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• Introduction

• Half BPS states in N=4 SYM: fermion droplets

• Strings stretching between giant gravitons and coherent states

• Black holes

• Fermion dynamics



Introduction

The gauge/gravity duality has told us that 
field theory can be equivalent to geometry 

in higher dimensions.
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Simplest example of gauge gravity duality

Maldacena hep-th/9711200



Questions

• Why and when does the large N dynamics organize itself into geometry?

• What can we say about the many geometries that might be related to a single 
dynamical system? (Black holes versus smooth supergravity solutions)

• How does geometry break down?



Any such geometry in higher dimensions is to be 
considered an emergent phenomenon. It’s not part of 

the original description of the theory.



Starting with N=4 SYM

The generic state is too complicated.

Consider special states (very supersymmetric).



Half BPS states

They are gauge invariant operators built out of 
multi-traces of Z (one of the complex scalars of N=4 

SYM in an N=1 superfield notation)



A good basis (complete and orthogonal)
This is provided by Schur polynomials.

Z is a (operator valued) matrix in the adjoint of the group U(N). One can
consider Z as generic matrix of GL(N, C). The trace of Z can be taken in a
representation of the group which is not the fundamental.

Irreps are given by Young tableaux with columns of length less than or equal
to N

These form a complete basis of half BPS states, one for each tableaux (
Jevicki et al).
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Schur polynomials

Corley, Jevicki, Ramgoolam, hep-th/0111222



The system can be solved in terms of free fermions on a 
magnetic plane: lowest Landau level physics 

D.B. hep-th/0403110

An adaptation of a standard 1-matrix model trick of

Brezin, Itzykson, Parisi, Zuber



The system is a copy of the quantum hall droplet.

The ‘particle’ and ‘hole’
end up identified as D-branes.

These are giant gravitons.



WHAT ARE GIANT GRAVITONS?

Gravitons: half BPS states of AdS

Preserve SO(4)x SO(4) symmetry

Point particles moving on a diameter of sphere and 
sitting at origin of AdS



There are also D-brane (D3-branes) states that respect 
the same symmetry and leave half the SUSY invariant.

SO(4) x SO(4) invariance implies

Branes wrap a 3-sphere of 5-sphere at 
origin of AdS (moving in time)

OR
Branes wrap a 3-sphere of AdS, at a

point on diameter of 5- sphere

McGreevy, Susskind, Toumbas, hep-th/000307



What’s new?

We can now extract an effective action for the giant 
gravitons from gauge theory.

D.B. arXiv:1301.3519



Need a notion of collective coordinates for a (special) 
collection of states of some quantum system.

|�i =
X

cn(�)|ni

Def:  is a (set of) collective coordinate (s)  if

h�|�̃i << 1 If |�� �̃| > A

h�|H|�̃i << |h�|H|�i � h�̃|H|�̃i| If |�� �̃| > A

Similar for all other symmetry quantum numbers

(Orthogonality)

(Local)



Effective action

Seff =

Z
dt (ih�(t)|@t|�(t)i � hHi)

Berry phase

In principle we can then go and compare to some other 
system with a particular action.

Z
pdq



Collective coordinate for giant gravitons

det(Z � �) =
NX

`=0

(��)N�` det`(Z)

Consider

This is a linear combination of states with 
different R-charge, depends on a complex 

parameter.
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The parameter belongs to a disk



Seff =

Z
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�

We get an inverted harmonic oscillator in a first
order formulation.

Approximation breaks down exactly when
 Energy goes to 0

After plugging in



This is very similar to what happens in gravity

If we rescale the disk to be of radius one, 
we get

Seff = N

Z
dt


i

2
(⇠⇤⇠̇ � ⇠̇⇤⇠)� (1� ⇠⇠⇤)

�

The factor of N in planar counting suggests that this 
object can be interpreted as a D-brane



Matches exactly with the fermion droplet picture of
half BPS states

D. B. hep-th/0403110
Lin, Lunin, Maldacena, hep-th/0409174



Attaching strings

The relevant operators for maximal giant are

✏✏(Z, . . . Z,W 1, . . .W k)

These can be obtained from expanding

det(Z +
X

⇠iW
i)

And taking derivatives with respect to parameters

  Balasubramanian, Huang, Levi and Naqvi, hep-th/0204196



Main idea: for general giant replace Z by Z- in the 
expansion

det(Z +

X
⇠iW

i
) = det(Z) exp(Tr log(1 + Z�a

X

i

⇠iW
iZ�b

))



One loop anomalous dimensions = masses of 
strings

Want to compute effective Hamiltonian of strings 
stretched between two giants.

det(Z � �1) det(Z � �2)Tr((Z � �1)
�1Y (Z � �2)

�1X)

I have not done full combinatorics of 2 giants on same 
group, rather use orbifold trick to simplify algebra



End result in pictures

m2
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E ' m2
od

' g2
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|�� �̃|2

' g2
YM

N |⇠ � ⇠̃|2

Result is local in collective coordinates (terms that could 
change collective parameters are exponentially suppressed)

Mass proportional to distance is interpreted as Higgs 
mechanism for emergent gauge theory.



More general states: open Spin chains

Y ! Y n

Need to be careful about planar versus non-planar
diagrams.

� ' N1/2



Simplest open chains

6

occupation number N
total

(which remember, commutes with the 1-loop Hamiltonian) then

we find that the wave function is such that  (n1, n2, . . . , nk

) = 1 for all n
i

with
P

n
i

= N
total

,

and that there is exactly one such state. This matches with the chiral ring computation

of the N = 4 SYM, where there is a unique single trace element of the schematic form

Tr(ZN

totY k).

Now, we will proceed with the computation of the Cuntz chain Hamiltonian for the case

of an open string attached to a pair of giant gravitons. The formulation found in [1] shows

that for a single giant graviton, it is natural to use the basis of operators given by

det(Z � �)Tr(
1

Z � �
Y Zn1Y . . . Zn

kY ) (16)

which would represent a single string starting and ending on the same giant gravitons. We

can call this state by the label |�;n1, . . . nk

i. Notice that the trace now has a preferred site:

the one where � shows up. Thus we do not impose the cyclic property on the wave functions

for the n
i

.

When dealing with multiple giant gravitons, we want the start and the end of a string

to be in di↵erent giant gravitons, so that the boundary condition on the left can take a

di↵erent value than the boundary condition on the right. Just as in [1], it is simpler to work

in the supersymmetric Z2 orbifold of N = 4 SYM, rather than in N = 4 SYM directly. This

corresponds to a U(N) ⇥ U(N) quiver theory with N = 2 SUSY in four dimensions. The

chiral superpartners of the vector fields will be called Z, Z̃, while the matter hypermultiplets

between the two gauge groups will be made of X, Y chiral fields. The corresponding state

will be given by

det(Z � �) det(Z̃ � �̃)Tr(
1

Z � �
Y12Z̃

n1Y21Z
n2Y Z̃n3 . . . Zn

kY12
1

Z̃ � �̃
X21) (17)

Where we note that we need another string to go back to the original giant graviton, which

we have made out of a single X. The labels Y12 indicate that the Y is a bifundamental

in the (N1, N̄2) representation of the U(N1) ⇥ U(N2) orbifold group (with N1 = N2 = N

numerically), whereas the Y21 is in the (N̄1, N2) representation.

The idea of using a di↵erent letter for the string that heads back is that we can isolate

the contributions to the anomalous dimension from the Y, Z interactions as described above

and forget the ones that come from the Z,X interactions. That way there is no double

counting of contributions. To get the full result, we add another copy of the computation

Again, to simplify combinatorics between two giants, go 
to orbifold
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Just replace the W by n copies of Y: Z can jump in and 
out at edges. So we need to keep arbitrary Z.
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We then proceed to study the ground state of this spin chain by using coherent states for

the Cuntz oscillator, which are the natural degrees of freedom for this spin chain and we also

compute the ground state energy. The Cuntz oscillator coherent states are also described by

a complex parameter and are restricted to a disk of radius 1. We show that the coordinates

of the disk of radius one arising from the spin chain and the disk of radius
p
N are really

describing the same disk after rescaling and complex conjugation. However, the e↵ective

metric that the string and the giant graviton see are di↵erent from each other.

II. THE CUNTZ SPIN CHAIN BOUNDARY CONDITIONS

Let us first briefly recall the determination of the one loop anomalous dimensions for

the SU(2) spin chain from N = 4 SYM and we will rewrite it in terms of a spin chain

for bosons that satisfy the Cuntz oscillator relations. The truncation to the SU(2) spin

chain follows straightforwardly from the work [7], which computed the SO(6) spin chain

Hamiltonian. The main observation needed for the calculation is that for holomorphic

operators made of scalars, the contributions from D-terms, the gluon exchange and the self

energy corrections cancel against each other [8], so that only F-terms can contribute to

the anomalous dimension. From the superpotential of N = 4 SYM, W = Tr(X[Y, Z]) the

F-terms are given by the following structure

F -terms = g
YM

Tr(F
X

[Y, Z] + F
Y

[Z,X] + F
Z

[X, Y ]) + c.c (1)

plus the kinetic term Tr(F ⇤ F ). We keep the factor of g
YM

to be able to count loops, but

other numerical coe�cients are dropped. Although the F fields are auxiliary variables, it is

convenient to keep them in the Feynman diagrams. Now we let the anomalous dimension

computation proceed on a word of the type

|n1, n2, n3 . . . , nk

i = Tr(Y Zn1Y Zn2Y Zn3 . . . Y Zn

k) (2)

Notice how we choose the labeling in terms of the number of Z in between the Y . The

standard convention would be to name these states as a spin chain with SU(2) indices at

each position, which are an up state Y ' | "i and a down state Z ' | #i [7]. Thus, the map

between the two conventions for labeling states is given by

|n1, n2, n3 . . . i ' | ", #⌦n1 , ", #⌦n2 , ", #⌦n3 , . . . i (3)

Choose the following labeling for the basis
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zero occupation numbers on some of the n
i

)

H
eff

|n1, n2, n3 . . . , nk

i = g2
YM

N
kX

i=1

2| . . . , n
i�1, ni

, n
i+1 . . . i (7)

�| . . . , n
i�1 + 1, n

i

� 1, n
i+1 . . . i � | . . . , n

i�1, ni

� 1, n
i+1 + 1 . . . i

The sum over the last and first term require us to use the identification that n
k+1 = n1 and

n0 = n
k

. This makes the spin chain periodic.

It is convenient to introduce raising and lowering operators for the n
i

labels, such that

a†
i

|n
i

i = |n
i

+ 1i and a
i

|n
i

i = |n
i

� 1i, with the convention that no negative occupation

numbers are allowed, this is | � 1i = 0 so that a
i

|0
i

i = 0, and such that they commute

with each other. Such a set of creation and annihilation operators satisfy the Cuntz algebra

(this is related to a deformation of the standard oscillator alegbra) , this is aa† = 1, and

a†a = 1 � P0, where P0 is the projector onto the zero occupation state. The reason to

use this representation is that the e↵ective Hamiltonian can be written in terms of these

raising/lowering operators in the following form

H
eff

= g2
YM

N
X

i

2a†
i

a
i

� a†
i�1ai � a†

i+1ai (8)

The first term can be thought of as the energy for staying in place, whereas the other two

terms can be interpreted as particles hopping out of site i into site i + 1 or i � 1. This

Hamiltonian can also be written as follows

H
eff

= g2
YM

N
X

i

(a†
i+1 � a†

i

)(a
i+1 � a

i

) (9)

which shows that it is a sum of squares.

Notice that because aa† = 1, all operators should naturally be written as linear com-

binations of objects in normal ordered form Ŝ
kn

= (a†)kan. It is easy to show that

Ŝ
nn

= (a†)nan = 1 �
P

n�1
k=0 Pk

, where the P
k

are the projectors on the state with occu-

pation number k. The occupation number is given by the following expression

N̂ =
1X

n=1

Ŝ
nn

= N̂ † (10)

it is clear that Ŝ
nn

|n
i

i = 0 if n > n
i

, and that otherwise Ŝ
nn

|ni
i

= |ni
i

. It is easy to show

that N̂
tot

=
P

i

N̂
i

commutes with the Hamiltonian. This follows straightforwardly from the

commutation relations [N̂ , a†] = a†, which are straightforward to prove.

One loop Hamiltonian in bulk

Can be written conveniently if we introduce
a Cuntz oscillator for each site

aa† = 1



After some work at one loop...and including 
boundary

9

We find that the correct coe�cient to attach to this process is g2
YM

N �p
N

. Notice that this

takes n1 ! n1 � 1. Following our practice of labeling states with Cuntz oscillators, we see

that the hop-out interaction is given by the following extra contribution on the first element

of the spin chain

Hhop-out, left ' �g2
YM

N
�p
N
a1 (28)

Hermiticity ensures that the hop-in interaction is the adjoint of this operation, so we have

that

Hhop-in, left ' �g2
YM

N
�⇤
p
N
a†1 (29)

Finally, there is one extra contribution to the left from acting with the term Tr(ZY @
Y

@
Z

)

where the derivative with respect to Z acts on the giant graviton. Such terms are identical

to those that were already computed in [1], and these are given by

g2
YM

��⇤ (30)

Such terms were called ‘kissing interactions’ in [13].

Putting it all together, we find that the open spin chain Hamiltonian on the left side of

the spin chain is given by

H
eff

' g2
YM

N

✓
�p
N

� a†1

◆✓
�⇤
p
N

� a1

◆
+ (a†1 � a†2)(a1 � a2) + . . .

�
(31)

A similar term shows up in the right hand side, with � ! �̃ and a1 ! a
k

. Notice that

this is a simple generalization of equation (9) at the boundaries. This is a nearest neighbor

interaction with hopping in and out of the chain at the boundaries. It is important to notice

that since the parameter � is complex, there are phases associated to hopping in and out

at the boundary. This is a simple generalization of the spin chain Hamiltonian found in

[5, 6]. Notice that the Hamiltonian can be made to be the same as the one presented in

that work if we choose � = �̃ = �
p
N(1� p/N) in the notation of [5]. Notice that this

result ends up having the same information content as the one found in [13] (particularly

equation ). All we have to do is interpret the parameter �/ in our expression in terms of

raising and lowering operators associated to the momentum of the giant graviton. Since �

is a coherent state parameter for a (inverted) harmonic oscillator, as shown in [1], we can

think of � ' b and �⇤ ' b†, for a harmonic oscillator pair. In this case, acting with a

lowering operator actually increases the R-charge of the giant, and acting with the raising

We get a sum of squares



We need to try to solve the operator equations
to find a minimum.

We can try converting them to c-number equations
if we introduce generalized coherent states

a|zi = z|zi

Solving the equations then becomes trivial.



|zi =
1X

k=0

zk|ki

hz|zi = 1

1� |z|2

hz0|zi = 1

1� z̄0z

Again, we can think of z as a collective coordinate for a 
site on the chain. |z|<1 for convergence.
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operator lowers the charge. We also have to be mindful of conventions with respect to

signs. When we chose the operators det(Z � �) as our giant graviton representatives, we

get minus signs in the expansion in terms of subdeterminants. Those minus signs appear

in the relative sign between �⇤ and a1 in the expressions above. If we would have chosen

the operators det(Z + �) instead, we would have gotten the result above with various signs

changed. Those sign di↵erences would reproduce the results of [13] exactly, while changing

from Cuntz oscillators to ordinary oscillators would account for the numerical factors in the

square roots appearing in equation (3.7), as well as the equation in page 23 describing the

boundary Hamiltonian.

III. GROUND STATE FOR OPEN SPIN CHAIN AND GEOMETRIC

INTERPRETATION

Our purpose in this section is to find the ground state for the Hamiltonian computed in

equation (31).

Hspin chain ' g2
YM

N

✓
�p
N

� a†1

◆✓
�⇤
p
N

� a1

◆
+ (a†1 � a†2)(a1 � a2) + . . .

�
(32)

The idea is to use trial wave function which is made of coherent states for the Cuntz oscil-

lators as described in equation (12) and to show that after minimizing with respect to the

coherent state parameters that it is an eigenstate of the Hamiltonian. Thus, we use a label

for the state as |z1, . . . zki, where the z
i

indicate coherent states for each Cuntz oscillator.

Using a
i

|z
i

i = z
i

|z
i

i we find that when we evaluate the Hamiltonian

hz1, . . . zk|Hspin chain|z1, . . . zki = g2
YM

N

2

4
����
�⇤
p
N

� z1

����
2

+
X

|z
i

� z
i+1|2 +

�����
�̃⇤
p
N

� z
k

�����

2
3

5

(33)

which is a simple quadratic function of the z
i

. When we minimize with respect to the z
i

parameters we find that

�⇤
p
N

� z1 = z1 � z2 = · · · = z
i

� z
i+1 = · · · = z

k

� �̃⇤
p
N

(34)

Adding these together we find that

�⇤
p
N

� �̃⇤
p
N

= (k + 1)(z
i

� z
i+1) (35)

To find ground state, coherent state ansatz

and minimize
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which is a simple quadratic function of the z
i

. When we minimize with respect to the z
i

parameters we find that

�⇤
p
N

� z1 = z1 � z2 = · · · = z
i

� z
i+1 = · · · = z

k

� �̃⇤
p
N

(34)

Adding these together we find that

�⇤
p
N

� �̃⇤
p
N

= (k + 1)(z
i

� z
i+1) (35)

Berenstein and Dzienkowski, arxiv:1305.2394
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[1]. Also, the equation (34) shows that the z
i

are equidistant of each other, and they form

an array of k evenly spaced points stretching between �⇤N�1/2 and �̃⇤N�1/2. Thus all of the

z
i

are in the unit disk and the state is normalizable.

What we see is that the z coordinates are very closely related to the � coordinates char-

acterizing giant gravitons. It is convenient to introduce coordinates for the giant gravitons

⇠ = �⇤N�1/2 and ⇠̃ = �̃⇤N�1/2. These coordinates are the complex conjugates of similar

named variables in [1]. This can be interpreted geometrically in the figure 1
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The spin chain energy can be evaluated for a general state of the coherent state basis and

the energy can be interpreted as a collection of variables z
i

in the unit disk, with z0 = ⇠ and

z
k+1 = ⇠̃, and the expectation value of the energy of such a general configuration is a sum

of distances squared in the complex plane, namely
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which is a geometric equation. Although z0 and z
k+1 are really giant graviton coordinates,

the energy of the state does not really treat them di↵erently than the other z
i

(other than

being at the endpoints). We can reverse the logic and state that all the z
i

could be treated as

if they are D-brane coordinates of some sort. In this sense, the formula for the mass squared

starts looking like a sum over contributions where impurities are stretched between successive

D-branes, with gauge invariance requiring that for each incoming string to a brane there

is an outgoing string. This type of interpretation gives further evidence for the idea that

geometry at strong coupling can be understood in terms of open strings stretching between
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which is a geometric equation. Although z0 and z
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(other than
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which is a geometric equation. Although z0 and z
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⇠&z describe the same geometry, but for di↵erent objects

D-branes and strings see things differently: they 
wrap different dimensions.



End result:

Full calculation for open spin ground state should give

En ' n+ n�1g2YM |�� �̃|2 '
q

n2 + g2YM |�� �̃|2

Starts showing an emergent Lorentz invariance for 
massive W particles in the worldsheet fluctuations of 
giant gravitons. We showed this to two loop order.



Moral

• Collective coordinates can appear in more than one way, depending on the 
object under study.

• We seem to be able to see emergent Lorentz invariance by studying ground 
states of open spin chains.

• This has an explanation in terms of central charge extensions of the open 
spin chain (assuming bulk integrability of the spin chain).



Non-ground states: what about black holes?

Want to simulate generic time-dependent states in a 
strongly coupled QFT.



Building a black hole

For technical reasons, BFSS matrix 
model black hole is ideal for simulations. 

Can also take large N.

 (Finite number of degrees of freedom in matrices)



BFSS matrix model

SBFSS =
1

2g2

⇤
dt

�
(DtX

I)2 +
1
2
[XI , XJ ]2

⇥
+ fermions

Banks, Fischler, Shenker, Susskind ‘96

 Dimensional reduction of U(N) SYM in d=9+1 to 0+1 

There are 9 dynamical matrices and one 
matrix constraint.



Once you have a typical matrix configuration, how 
do you probe it geometrically?



Add a D0 brane probe (extra eigenvalue)

The probe lives in R9

We can ask questions about the probe and
locate information relative to this flat geometry.



Distance from probe to configuration

Compute masses of off-diagonal strings connecting 
probe to configuration.

Better with fermions.



Need to diagonalize ‘instantaneous’ effective 
Hamiltonian for o.d. fermions.

Heff =
X

(Xi � xi ⌦ 1)⌦ �i

Define (spectral) distance as minimum eigenvalue 
(in absolute value): this is the ‘shortest string energy’

work in progress w. E. Dzienkowski



Toy model: in 3d rather than 9

�

i

(Xi � xi)⇥ �i

We only have 3 matrices and the Gamma 
matrices are Pauli Matrices.

w. E. Dzienkowski, arXiv:1204.2788



We can check on some simple configurations
(deformed fuzzy spheres)

We see eigenvalues can cross zero.

100 200 300 400 500 600

-4

-2

2

4



I(x) ⇥ dim(V +)� dim(V�)
2

Locally constant: counts how many layers one has
to cross to get out.

The locus where index changes are surfaces: the 
best notion of the geometric embedding of the matrices.

Suggest we should count those crossings



Generalizes to all odd dimensions.

We get even dimensional branes at zero locus.
(They’re probably always there)



21 x 21 matrices
Thermalization in BMN 

matrix model



Scan over a 1 parameter set at fixed time

Size of X matrix

Fermions are gapless in a region



Fix position of probe inside gapless region

Define spectral dimension using density of 
states near zero
dn

dE
|E'0 ' E��1

Same density of degrees of freedom as field theory in
� + 1 dimensions

spectral dim = �



Spectral dimension = 1 

Effective 1+1 field theory



Physics can not be local in that region.

1 6= 9

Can not be both space filling and one-dimensional



Interpretation (speculation)

Gapless region is ‘inside the black hole’

EFT breaks down as we get near black hole:
gap becomes smaller than naive distance (could be 

interpreted as redshift)



Two possibilities:

The dynamics of the BH singularity?

Firewalls?


