 jots 3-5 0-3 jots 3-5 0-3 jots 3-5 0-3 jots 3-6 0-3 jots 3-6 0-3 jots 3-6 0-3 jots 3-6 0-3 jots 3-6 0-3 jots 3-6 0-3 jots 3-6 0-3 jots 3-6 jots 3-7 jots 3-	T Yas Yas Yas Yas Yas Yas Yas Yas Yas Yas	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	Images in the 9-8 1.7 TeV m(g)-m(g) 8 1.2 TeV asy m(g) 8 1.1 TeV asy m(g) 9 740 GeV m(g)_ab GeV 9 1.3 TeV m(g)_ab GeV 8 1.18 TeV m(g)_close CeV 8 1.24 TeV tergl>18 9 1.4 TeV m(g)_close CeV 8 1.07 TeV m(g)_close CeV 8 645 GeV m(g)_close CeV 9 645 GeV m(g)_close CeV	ATLAS-CONF-2013-047 ATLAS-CONF-2013-042 ATLAS-CONF-2013-042 ATLAS-CONF-2013-047 ATLAS-CONF-2013-042 ATLAS-CONF-2013-042 ATLAS-CONF-2013-042 ATLAS-CONF-2013-044 1211.1167 ATLAS-CONF-2012-144 ATLAS-CONF-2012-147 ATLAS-CONF-2012-147 ATLAS-CONF-2012-147
3rd gel	ē→tēl ē→tēl ē→tēl	0 0-1 •, μ 0-1 •, μ	7-10 jats 3 <i>b</i> 3 <i>b</i>	Yas Yas Yas	20.3 20.1 20.1	5 1.14 TeV m(²) <200 GeV 5 1.34 TeV m(²) <200 GeV 5 1.34 TeV m(²) <400 GeV 5 1.3 TeV m(²) <500 GeV	ATLAS-CONF-2013-054 ATLAS-CONF-2013-051 ATLAS-CONF-2013-051
3 rd gen. squarks drect production	$ \begin{array}{l} \underbrace{I_{1}}_{i_{1}}, \underbrace{I_{2}}_{i_{1}} \rightarrow B_{i}^{0} \\ \\ \underbrace{I_{1}}_{i_{1}}, \underbrace{I_{1}}_{i_{1}} \rightarrow B_{i}^{0} \\ \\ \\ \underbrace{I_{1}}_{i_{1}}, \underbrace{I_{1}}_{i_{1}} \rightarrow B_{i}^{0} \\ \\ \\ \underbrace{I_{1}}_{i_{1}}, \underbrace{I_{1}}_{i_{1}} \rightarrow Wb_{i}^{0} \\ \\ \\ \\ \underbrace{I_{1}}_{i_{1}}, \underbrace{I_{1}}_{i_{1}} (mathum), \underbrace{I_{2}}_{i_{1}} \rightarrow B_{i}^{0} \\ \\ \\ \\ \\ \\ \underbrace{I_{1}}_{i_{1}}, \underbrace{I_{1}}_{i_{1}} \rightarrow B_{i}^{0} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0 2 •, μ(S5) 1-2 •, μ 2 •, μ 2 •, μ 0 1 •, μ 0 0 m 2 •, μ(Z) 3 •, μ(Z)	2 b 0-3 b 1-2 b 0-2 joins 2 joins 2 b 1 b 2 b 1 b 1 b 1 b	Yas Yas Yas Yas Yas Yas Yas Yas Yas Yas	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	ίι 100-630 GeV m(⁶ 1)-100 CeV ίι 430 GeV m(⁶ 1)-2 m(⁶ 1) ίι 167 GeV m(⁶ 1)-2 m(⁶ 1) ίι 167 GeV m(⁶ 1)-2 m(⁶ 1) ίι 167 GeV m(⁶ 1)-2 m(⁶ 1) ίι 225-525 GeV m(⁶ 1)-2 m(⁶ 1)-2 CeV, m(⁶ 2)-2 ceV, m(⁶ 2)-2 ceV, m(⁶ 2)-2 ceV ίι 225-525 GeV m(⁶ 1)-2 ceV ίι 150-550 GeV m(⁶ 1)-2 ceV, m(⁶ 2)-2 ceV ίι 200-610 GeV m(⁶ 1)-2 ceV, m(⁶ 2)-2 ceV ίι 320-660 GeV m(⁶ 1)-2 ceV ίι 320-660 GeV m(⁶ 1)-2 ceV ίι 200 GeV m(⁶ 1)-2 ceV ίι 200 GeV m(⁶ 1)-2 ceV ίι 500 GeV m(⁶ 1)-2 ceV ίι 520 GeV m(⁶ 1)-1 ceCeV	ATLAS-CONF-2015-005 ATLAS-CONF-2015-007 1205-4305, 1209-2102 ATLAS-CONF-2015-006 ATLAS-CONF-2015-005 ATLAS-CONF-2015-005 ATLAS-CONF-2015-005 ATLAS-CONF-2015-005 ATLAS-CONF-2015-005 ATLAS-CONF-2015-005
EW	$\begin{array}{l} \xi_1 \xi_1 , \overline{\xi} \rightarrow \theta_1^0 \\ \xi_1^* (\xi_1, \overline{\xi}) \rightarrow \overline{t} \rightarrow \theta_1^0 \\ f_1^* (\xi_1, \overline{\xi}) \rightarrow \overline{t} \rightarrow \overline{t} \rightarrow \theta_1^0 \\ f_1^* (\xi_1, \overline{\xi}) \rightarrow \overline{t} \rightarrow \theta_1^0 \\ f_1^* (\xi_1, \overline{\xi}) \rightarrow \theta_1^0 $	2 ., µ 2 ., µ 2 ., µ 3 ., µ 3 ., µ	0 0 0 0	Yas Yas Yas Yas Yas	20 <i>3</i> 20 <i>3</i> 20 <i>7</i> 20 <i>7</i> 20 <i>7</i>	ເ 85-315 GeV mét [*] 125-450 GeV mét [*] mét [*] 180-330 GeV mét [*] mét [*] 180-330 GeV 3 180-330 GeV mét [*] 180-330 GeV mét [*] 180-330 GeV 3 600 GeV mét [*] 19-mét [*] 19-m	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-028 ATLAS-CONF-2013-028
Long-lived particles	Direct $\mathcal{X}_{1}^{\dagger}\mathcal{X}_{1}^{\dagger}$ prod., long-lived $\mathcal{X}_{1}^{\dagger}$ Stable, stopped \tilde{g} R-freedom GMSB, stable $\tilde{\tau}, \mathcal{X}_{1}^{\bullet} \rightarrow \tilde{\tau}(\tilde{v}, \tilde{\mu})_{X}^{\bullet}$ (e GMSB, $\mathcal{X}_{1} \rightarrow \gamma \tilde{c}$, long-lived $\mathcal{X}_{1}^{\bullet}$ $\mathcal{X}_{1}^{\bullet} \rightarrow qqu$ (RPV)	Disapp.trk 0 (μ) 1-2μ 2γ 1μ	1 jot 1-5 jedas 0 0	Yas Yas - Yas Yas	20.3 22.9 15.9 4.7 4.4	X1 270 GeV m473 h (87) = 100 MeV, r(83) = 0.2 m 5 857 GeV m473 h (10 GeV, 10 pc-cr(g) < 1000 s	ATLAS-CONF-2013-089 ATLAS-CONF-2013-087 ATLAS-CONF-2013-088 1304-8310 1210.7451
RPV	$ \begin{array}{l} LFV pp \rightarrow \overline{v}_{\tau} + X, \overline{v}_{\tau} \rightarrow \mathbf{s} + \mu \\ LFV pp \rightarrow \overline{v}_{\tau} + X, \overline{v}_{\tau} \rightarrow \mathbf{s}(\mu) + \tau \\ Bitmair \ RPV \ CidSBM \\ \mathcal{L}_{1}^{+} \mathcal{L}_{2}^{+}, \mathcal{L}_{1}^{+} \rightarrow W \mathcal{L}_{1}^{+} \mathcal{L}_{2}^{+} \rightarrow \mathbf{s} \overline{v}_{\mu}, s$	2 α, μ 1 α, μ + τ 1 α, μ 3 α, μ + τ 0 2 α, μ(SS)	0 7 jets 0 6 jets 0-3 5	- Yas Yas Yas Yas	4.6 4.5 20.7 20.7 4.6 20.7	7. 1.61 TeV 2.11 TeV 2	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2015-008 ATLAS-CONF-2015-008 1210.4613 ATLAS-CONF-2015-007
Other	Scalar gluon WIMP interaction (D5, Dirac χ)	0	4 jets mono-jet	Yas	4.6 10.5	aglaon 100-287 GeV isol. Emit from 11 10.2000 M'acale 704 GeV mg/c60 GeV, limit of c057 GeV for Do	1210.4625 ATLAS-CONF-2012-147
	√s=7 TeV n	/s=8TeV artial data	_√S= 8 full d	8 TeV		10 ⁻¹ 1 Mass scale [TeV]	

Planck

Consistent cosmological picture given in terms of only 6 parameters, $\Omega_M h^2, \Omega_b h^2, \ au, n_s, A_s$ $heta_*(\Omega_k/\Omega_\Lambda, H_0)$

Dark matter searches

Inflation

STILL SOME ROOM FOR DARK RADIATION!

Implications ?

Part 1: Just the Standard Model

Implications of a 125 GeV Higgs

RG equations:

$$\begin{split} \beta_1^{\rm SM} &= \frac{41}{96\pi^2} g_1^3 \,, \quad \beta_2^{\rm SM} = -\frac{19}{96\pi^2} g_2^3 \,, \quad \beta_3^{\rm SM} = -\frac{7}{16\pi^2} g_3^3 \\ \beta_h^{\rm SM} &= \frac{1}{16\pi^2} \left[\frac{9}{2} h^3 - 8g_3^2 h - \frac{9}{4} g_2^2 h - \frac{17}{12} g_1^2 h \right] \\ \beta_\lambda^{\rm SM} &= \frac{1}{16\pi^2} \left[24\lambda^2 + 12\lambda h^2 - 9\lambda \left(g_2^2 + \frac{1}{3} g_1^2 \right) \right. \\ & \left. -6h^4 + \frac{9}{8} g_2^4 + \frac{3}{8} g_1^4 + \frac{3}{4} g_2^2 g_1^2 \right] \,. \end{split}$$

Implications of a 125 GeV Higgs

RGE - just the Standard Model

Higgs coupling small

Hambye, Riesselmann

$$V_0 = -\frac{m_0^2}{2} |H_0|^2 + \lambda_0 |H_0|^4$$

Implications of a 125 GeV Higgs - vacuum instability

$$V(H) = -\frac{1}{2}M_{H}^{2}|H|^{2} + \frac{\lambda}{4}|H|^{4}$$

Tunneling probability:
$$p = \max_{R} \frac{V_U}{R^4} \exp \left[-\frac{8\pi^2}{3 |\lambda(\mu)|} - \Delta S \right]$$

Isidori, Ridolfi, Strumia

$$\begin{split} M_h \; [\text{GeV}] > 129.4 + 1.4 \left(\frac{M_t \; [\text{GeV}] - 173.1}{0.7} \right) &- 0.5 \left(\frac{\alpha_s(M_Z) - 0.1184}{0.0007} \right) \pm 1.0_{\text{th}} \\ M_h > 129.4 \pm 1.8 \; \text{GeV}, \qquad \qquad 2\sigma \; \text{ away from stability} \end{split}$$

Ideas: Is it Just the Standard Model? $V_0 = -\frac{m_0^2}{2}|H_0|^2 + \lambda_0|H_0|^4$ 0.10 0.000 3σ bands in 0.08 $M_t = 173.4 \pm 0.7 \text{ GeV}$ (gray) Beta function of the Higgs quartic β_{λ} $\alpha_3(M_Z) = 0.1184 \pm 0.0007$ (red) 0.06 -0.005 $M_h = 125.7 \pm 0.3 \text{ GeV}$ (blue) Higgs quartic coupling λ 0.04 -0.010 0.02 $M_t = 171.4 \text{ GeV}$ 0.00 ? 3σ bands in $\alpha_s(M_{7}) = 0.1205$ $M_t = 173.4 \pm 0.7 \text{ GeV} (\text{gray})$ -0.015 $\alpha_3(M_7) = 0.1184 \pm 0.0007$ (red) $\alpha_s(M_Z) = 0.1163$ -0.02 $M_h = 125.7 \pm 0.3 \text{ GeV}$ (blue) $M_t = 175.3 \text{ GeV}$ -0.04-0.020 10^{10} 10^{12} 10^{14} 10^{16} 10^{18} 10^{20} 10^{2} 104 1010 1012 1014 1016 1018 1020 10^{2} 10^{4} 106 10^{8} 106 108 RGE scale μ in GeV RGE scale μ in GeV

I. IR fixed point (M_{Planck} is IR!)

$$k \frac{dx_{j}}{dk} = \beta_{j}^{\text{SM}} + \beta_{j}^{grav} \qquad \qquad \beta_{j}^{grav} = \frac{a_{j}}{8\pi} \frac{k^{2}}{M_{p}^{2}(k)} x_{j}$$

$$\beta_{\lambda} \approx \frac{a_{\lambda}}{8\pi} \frac{k^{2}}{\left(M_{p}^{2} + 2\xi_{0}^{2}k^{2}\right)} \lambda + \frac{1}{16\pi^{2}} \left(24\lambda^{2} + 12\lambda h^{2} - 6h^{4} + \frac{9}{8}g_{2}^{4} + \frac{3}{8}g_{1}^{4} + \frac{3}{4}g_{2}^{2}g_{1}^{2}\right)$$

$$m_{h} \sim 125 \, GeV!$$

$$a_{\lambda} > 0, \ \lambda(M_{p}) \approx 0, \text{ IRFP} \qquad (\xi_{0} \sim 0.02)$$
Shaposhnikov, Wetterich (2010)

I. IR fixed point (M_{Planck} is IR!)

$$k \frac{dx_j}{dk} = \beta_j^{\text{SM}} + \beta_j^{\text{grav}} \qquad \beta_j^{\text{grav}} = \frac{a_j}{8\pi} \frac{k^2}{M_p^2(k)} x_j$$

• $\beta_{\lambda} \approx \frac{a_{\lambda}}{8\pi} \frac{k^2}{\left(M_p^2 + 2\xi_0^2 k^2\right)} \lambda + \frac{1}{16\pi^2} \left(24\lambda^2 + 12\lambda h^2 - 6h^4 + \frac{9}{8}g_2^4 + \frac{3}{8}g_1^4 + \frac{3}{4}g_2^2 g_1^2\right)$
 $a_{\lambda} > 0, \ \lambda(M_p) \approx 0, \text{ IRFP} \simeq 0?$

I. IR fixed point (M_{Planck} is IR!)

$$k\frac{dx_{j}}{dk} = \beta_{j}^{SM} + \beta_{j}^{grav} \qquad \qquad \beta_{j}^{grav} = \frac{a_{j}}{8\pi} \frac{k^{2}}{M_{p}^{2}(k)} x_{j}$$

$$\boldsymbol{\beta}_{\lambda} \simeq \frac{a_{\lambda}}{8\pi} \frac{k^{2}}{\left(M_{p}^{2} + 2\xi_{0}^{2}k^{2}\right)} \lambda + \frac{1}{16\pi^{2}} \left(24\lambda^{2} + 12\lambda h^{2} - 6h^{4} + \frac{9}{8}g_{2}^{4} + \frac{3}{8}g_{1}^{4} + \frac{3}{4}g_{2}^{2}g_{1}^{2}\right)$$

$$a_{\lambda} > 0, \ \lambda(M_P) \simeq 0, \text{ IRFP}$$
 ($\xi_0 \sim 0.02$)

•
$$\beta_h \approx \frac{a_h}{8\pi} \frac{k^2}{\left(M_P^2 + 2\xi_0^2 k^2\right)} h + \frac{1}{16\pi^2} \left[\frac{9}{2}h^3 - 8g_3^2 h - \frac{9}{4}g_2^2 h - \frac{17}{12}g_1^2 h\right]$$

 $a_h < 0, \quad h_{UV}^2 = 0, \quad h_{IR}^2 = \frac{2\pi |a_h|}{9\xi_0}$

I. IR fixed point (M_{Planck} is IR!)

$$k\frac{dx_{j}}{dk} = \beta_{j}^{SM} + \beta_{j}^{grav} \qquad \qquad \beta_{j}^{grav} = \frac{a_{j}}{8\pi} \frac{k^{2}}{M_{p}^{2}(k)} x_{j}$$

$$\boldsymbol{\beta}_{\lambda} \simeq \frac{a_{\lambda}}{8\pi} \frac{k^{2}}{\left(M_{p}^{2} + 2\xi_{0}^{2}k^{2}\right)} \lambda + \frac{1}{16\pi^{2}} \left(24\lambda^{2} + 12\lambda h^{2} - 6h^{4} + \frac{9}{8}g_{2}^{4} + \frac{3}{8}g_{1}^{4} + \frac{3}{4}g_{2}^{2}g_{1}^{2}\right)$$

$$a_{\lambda} > 0, \ \lambda(M_P) \simeq 0, \text{ IRFP}$$
 ($\xi_0 \sim 0.02$)

$$\beta_{h} \simeq \frac{a_{h}}{8\pi} \frac{k^{2}}{\left(M_{P}^{2} + 2\xi_{0}^{2}k^{2}\right)} h + \frac{1}{16\pi^{2}} \left[\frac{9}{2}h^{3} - 8g_{3}^{2}h - \frac{9}{4}g_{2}^{2}h - \frac{17}{12}g_{1}^{2}h\right]$$

$$a_{h} < 0, \quad h_{UV}^{2} = 0 \ , \ h_{IR}^{2} = \frac{2\pi|a_{h}|}{9\xi_{0}}$$

• Gauge couplings $a_1 = a_2 = a_3 = a_g$ - exercise

Summary

 $\lambda \simeq 0 \checkmark$ $h_t, g_i?$ $\beta_{\lambda} \approx 0?$

But...

Ellis, Mavromatos

$$\beta(g,E) = \frac{d\,g}{d\ln E} = \frac{b_0}{4\pi^2}\,g^3 - 3\frac{16\pi^2}{(4\pi)^2}\frac{E^2}{M_P^2}\,g$$

Summary

 $\lambda \approx 0 \checkmark$ $h_t, g_i?$ $\beta_{\lambda} \approx 0?$ But... $\frac{b}{M_P^2} \int d^4 x F_{\mu\nu} \Box F^{\mu\nu}$ Ellis, Marromatos

$$\beta(g,E) = \frac{d\,g}{d\ln E} = \frac{b_0}{4\pi^2}\,g^3 - 3\frac{16\pi^2}{(4\pi)^2}\frac{E^2}{M_P^2}\,g^3$$

Another possibility - power law running in extra dimansions

But... N=2 sector only -
$$h = \sqrt{2}g$$
 X

II. Supersymmetry at M_{Planck}

$$\begin{split} \lambda(\tilde{m}) &= \frac{1}{8} \left[g^2(\tilde{m}) + g'^2(\tilde{m}) \right] \cos^2 2\beta \\ &= 0 \\ \text{Shift symmetry} \\ H_u &\longrightarrow H_u + c, \quad H_d \longrightarrow H_d - c^{\dagger} \\ \mathcal{L} \supset -m_1^2 |H_u|^2 - m_2^2 |H_d|^2 - m_3^2 (H_u H_d + H_d^{\dagger} H_u^{\dagger}) \\ \text{Massless state} \quad H_0 &= \frac{1}{\sqrt{2}} (H_u - H_d^{\dagger}) \implies \tan \beta = 1 \\ \text{Hebecker, Knochel, Weigand} \end{split}$$

II. Supersymmetry at M_X

$$\begin{split} \lambda(\tilde{m}) &= \frac{1}{8} \left[g^2(\tilde{m}) + g'^2(\tilde{m}) \right] \cos^2 2\beta \\ &= 0 \\ \text{Shift symmetry} \\ H_u &\longrightarrow H_u + c, \quad H_d \longrightarrow H_d - c^{\dagger} \\ \mathcal{L} &\supset -m_1^2 |H_u|^2 - m_2^2 |H_d|^2 - m_3^2 (H_u H_d + H_d^{\dagger} H_u^{\dagger}) \\ \text{Massless state} \quad H_0 &= \frac{1}{\sqrt{2}} (H_u - H_d^{\dagger}) \implies \tan \beta = 1 \\ \text{Hebecker, Knochel, Weigned} \end{split}$$

or $m_{H_u}(M_P) = m_{H_d}(M_P)$ + minimal fine tuning

Ibanez, Valenzuela

II. Supersymmetry at M_{Planck, X}

$$\lambda(\tilde{m}) = \frac{1}{8} \left[g^2(\tilde{m}) + g'^2(\tilde{m}) \right] \cos^2 2\beta$$

But...

Hierarchy problem introduced!

III. Environmental

III. Environmental

But...

larger m_t safe ??

Just beyond the SM - Origin of EW scale?

- natural (?)

If quadratic divergence in Higgs mass vanishes at one scale, vanishes at all scales

Scale invariance?

Bardeen

Just beyond the SM - Origin of EW scale?

classically scale invariant

$$V(\phi) = V_{\rm cl} + \Delta V_{\rm 1-loop} = \frac{\lambda_{\phi}}{4!} |\phi|^4 + \left(\frac{5\lambda_{\phi}^2}{1152\pi^2} + \frac{3e_{\phi}^4}{64\pi^2}\right) |\phi|^4 \left[\log\left(\frac{|\phi|^2}{M^2}\right) - \frac{25}{6}\right]$$

 $V_{\rm cl} = \frac{\lambda_{\phi}}{4!} |\phi|^4$

Coleman Weinberg

where
$$\left. m^2 \, := \, V''(\phi)
ight|_{\phi=0} = 0$$
 is imposed

Potential has a minimum for $\langle \phi \rangle \neq 0$

e.g. Massless scalar QED

$$\mathsf{RGE} \quad \frac{de_{\phi}}{dt} = \frac{e_{\phi}^3}{48\pi^2} , \quad \text{where} \quad t = \log(M/\Lambda_{UV})$$
$$\langle |\phi| \rangle = \Lambda_{UV} \exp\left[-24\pi^2 \left(\frac{1}{e_{\phi}^2(\langle |\phi| \rangle)} - \frac{1}{e_{\phi}^2(\Lambda_{UV})}\right)\right] \simeq \Lambda_{UV} \exp\left[\frac{-24\pi^2}{e_{\phi}^2(\langle |\phi| \rangle)}\right]$$

- dimensional transmutation!

Exponentially large separation natural!

Choosing
$$M = \langle \phi \rangle$$
, $V(\phi) = \frac{\lambda_{\phi}}{4!} |\phi|^4 + \frac{3e_{\phi}^4}{64\pi^2} |\phi|^4 \left[\log\left(\frac{|\phi|^2}{\langle |\phi|^2 \rangle}\right) - \frac{25}{6} \right]$

$$\begin{aligned} \lambda_{\phi}(\langle |\phi| \rangle) &= \frac{33}{8\pi^2} e_{\phi}^4(\langle |\phi| \rangle) \\ V(\phi) &= \frac{3e_{\phi}^4}{64\pi^2} |\phi|^4 \left[\log\left(\frac{|\phi|^2}{\langle |\phi|^2 \rangle}\right) - \frac{1}{2} \right] \end{aligned}$$

Can Φ be the Higgs?

$$m_{\phi}^{2} = \frac{3e_{\phi}^{4}}{8\pi^{2}} \left< |\phi|^{2} \right> = \frac{3e_{\phi}^{2}}{8\pi^{2}} m_{X}^{2} \ll m_{X}^{2} \qquad \bigstar$$

Coleman Weinberg with a Higgs portal:

$\phi, U(1)$ "hidden sector"

$$V(\phi, H) = \frac{\lambda_{\phi}}{4!} |\phi|^4 + \frac{3e_{\phi}^4}{64\pi^2} |\phi|^4 \left[\log\left(\frac{|\phi|^2}{\langle |\phi|^2 \rangle}\right) - \frac{25}{6} \right] - \lambda_{\rm P} (H^{\dagger} H) |\phi|^2 + \frac{\lambda_{\rm H}}{2} (H^{\dagger} H)^2$$

$$\sqrt{\frac{\lambda_{\rm H}}{\lambda_{\rm P}}} \langle H \rangle = \langle \phi \rangle \simeq \Lambda_{UV} \exp\left[\frac{-24\pi^2}{e_{\phi}^2(\langle |\phi| \rangle)}\right] \ll \Lambda_{UV}$$

Englert, Jaeckel, Khoze, Spannowsky

 $\langle \phi \rangle > \mathrm{v}; \lambda_{H} \uparrow$

Bonus: Vacuum stability $\Delta eta_{\lambda_{
m H}} \sim + \lambda_{
m P}^2$ + threshold corrections
LHC phenomenology: 2 Higgs:

$$H^T(x) = \frac{1}{\sqrt{2}}(0, v + h(x))$$
 $\phi = \langle \phi \rangle + \varphi$

$$m^2 = \begin{pmatrix} m_h^2 + \Delta m_{h,\mathrm{SM}}^2 & -\kappa m_h^2 \\ -\kappa m_h^2 & m_{\varphi}^2 + \kappa^2 m_h^2 \end{pmatrix}$$
 $\kappa = \sqrt{\frac{2\lambda_\mathrm{P}}{\lambda_H}} \qquad m_h^2 = \lambda_\mathrm{H} v^2, \qquad m_{\varphi}^2 = \frac{3e_{\phi}^4}{8\pi^2} \langle \phi \rangle^2 = \frac{3e_{\phi}^2}{8\pi^2} m_X^2$

$$\Delta m_{h,\rm SM}^2 = \frac{1}{16\pi^2} \frac{1}{v^2} \left(6m_W^4 + 3m_Z^4 + m_h^2 - 24m_t^4 \right) \approx -2200 \,\rm GeV^2$$

$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} \cos\vartheta & \sin\vartheta \\ -\sin\vartheta & \cos\vartheta \end{pmatrix} \begin{pmatrix} h \\ \varphi \end{pmatrix} \qquad \qquad \vartheta = O(\kappa \frac{m_h^2}{m_{\varphi}^2}) \ll 1$$

 $m_{h_1}^2 = (m_h^2 + \Delta m_{h,\text{SM}}^2)(1 + \mathcal{O}(\vartheta^2)), \qquad m_{h_2}^2 = m_\varphi^2(1 + \mathcal{O}(\vartheta^2))$

e.g.
$$m_{h_2} \ll m_{h_1}$$
 $\Gamma_{h_1 \to h_2 h_2} = \frac{4\lambda_{\rm P}^2 v^2}{16\pi} \frac{[m_{h_1}^2 - 4m_{h_2}^2]^{1/2}}{m_{h_1}^2}$

$$\Gamma_{h_2 \to XX^c} = \sin^2 \vartheta \, \Gamma_{h \to XX^c}^{\mathrm{SM}}(m_h = m_{h_2}) \,,$$
$$\sigma(XY \to h_2) = \sin^2 \vartheta \, \sigma_{XY \to h}^{\mathrm{SM}}(m_h = m_{h_2}) \,.$$

extremely narrow resonance

LHC excluded LHC high luminosity +Linear Collider

Stellar evolution excluded

Another example:

 $\mathrm{U}(1)_Y \otimes \mathrm{SU}(2)_L \otimes \mathrm{SU}(3)_c \otimes \mathrm{SU}(2)_X$

Hambye, Strumia

Figure 1: Predicted cross sections for the extra scalar boson (left) and for DM direct detection (right) as function of the only free parameter of the model λ_{HS} , varied as shown in the colour legend.

Natural light higgs - no hierarchy of scales possible???

• Baryon asymmetry $M_X \sim M_{GUT}$?? Baryo-Lepto-genesis,

- In the ν MSM, baryogenesis proceeds via leptogenesis; sterile neutrino oscillations produce a lepton asymmetry above $T_{\rm EW}$ that is converted into a baryon asymmetry by sphalerons
- More specifically,
 - $\circ~N_{I}$ are produced by Yukawa interactions in a CP-invariant state $(\Delta N_{I}=0)$

 $M_{\nu} \sim 10 GeV$

- N_I then oscillate and second-order Yukawa interactions produce asymmetries in each flavour L_{α} but no total asymmetry ($\Delta L = \sum_{\alpha} \Delta L_{\alpha} = 0$)
- Third-order Yukawa interactions then convert the flavour asymmetries in L_{α} into a total asymmetry $\Delta N \neq 0$ and hence a total asymmetry $\Delta L = -\Delta N$
- Sphalerons convert the asymmetry ΔL into a baryon asymmetry ΔB until sphalerons freeze-out at $T_{\rm EW}$

Natural light higgs - no hierarchy of scales possible???

Baryon asymmetry

• Inflation and dark matter
e.g.
$$V_{cl}(H, \phi, s) = \frac{\lambda_{hs}}{2} |H|^2 s^2 + \frac{\lambda_{\phi s}}{4} |\phi|^2 s^2 + \frac{\lambda_s}{4} s^4 + V_{cl}(H, \phi)$$

Khoze
 $\mathcal{L}_J = \sqrt{-g_J} \left(-\frac{M^2}{2} - \frac{\xi_s}{2} s^2 R + \frac{1}{2} g_J^{\mu\nu} \partial_{\mu} s \partial_{\nu} s + g_J^{\mu\nu} (D_{\mu} H)^{\dagger} D_{\nu} H + \frac{1}{2} g_J^{\mu\nu} (D_{\mu} \phi)^{\dagger} D_{\nu} \phi - \frac{\lambda_s}{4} s^4 - \frac{\lambda_{hs}}{2} |H|^2 s^2 - \frac{\lambda_{\phi s}}{4} |\phi|^2 s^2 - V(H, \phi) - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \text{Fermions} + \text{Yukawas} \right).$

Non-minimally coupled to gravity - S inflaton

c.f. Higgs inflaton

$$\begin{split} & \text{Higgs inflation} \qquad L_{\text{tot}} = L_{\text{SM}} - \frac{M^2}{2}R - \xi H^{\dagger}HR\\ & S_J = \int d^4x \sqrt{-g} \Biggl\{ -\frac{M^2 + \xi h^2}{2} F + \frac{\partial_{\mu}h\partial^{\mu}h}{2} - \frac{\lambda}{4} \left(h^2 - v^2\right)^2 \Biggr\}\\ & \hat{g}_{\mu\nu} = \Omega^2 g_{\mu\nu} \ , \quad \Omega^2 = 1 + \frac{\xi h^2}{M_P^2}\\ & + \text{redefine scalar:} \quad \frac{d\chi}{dh} = \sqrt{\frac{\Omega^2 + 6\xi^2 h^2/M_P^2}{\Omega^4}}\\ & S_E = \int d^4x \sqrt{-\hat{g}} \Biggl\{ -\frac{M_P^2}{2} \hat{R} + \frac{\partial_{\mu}\chi\partial^{\mu}\chi}{2} - U(\chi) \Biggr\}\\ & U(\chi) = \frac{1}{\Omega(\chi)^4} \frac{\lambda}{4} \left(h(\chi)^2 - v^2\right)^2 \end{split}$$

Classical scale invariance?

 \Rightarrow Softly broken scale invariancescale invariance restored in UV

Classical scale invariance?

 \Rightarrow Softly broken scale invariancescale invariance restored in UV

But...

Beta functions must change at some scale Λ to approach UV CFT fixed point

 $\Lambda \sim TeV$ to avoid hierarchy problem X

Tavares, Schmaltz, Skiba Czaki, Skiba, Terning

Part 2: Intermediate scale models

e.g. Unified models

Supersymmetric models

Composite models

Unification:

$$(16)_L = (10)_L + (\overline{5})_L + (1)_L = v_{e,L}^c = v_{e,R}$$

The hierarchy problem:

$$\begin{array}{c|c} X \\ H \\ \end{array} \\ \Sigma \\ M_{H} \propto M_{X} \end{array}$$

Х

$$M_H \propto M_{SUSY}$$

Unification:

1

Unification:

The (SUSY) Standard Model as an EFT:

A_uν, ΨνΗν?

$$M_{Higgs}, M_{W,Z} \ll M_{Planck}, M_{GUT}, \dots$$

1

Unification:

The (SUSY) Standard Model as an EFT:

 $A_{\mu}\checkmark, \forall \checkmark H \checkmark ? \qquad M_{Higgs}, M_{W,Z} \ll M_{Planck}, M_{GUT}, .. \checkmark$ $\delta m_{H_{u}}^{2} \simeq -\frac{3y_{t}^{2}}{4\pi^{2}} \left(m_{stop}^{2} + \frac{g_{s}^{2}}{3\pi^{2}} m_{gluino}^{2} \log\left(\frac{\Lambda}{m_{gluino}}\right) \right) \log\left(\frac{\Lambda}{m_{stop}}\right) ? \qquad \text{Little hierarchy problem}$

Little hierarchy problem \Rightarrow definite SUSY structure

MSSM: 105 +(19) Parameters

$$M_{Z}^{2} = \sum_{\tilde{q},\tilde{l}} a_{i} \widetilde{m}_{i}^{2} + \sum_{\tilde{g},\tilde{W},\tilde{B}} b_{i} \widetilde{M}_{i}^{2} + \dots$$
$$m_{\tilde{q}} > 0.6 - 1TeV \implies \Delta > a \frac{\widetilde{m}_{i}^{2}}{M_{Z}^{2}} \sim 100$$

(Unless light stop $m_{\tilde{t},LHC} > 250 \text{ GeV}$)

⇒ Correlations between SUSY breaking parameters and/or additional low-scale states

Little hierarchy problem \Rightarrow definite SUSY structure

MSSM: 105 +(19) Parameters

$$M_{Z}^{2} = \sum_{\tilde{q},\tilde{l}} a_{i} \widetilde{m}_{i}^{2} + \sum_{\tilde{g},\tilde{W},\tilde{B}} b_{i} \widetilde{M}_{i}^{2} + \dots$$
$$m_{\tilde{q}} > 0.6 - 1TeV \implies \Delta > a \frac{\widetilde{m}_{i}^{2}}{M_{Z}^{2}} \sim 100$$

(Unless light stop $m_{\tilde{t},LHC} > 250 \text{ GeV}$)

⇒ Correlations between SUSY breaking parameters and/or additional low-scale states

Fine Tuning measure:

$$\Delta(a_i) = \left| \frac{a_i}{M_Z} \frac{\partial M_Z}{\partial a_i} \right|,$$

$$\Delta_{\rm m} = Max_{a_i} \Delta(a_i), \quad \Delta_q = \left(\sum \Delta_{\gamma_i}^2\right)^{1/2}$$

Ellis, Enquist, Nanopoulos, Zwirner Barbieri, Giudice

Fine tuning from a likelihood fit:

.

"Nuisance" variable

$$L(\operatorname{data} | \gamma_i) \propto \int d\mathbf{v} \delta(m_Z - m_Z^0) \delta\left(\mathbf{v} \cdot \left(-\frac{m^2}{\lambda}\right)^{1/2}\right) L(\operatorname{data} | \gamma_i; \mathbf{v})$$
$$= \frac{1}{\Delta_q} \delta(n_q(\ln \gamma_i - \ln \gamma_i^S)) L(\operatorname{data} | \gamma_i; \mathbf{v}_0)$$
Fine tuning not optional!

Probabilistic interpretation:

$$\chi_{new}^2 = \chi_{old}^2 + 2\ln\Delta_q \qquad \Delta_q \ll 100$$

assume correlation between SUSY breaking parameters

• The CMSSM

 $\mu_0, m_0, m_{1/2}, A_0, B_0$

$$V = m_1^2 |H_1|^2 + m_2^2 |H_2|^2 - (m_3^2 H_1 \cdot H_2 + h.c.) + \frac{1}{2} \lambda_1 |H_1|^4 + \frac{1}{2} \lambda_2 |H_2|^4 + \lambda_3 |H_1|^2 |H_2|^2 + \lambda_4 |H_1 \cdot H_2|^2 + \left[\frac{1}{2} \lambda_5 (H_1 \cdot H_2)^2 + \lambda_6 |H_1|^2 (H_1 \cdot H_2) + \lambda_7 |H_2|^2 (H_1 \cdot H_2) + h.c. \right]$$

Minimisation conditions:

$$\Delta \equiv \max \left| \Delta_p \right|_{p = \{\mu_0^2, m_0^2, m_{1/2}^2, A_0^2, B_0^2\}}, \qquad \Delta_p \equiv \frac{\partial \ln v^2}{\partial \ln p}$$

Couplings and masses evaluated to two loop (leading log) order ...enhanced sensitivity due to small tree-level $\lambda = \frac{1}{8} (g_1^2 + g_2^2) \cos^2 2\beta$

> Cassel, Ghilencea, GGR c.f. earlier work : Dimopoulos, Giudice Chankowski, Ellis, Olechowski, Pokorski

• The CMSSM - before LHC

Constraints

SUSY particle masses $3.20 < 10^4 \operatorname{Br}(b \to s\gamma) < 3.84$ $\operatorname{Br}(b \to \mu\mu) < 1.8 \times 10^{-8}$ $\delta a_\mu < 292 \times 10^{-11}$ $-0.0007 < \delta \rho < 0.0012$ Radiative EW breaking Relic density unrestricted Guuge coupling unification

Relic density restricted

- 1 h^0 resonant annihilation
- 2 \tilde{h} t-channel exchange
- 3 $\tilde{\tau}$ co-annihilation
- 4 \tilde{t} co-annihilation
- 5 A^0 / H^0 resonant annihilation

Within 3 σ WMAP: $\Delta_{Min} = 15, \quad m_h = 114.7 \pm 2GeV$

 $< 3\sigma$ WMAP: $\Delta_{Min} = 18$, $m_h = 115.9 \pm 2GeV$

Cassel, Ghilencea, GGR

DM - Scaled spin independent cross section for LSP-proton scattering:

The CMSSM - after Higgs discovery

Reduced fine tuning (c.f. CMSSM)

• New focus points?

Gauginos: $M_{\tilde{g},\tilde{W},\tilde{B}}$ Non-universal gaugino correlations

• New degrees of freedom

I. Reduced fine tuning : nonuniversal gaugino masses

$$16\pi^{2} \frac{d}{dt} m_{H_{u}}^{2} = 3\left(2 |y_{t}|^{2} (m_{H_{u}}^{2} + m_{Q_{3}}^{2} + m_{\bar{u}_{3}}^{2}) + 2 |a_{t}|^{2}\right) - 6g_{2}^{2} |M_{2}|^{2} - \frac{6}{5}g_{1}^{2} |M_{1}|^{2}$$

New focus point: cancellation between M_3 and M_2 contributions if $|M_2|^2 \simeq |M_3|^2$ at M_{SUSY}

 $M_3: M_2: M_1 = 1: b: a$

I. Reduced fine tuning : nonuniversal gaugino masses

$$16\pi^{2} \frac{d}{dt} m_{H_{u}}^{2} = 3\left(2 |y_{t}|^{2} (m_{H_{u}}^{2} + m_{Q_{3}}^{2} + m_{\bar{u}_{3}}^{2}) + 2 |a_{t}|^{2}\right) - 6g_{2}^{2} |M_{2}|^{2} - \frac{6}{5}g_{1}^{2} |M_{1}|^{2}$$

New focus point: cancellation between M_3 and M_2 contributions if $|M_2|^2 \simeq |M_3|^2$ at M_{SUSY}

Natural ratios? e.g.:

GUT: $SU(5): \Phi^{N} \subset (24 \times 24)_{symm} = 1 + 24 + 75 + 200; SO(10): (45 \times 45)_{symm} = 1 + 54 + 210 + 770$

1	:	b	:	а	

2.7:*b*:0.5*a*

Representation	$M_3: M_2: M_1$ at M_{GUT}	$M_3: M_2: M_1$ at M_{EWSB}
1	1:1:1	6:2:1
24	2:(-3):(-1)	12:(-6):(-1)
75	1:3:(-5)	6:6:(-5)
200	1:2:10	6:4:10

String:
$$(3+\delta_{GS}):(-1+\delta_{GS}):(-\frac{33}{5}+\delta_{GS})$$

(OII, also mixed moduli anomaly)

I. Reduced fine tuning : nonuniversal gaugino masses

$$16\pi^{2} \frac{d}{dt} m_{H_{u}}^{2} = 3\left(2 |y_{t}|^{2} (m_{H_{u}}^{2} + m_{Q_{3}}^{2} + m_{\overline{u}_{3}}^{2}) + 2 |a_{t}|^{2}\right) - 6g_{2}^{2} |M_{2}|^{2} - \frac{6}{5}g_{1}^{2} |M_{1}|^{2}$$

New focus point: cancellation between M_3 and M_2 contributions if $|M_2|^2 \simeq |M_3|^2$ at M_{SUSY}

$$\Delta_{Min}^{CMSSM} = 60 \ (500), \quad m_h = 125.6 \pm 3 GeV$$

LHC8 SUSY bounds DM relic abundance DM searches X II. Reduced fine tuning : New heavy states - higher dimension operators

$$\delta L = \int d^2 \theta \frac{1}{M_*} (\mu_0 + c_0 S) (H_u H_d)^2, \quad S = m_0 \theta \theta \qquad \text{Dimension 5}$$

$$\delta V = \zeta_1 (|h_u|^2 + |h_d|^2) h_u h_d + \zeta_2 (h_u h_d)^2; \quad \zeta_1 = \frac{\mu_0}{M_*}, \quad \zeta_2 = \frac{c_0 m_0}{M_*}$$

Even for $M_*=65 \mu_0$ a significant shift of m_h for constant Δ

...effect mainly comes from ς_1 term ... origin?

II. Reduced fine tuning : New heavy states - higher dimension operators

$$\delta L = \int d^2 \theta \frac{1}{M_*} (\mu_0 + c_0 S) (H_u H_d)^2, \quad S = m_0 \theta \theta \qquad \text{Dimension 5}$$

$$\delta V = \zeta_1 (|h_u|^2 + |h_d|^2) h_u h_d + \zeta_2 (h_u h_d)^2; \quad \zeta_1 = \frac{\mu_0}{M_*}, \quad \zeta_2 = \frac{c_0 m_0}{M_*}$$

Singlet extensions

$$W = W_{\text{Yukawa}} + \lambda SH_u H_d + \frac{\kappa}{3}S^3 \qquad \text{NMSSM}$$

$$W = W_{\text{Yukawa}} + (\mu + \lambda S)H_u H_d + \frac{\mu S}{2}S^2 + \frac{\kappa}{3}S^3 + \xi S \qquad \text{GNMSSM}$$

$$\mu_S >> m_{3/2} : W_{eff}^{\text{GNMSSM}} = (H_u H_d)^2 / \mu_s + \mu H_u H_d$$

$$\delta V = \frac{\mu}{\mu_S} (|H_u|^2 + |H_d|^2) H_u H_d \qquad \checkmark$$

II. Reduced fine tuning : New heavy states - higher dimension operators

$$\delta L = \int d^2 \theta \frac{1}{M_*} (\mu_0 + c_0 S) (H_u H_d)^2, \quad S = m_0 \theta \theta \qquad \text{Dimension 5}$$

$$\delta V = \zeta_1 (|h_u|^2 + |h_d|^2) h_u h_d + \zeta_2 (h_u h_d)^2; \quad \zeta_1 = \frac{\mu_0}{M_*}, \quad \zeta_2 = \frac{c_0 m_0}{M_*}$$

Singlet extensions

$$W = W_{\text{Yukawa}} + \lambda SH_uH_d + \frac{\kappa}{3}S^3 \qquad \text{NMSSM}$$

$$W = W_{\text{Yukawa}} + (\mu + \lambda S)H_uH_d + \frac{\mu_S}{2}S^2 + \frac{\kappa}{3}S^3 + \xi S \qquad \text{GNMSSM}$$

$$\mu_S >> m_{3/2} : W_{eff}^{\text{GNMSSM}} = (H_uH_d)^2 / \mu_s + \mu H_uH_d$$

$$\delta V = \frac{\mu}{\mu_S} (|H_u|^2 + |H_d|^2)H_uH_d \qquad \text{but are } \mu, \mu_s \text{ naturally small?}$$

SUSY extensions of the Standard Model

 $W = h^{E} L H_{d} \overline{E} + h^{D} Q H_{d} \overline{D} + h^{U} Q H_{u} \overline{U} + \mu H_{d} H_{u}$ + $\lambda L L \overline{E} + \lambda' L Q \overline{D} + \kappa L H_{u} + \lambda'' \overline{U} \overline{D} \overline{D}$ + $\frac{1}{M} \left(Q Q Q L + Q Q Q H_{d} + Q \overline{U} \overline{E} H_{d} + L L H_{u} H_{u} \right)$ R-parity: Z_{2} $H_{u}, H_{d} + 1$ SUSY states odd

 $L, \overline{E}, Q, \overline{D}, \overline{U}, \theta -1$

JJ7 Stutes 000

Weinberg, Sakai
SUSY extensions of the Standard Model

 $W = h^{E} L H_{d} \overline{E} + h^{D} Q H_{d} \overline{D} + h^{U} Q H_{u} \overline{U} + \mu H_{d} H_{u} + \mu_{s} H_{d} H_{u}$ $+ \lambda L L \overline{E} + \lambda' L Q \overline{D} + \kappa L H_{u} + \lambda'' \overline{U} \overline{D} \overline{D}$ $+ \frac{1}{M} \left(Q Q Q L + Q Q Q H_{d} + Q \overline{U} \overline{E} H_{d} + L L H_{u} H_{u} \right)$

R-parity: Z_2

 Z_N^R R-symmetry

N=4,6,8,12,24

Discrete gauge symmetry -anomaly free Ibanez, GGR

N	q_{10}	$q_{\overline{5}}$	q_{H_u}	q_{H_d}	q_s
4	1	1	0	0	2
8	1	5	0	4	6
1					

R-symmetry ensures singlets light

SU(5), SO(10) compatible

SUSY extensions of the Standard Model

$$W = h^{E} L H_{d} \overline{E} + h^{D} Q H_{d} \overline{D} + h^{U} Q H_{u} \overline{U} + \mu H_{d} H_{u} + \mu_{s} H_{d} H_{u}$$
$$+ \lambda L L \overline{E} + \lambda' L Q \overline{D} + \kappa L H_{u} + \lambda'' \overline{U} \overline{D} \overline{D}$$
$$+ \frac{1}{M} \left(Q Q Q L + Q Q Q H_{d} + Q \overline{U} \overline{E} H_{d} + L L H_{u} H_{u} \right)$$

R-parity:
$$Z_2$$

 Z_N^R **R-symmetry** N=4,6,8,12,24

Domain walls safe

 $\langle W
angle, \langle \lambda \lambda
angle$ R=2, non-perturbative breaking

$$Z_{4R} \rightarrow Z_2^R \quad R - parity$$

$$\mu, \mu_s \sim m_{3/2}, \quad O(\frac{m_{3/2}}{M^2}QQQL)$$

LSP stable

Fine tuning in the CGNMSSM $(\lambda \le 0.7^{\dagger})$

$$\Delta_{Min} = 60 \ (500), \quad m_h = 125.6 \pm 3 GeV$$

LHC8 SUSY bounds DM relic abundance DM searches

Fine tuning in the (C)GNMSSM $(\lambda \le 0.7^{\dagger})$

Non-unversal gaugino masses

$$\Delta_{Min} = 20$$
, $m_h = 125.6 \pm 3 GeV$

LHC8 SUSY bounds DM relic abundance DM searches

GGR, Kaminska, Schmidt-Hoberg

Fine tuning v/s gaugino mass ratios

$$M_3 = m_{1/2}, M_2 = b.m_{1/2}, M_1 = a.m_{1/2}$$

Masses v/s fine tuning

M_{gluino}

Dark matter

Summary

- Low fine tuning not optional
- Fine tuning sensitive to SUSY spectrum
 ...scalar and gaugino focus points

•
$$\Delta^{CMSSM} > 350$$
 × $\Delta^{(C)MSSM} > 60$ ×
 $\Delta^{CGMSSM} > 60$ × $\Delta^{(C)GNMMS} > 20$ ×
 $c.f. \Delta^{CMSSM}_{Low \, scale} = (10 - 30), \quad m_{\tilde{t}} = (1 - 5)TeV$

Barger et al

Summary

- Low fine tuning not optional
- Fine tuning sensitive to SUSY spectrum ...scalar and gaugino focus points
- $\Delta^{CMSSM} > 350$ $\Delta^{(C)MSSM} > 60$ $\Delta^{CGMSSM} > 60$ $\Delta^{(C)GNMMS} > 20$
- Well motivated SUSY models remain to be tested LHC14?
 - Compressed spectra, TeV squarks and gluinos

Beyond the SM and the LHC

Part III: Dark matter

For heavy SM-DM mediators interaction described by effective operators

$$\begin{array}{ll} e.g. \hspace{0.1cm} \chi & \hspace{0.1cm} \text{DM Dirac fermion} & \hspace{0.1cm} \Lambda = M \, / \sqrt{g_{\chi}g_{q}} \,, M \gg q^{2} \\ \mathcal{O}_{V} = \frac{(\bar{\chi}\gamma_{\mu}\chi)(\bar{q}\gamma^{\mu}q)}{\Lambda^{2}} & \hspace{0.1cm} (\text{vector, s-channel}) \\ \mathcal{O}_{A} = \frac{(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{q}\gamma^{\mu}\gamma_{5}q)}{\Lambda^{2}} \,, & \hspace{0.1cm} (\text{axial vector, s-channel}) \\ \mathcal{O}_{t} = \frac{(\bar{\chi}P_{R}q)(\bar{q}P_{L}\chi)}{\Lambda^{2}} + (L \leftrightarrow R) \,, & \hspace{0.1cm} (\text{scalar, t-channel}) \\ \mathcal{O}_{g} = \left| \alpha_{s} \frac{(\bar{\chi}\chi) \left(G_{\mu\nu}^{a}G^{a\mu\nu}\right)}{\Lambda^{3}} \,. & \hspace{0.1cm} (\text{scalar, s-channel}) \\ P_{R(L)} = (1\pm\gamma_{5})/2 \end{array} \right|$$

For heavy SM-DM mediators interaction described by effective operators

$$\begin{split} \mathcal{C}.\mathcal{G}.\\ \mathcal{O}_{V} &= \frac{(\bar{\chi}\gamma_{\mu}\chi)(\bar{q}\gamma^{\mu}q)}{\Lambda^{2}},\\ \mathcal{O}_{A} &= \frac{(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{q}\gamma^{\mu}\gamma_{5}q)}{\Lambda^{2}},\\ \mathcal{O}_{t} &= \frac{(\bar{\chi}P_{R}q)(\bar{q}P_{L}\chi)}{\Lambda^{2}} + (L \leftrightarrow R),\\ \mathcal{O}_{g} &= \alpha_{s}\frac{(\bar{\chi}\chi)(G_{\mu\nu}^{a}G^{a\mu\nu})}{\Lambda^{3}}. \end{split}$$

For heavy SM-DM mediators interaction described by effective operators

To match to nucelon operators need these of the form $\mathcal{O}_{
m SM}\mathcal{O}_{\chi}$

For heavy SM-DM mediators interaction described by effective operators

e.g. $\mathcal{O}_V = \frac{(\bar{\chi}\gamma_\mu\chi)(\bar{q}\gamma^\mu q)}{\Lambda^2} \,,$ $\mathcal{O}_A = \frac{(\bar{\chi}\gamma_\mu\gamma_5\chi)(\bar{q}\gamma^\mu\gamma_5q)}{\Lambda^2},$ $\mathcal{O}_t = \frac{(\bar{\chi} P_R q)(\bar{q} P_L \chi)}{\Lambda^2} + (L \leftrightarrow R),$ $\mathcal{O}_g = \alpha_s \frac{(\bar{\chi}\chi) \left(G^a_{\mu\nu} G^{a\mu\nu}\right)}{\Lambda^3} \,.$ Spin independent cross section dominates $\propto O_{\rm v}$...vanishes for Majorana fermion Fiertz identities: e.g. $\frac{1}{\Lambda^2}(\bar{\chi}P_R q)(\bar{q}P_L \chi) + (L \leftrightarrow R) = \frac{1}{4\Lambda^2}\left[(\bar{\chi}\gamma^\mu\chi)(\bar{q}\gamma_\mu q) - (\bar{\chi}\gamma^\mu\gamma_5\chi)(\bar{q}\gamma_\mu\gamma_5q)\right] = \frac{1}{4\Lambda^2}(\mathcal{O}_V - \mathcal{O}_A)$

Look for excess over SM backgrounds: $(Z \rightarrow \nu \nu) + j \text{ and } (W \rightarrow \ell^{inv} \nu) + j$

Vector coupling

ATLAS-CONF-2012-085

Monophoton

Monojet

$D1 = \bar{\chi}\chi\bar{q}q$ $D5 = \bar{\chi}\gamma^{\mu}\chi\gamma_{\mu}\bar{q}q$ $D11 = \bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$

Monophoton

 $D8 = \bar{\chi}\gamma^{\mu}\gamma_5\chi\bar{q}\gamma^{\mu}\gamma_5q$ $D5 = \bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma^{\mu}q$

Tests for compositeness

Effective Field Theory description ... nonlinear $SU(2)_L \times U(1)$

SM

$$SO(4)/SO(3)$$

$$W^{\pm}L \& ZL$$

$$H = (H, \overline{H}) = \begin{pmatrix} h_1 + ih_2 & -h_3 + ih_4 \\ h_3 + ih_4 & h_1 - ih_2 \end{pmatrix}$$

$$= \frac{1}{\sqrt{2}} (h + v) \Sigma$$

$$V(H) = -\mu^{2}H^{\dagger}H + \lambda (H^{\dagger}H)^{2}$$

$$SO(4) \sim SU(2)_{L} \times SU(2)_{R}$$

$$\Sigma(x) \rightarrow U_{L}\Sigma(x)U_{R}^{\dagger}$$
"custodial" symm

$$\rho = \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} = 1$$

$$SO(4) \xrightarrow{V} SO(3) \qquad W_{\mu}^{\pm}, Z$$

$$\pi^a \subset SO(4) / SO(3) \qquad \text{Goldstone bosons}$$

$$\Sigma(x) = e^{i\sigma_a \pi^a / v}$$

Effective Field Theory description ... nonlinear $SU(2)_L \times U(1)$

BSM SO(4) SO(3) W[±]L & ZL SM G W[±]L & ZL & h

e.g.

SO(5)/SO(4):W,Z,h

•••

SO(6) / SO(5) : W, Z, h, a

Effective Field Theory description ... nonlinear $SU(2)_L \times U(1)$

General parameterisation of composite models of Higgs:

 $\Sigma(x) = e^{i\sigma_{a}\pi^{a}/v}, \quad h \qquad SM: (h+v)^{2}$ $\mathcal{L}_{eff} = \frac{1}{2}(\partial_{\mu}h)^{2} - V(h) + \frac{v^{2}}{4}\operatorname{Tr}(D_{\mu}\Sigma^{\dagger}D^{\mu}\Sigma) \left[1 + 2a\frac{h}{v} + b\frac{h^{2}}{v^{2}} + b_{3}\frac{h^{3}}{v^{3}} + \cdots\right],$ $-\frac{v}{\sqrt{2}}(\bar{u}_{L}^{i}\bar{d}_{L}^{i})\Sigma \left[1 + c_{j}\frac{h}{v} + c_{2}\frac{h^{2}}{v^{2}} + \cdots\right] \left(\begin{array}{c}y_{ij}^{u}u_{R}^{j}\\y_{ij}^{d}d_{R}^{j}\end{array}\right) + h.c.\cdots,$

(Reasonable) assumptions

- Spin-O and CP-even
- Custodial symmetry
- No Higgs FCNC

SM
$$a = b = (c_j = c) = 1$$

 $b_3 = c_2 = ... = 0$

$$R = \sigma / \sigma_{SM}$$

$$R_{gg} = c^2$$
 , $R_{\rm VBF} = a^2$, $R_{\rm ap} = a^2$, $R_{\rm hs} = c^2$

Higgs signal strength data

ATLAS 2011 - 2012 m_н = 126.0 GeV $W, Z H \rightarrow bb$ √s = 7 TeV: ∫Ldt = 4.7 fb⁻¹ $\begin{array}{l} H \rightarrow \tau\tau\\ \sqrt{s} = 7 \text{ TeV} : \int Ldt = 4.6-4.7 \text{ fb}^{-1}\\ H \rightarrow WW^{(^{(*)})} \rightarrow I_V V\\ \sqrt{s} = 7 \text{ TeV} : \int Ldt = 4.7 \text{ fb}^{-1} \end{array}$ √s = 8 TeV: ∫Ldt = 5.8 fb⁻¹ $\begin{array}{l} H \rightarrow \gamma \gamma \\ \sqrt{s} = 7 \text{ TeV: } \int \text{Ldt} = 4.8 \text{ fb}^{-1} \\ \sqrt{s} = 8 \text{ TeV: } \int \text{Ldt} = 5.9 \text{ fb}^{-1} \\ H \rightarrow ZZ^{(1)} \rightarrow 41 \end{array}$ √s = 7 TeV: ∫ Ldt = 4.8 fb⁻¹ Vs = 8 TeV: Ldt = 5.8 fb Combined $\sqrt{s} = 7 \text{ TeV}: \int Ldt = 4.6 - 4.8 \text{ fb}^{-1}$ $\mu = 1.4 \pm 0.3$ -√s = 8 TeV: ∫Ldt = 5.8 - 5.9 fb⁻¹ -1 0 1

Signal strength (μ)

Electroweak precision tests

$$\Delta(\rho - 1) \approx \frac{3(1 - a^2)}{8\pi \cos^2 \theta_W} \log\left(\frac{m_h}{\Lambda}\right)$$
$$\Delta S \approx \frac{-(1 - a^2)}{6\pi} \log\left(\frac{m_h}{\Lambda}\right)$$
$$\alpha S \equiv -4e^2 \frac{d}{dq^2} \Delta_3(q^2) |_{q^2 = 0}$$

Global Analysis of Higgs-like Models

• Rescale couplings: to bosons by *a*, to fermions by *c*

Espinosa, Grojean, Muhlleitner, Trott Eboli et al Falkowski, Evra, Urbano

EW data prefer value of 'a' close to 1

Standard Model

$$(a,c) = (1,1)$$
 is ~ 2σ (C.L. of 0.95)

Search for new physics

What else is there?

Slide from Ellis

 $f_{\rm H}/\Lambda^2$ [TeV⁻²]

- Higher-dimensional operators as relics of higherenergy physics? $\mathcal{L}_{\text{eff}} = \sum \frac{f_n}{\Lambda^2} \mathcal{O}_n$
- Operators constrained by $SU(2) \times U(1)$ symmetry:

$$\mathcal{O}_{GG} = \Phi^{\dagger} \Phi \ G^a_{\mu\nu} G^{a\mu\nu} \ , \qquad \mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \ , \qquad \mathcal{O}_{BW} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \ ,$$

$$\mathcal{O}_{W} = (D_{\mu}\Phi)^{\dagger}\hat{W}^{\mu\nu}(D_{\nu}\Phi) , \quad \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}\hat{B}^{\mu\nu}(D_{\nu}\Phi) , \quad \mathcal{O}_{\Phi,1} = (D_{\mu}\Phi)^{\dagger}\Phi \Phi^{\dagger}(D^{\mu}\Phi)$$

$$\mathcal{L}_{eff} = -\frac{\alpha_{s}v}{8\pi}\frac{f_{g}}{\Lambda^{2}}\mathcal{O}_{GG} + \frac{f_{WW}}{\Lambda^{2}}\mathcal{O}_{WW} + \frac{f_{W}}{\Lambda^{2}}\mathcal{O}_{W} + \frac{f_{B}}{\Lambda^{2}}\mathcal{O}_{B} + \frac{f_{bot}}{\Lambda^{2}}\mathcal{O}_{d\Phi,33} + \frac{f_{\tau}}{\Lambda^{2}}\mathcal{O}_{e\Phi,33}$$
Fit with $f_{e}, f_{w}, f_{B}, f_{ww}$ and $f_{bot} = f_{\tau} = 0$

$$measurements$$

$$\mathcal{O}_{W} = (D_{\mu}\Phi)^{\dagger}\hat{W}^{\mu\nu}(D_{\nu}\Phi) , \quad \mathcal{O}_{\Phi,1} = (D_{\mu}\Phi)^{\dagger}\Phi \Phi^{\dagger}(D^{\mu}\Phi)$$

$$\mathcal{O}_{\Phi,1} = (D_{\mu}\Phi)^{\dagger}\Phi \Phi^{\dagger}(D^{\mu}\Phi)$$

$$\mathcal{O}_{\Phi,33} + \frac{f_{\tau}}{\Lambda^{2}}\mathcal{O}_{e\Phi,33} + \frac{f_{\tau}}{\Lambda^{2}}\mathcal{O}_{e\Phi,33}$$
Fit with $f_{e}, f_{w}, f_{B}, f_{ww}$ and $f_{bot} = f_{\tau} = 0$

$$\mathcal{O}_{\Phi,33} = \frac{f_{\tau}}{\Lambda^{2}}\mathcal{O}_{e\Phi,33}$$

$$\mathcal{O}_{\Phi,33} = \frac{f_{\tau}}{\Lambda^{2}}\mathcal{O}_{e\Phi,33} + \frac{f_{\tau}}{\Lambda^{2}}\mathcal{$$

 f_{e}/Λ^{2} [TeV⁻²] f_{ww}/Λ^{2} [TeV⁻²] f_{w}/Λ^{2} [TeV⁻²]

☑ The SM Higgs width is tiny for mh ~ 125 GeV

- Its decays into gauge bosons are either off-shell (WW*, ZZ*), or at loop level (di-photon, di-gluon)
- Its decays into fermions tend to be suppressed because of small Yukawa couplings (except tt*)
- ☑ About three orders smaller than the Z or W widths (~ 4MeV only)!

Result A small non-standard Higgs coupling may lead to sizable effect. e.g., $\Delta \mathcal{L} = \lambda S^2 |H|^2$ (common building block in extended Higgs sectors)

So the exotic decays of the 125GeV Higgs are a natural and very efficient way for probing new physics

The Website of ``Exotic Higgs Decays''

00				Non-Star			
	+ Shttp://phenoll.physics.sunysb.edu/web/wopr/?page_id=6						
m III	News 7	The officialIST & USNO)	gnuplot / label (1E)	Quark vs Gluon Plots			

Decays to Standard Objects Without Missing Energy

- 1. $h \rightarrow 2 \rightarrow (2)+(1)$
 - · Y+Z
 - γ + Z'
- 2. $h \rightarrow 2 \rightarrow (2)+(2)$
 - via Spin-0 Bosons (S)
 - (bb)(bb)
 - (bb)(T*T)
 - (bb)(µ+µ)
 - (τ+τ)(μ+μ)
 - (Db)(YY)
 - · (T+T)(YY)
 - = (m)(m)
 - · (YY)(99)
 - via Spin-1 Bosons (Z')
 - · (1+1-)(1+1-)
 - ()+/-)(qq
- 3. $h \rightarrow 2 \rightarrow (3)+(3) \text{ or } (2+1)(2+1)$
 - via Bosons

Decays to Standard Objects With Missing Energy (except for that from b's, c's, tau's)

- 1. $h \rightarrow 0$
 - MET (Invisible decay)
- 2. $h \rightarrow 2 \rightarrow 1+0$
 - γ + MET
- 3. $h \rightarrow 2 \rightarrow 2 + 0$
 - via Spin-0 Bosons (S)
 - (bb) + MET
 - (τ+τ) + MET
 - (μ+μ) + MET
 - (γγ) + MET
 - via Spin-1 Bosons (Z')
 - (I+I-) + MET
 - via Spin-1/2 Fermions
 - *γγ* + MET
 - [YY] + MET
 - [I+I-] + MET
Summary: Beyond the SM at the LHC

Summary: Beyond the SM at the LHC

