Higgs properties from experiments

Bruno Mansoulié (CEA-IRFU-Saclay)

Contents

- $m_{\rm H}$: m($\gamma\gamma$) and m(ZZ*)
- $\Gamma_{\rm H}$ (limits): direct ($\gamma\gamma$), invisible, interferometry (ZZ*)
- **Spin/CP**: *γγ*, WW*, ZZ*
- Higgs couplings

۲

- Signal strength with respect to SM : global (μ), per channel (μ_i)
- Production modes: Vector Boson Fusion / gluon fusion
- Couplings analyses

"Is this the SM Higgs boson?"

Remark: Impossible to answer this question! Even if we have 1/1000 precision on one variable, it could be 1/10000 away from the SM.

Karl Popper => impossible to prove a theory. Only possible to falsify competing ones...

- Particle ID card versus model dependence?
 - m_H , Γ_H ; ~ assumes 1 resonance only;
 - Spin/Parity : SM 0⁺; no good alternative model with 100 % contribution but nevertheless, 100% 0⁻ or 2⁺ are benchmarks. Attempt at admixture.
 - Couplings: try to extract general features, although each alternative model has its distinctive couplings structure...
- Complementarity: global features / test of alternative model (2HDM, MSSM...)
- Large work of LHC-Higgs-XS-WG http://arxiv.org/pdf/1307.1347v1.pdf

Statistical methods

Measurements (mass, couplings) from profiled likelihood method

$$\Lambda(\boldsymbol{\mu}) = \frac{L(\boldsymbol{\mu}, \hat{\boldsymbol{\theta}}(\boldsymbol{\mu}))}{L(\hat{\boldsymbol{\mu}}, \hat{\boldsymbol{\theta}})}$$

 μ : parameter(s) of interest

 θ : nuisance parameters

 $L(\hat{\mu}, \hat{\theta})$ global likelihood maximum: μ and θ adjusted for max L $L(\mu, \hat{\hat{\theta}}(\mu))$ tested μ point : θ adjusted for max L at this μ point -2 Ln $\Lambda(\mu)$ follows χ^2 distribution with n d.o.f. $(\mu_{1...n}) => P(\chi^2 > x)...$

- Importance of a consistent, global "error model" for an experiment. Global couplings fit in Atlas: over 1500 nuisance parameters!
- Test of hypothesis (Spin, CP): ratio of likelihoods for each hypothesis.

$$q = \log \frac{\mathcal{L}(J^{P} = 0^{+}, \hat{\hat{\mu}}_{0^{+}}, \hat{\hat{\theta}}_{0^{+}})}{\mathcal{L}(J^{P}_{alt}, \hat{\hat{\mu}}_{J^{P}_{alt}}, \hat{\hat{\theta}}_{J^{P}_{alt}})} \qquad p_{0}(hyp) = \int_{q_{obs}}^{\infty} f_{hyp}(q) dq \qquad CL_{s}(J^{P}_{alt}) = \frac{p_{0}(J^{P}_{alt})}{1 - p_{0}(0^{+})}$$

Mass measurement from $\gamma\gamma$ and ZZ*

 $m_{\rm H} = 125.5 \pm 0.2 \text{ (stat)}^{+0.5}$ -0.6 (sys) GeV

$125.7 \pm 0.3 \text{ (stat)} \pm 0.3 \text{ (sys) GeV}$

- $m_{\rm H}$: parameter of interest ; $\mu_{\gamma\gamma}$ and μ_{41} treated as independent nuisance parameters
- m_H almost independent on the signal strengths.
- value important in couplings determination: BR(WW, ZZ) vary quickly with m_H!
 Bruno Mansoulié (IRFU-CEA), Corfu, Sept 2013

Width

- SM Higgs width for 125.5 GeV: 4 MeV.
- Direct measurement on mass peak
 - γγ in CMS: observed (expected) upper limit on width 6.9 (5.9) GeV (95% CL).
- Interferometry
 - Non-zero width enables Higgs to interfere with the continuum far from peak: γγ and 4 leptons. Caola/Melnikov with (4ZZ*) CMS data: $\Gamma_{\rm H} < 39 \Gamma_{\rm H}^{\rm SM} = 160 \text{ MeV}$
- Invisible decay modes from Z H , $H \rightarrow$ invisible. (typically Z + $E_{T miss} > 100 \text{ GeV}$)
 - Assume $\sigma(ZH)$ as in SM
 - ATLAS: BR < 65% @95% CL
 - CMS: BR < 75% @95% CL
 - Beware that this does not count the *undetected* modes like $H \rightarrow$ light jets

Spin/CP

- Analysis of internal distributions, irrespective of signal strength.
- Different (and complementary) sensitivities from different decay modes.
 - Atlas compares 0^+ to : $\gamma\gamma$: 2^+ ; ZZ: 0^- , 1^+ , 1^- , 2^+ ; WW: 1^+ , 1^- , 2^+ ; combination.
 - CMS: $\gamma\gamma$: 2⁺; ZZ: 0⁻, 1⁺, 1⁻, 2⁺; WW: 2⁺; comb (WW+ZZ; 100% gg)
- Spin 1 forbidden for γγ decay (Landau-Yang theorem).

Only looked at in ZZ and WW

 Spin 2: many models possible. Graviton-like selected. (JHU: 2⁺_m) (others can be *very* exotic...)

Spin/CP: examples

• ZZ* : 2 masses + 5 angles (but few events)

0⁺ / 0⁻ separation (BDT)

0+ / 0-

• 0⁻: only produced by gg fusion (qq̄ negligible)

Only ZZ* mode

– Ratio of likelihoods for each hypothesis: 100 % 0⁺ versus 100% 0⁻:

CMS excludes 0⁻ at 99.8% CL (exp: 99.5)

Data well compatible with 0⁺

Bruno Mansoulié (IRFU-CEA), Corfu, Sept 2013

Atlas:excludes 0⁻ at 97.8% CL (exp: 99.6)

$0^+ / 0^-$: testing the admixture

100% 0⁻ : ~ impossible because does not couple to WW at tree level. Effective Lagrangian models allow typically up to ~ 5% of 0⁻

$$A = v^{-1} \epsilon_1^{*\mu} \epsilon_2^{*\nu} \left(a_1 g_{\mu\nu} m_H^2 + a_2 q_\mu q_\nu + a_3 \epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} \right) = A_1 + A_2 + A_3$$

• CMS: probes content of CP violating a₃ term in ZZ decays.

f (a3) < 0.56 @ 95%CL (exp 0.76)

Could be improved by VBF and VH modes with more statistics

•

Spin 1 and 2

100 pp→ X(J^P) in MG5.KT $d\sigma/dp_{\tau}/\sigma_{tot}$ at the LHC8 **Only looked at in ZZ and WW** 10^{-1} Landau-Yang also forbids gg (onshell gluons) \rightarrow H, 10^{-2} hence only $q\bar{q} \rightarrow H$ assumed 10-3 10 45 50 100 150 p_T(X) (GeV)

Spin 2

Spin 1

- JHU 2⁺_m assumed —
- gg and qq production different
 - polarization
 - **Kinematics** •
- 2^{+}_{m} at LO : 4% q \bar{q} but NLO unknown \Rightarrow scan in f $_{q\bar{q}}$

200

Spin

CL_S values of the models tested against 0⁺

1 (qq)		CMS		
	WW	ZZ	Combined	ZZ
1+	0.08	2 10 ⁻³	3 10 ⁻⁴	< 10 ⁻³
1-	0.06	0.017	2.7 10 ⁻³	< 10 ⁻³

2 +	ATLAS			CMS				
	WW	ZZ	γγ	Comb	WW	ZZ	Comb ww + zz	γγ
100% gg	.086	.17	.007	4 10 ⁻⁴	0.14	0.015	.006	0.61
100% qq	.0013	.026	.12	8 10-6		10-3		0.16

- Data fully compatible with 0⁺
- All other models tested excluded with a large confidence level.

Signal strength

ATLAS ($\gamma\gamma$, ZZ, WW) CMS ($\gamma\gamma$, ZZ, WW, bb, $\tau\tau$) Tevatron ($\gamma\gamma$, WW, bb, $\tau\tau$)

 $\mu = 1.33 \pm 0.20$

 $\mu = 0.80 \pm 0.14$ $\mu = 1.44 \pm 0.60$

 $[1.23 \pm 0.18 \text{ including bb, } \tau\tau)]$

Good overall compatibility with the SM Higgs.

Higgs production modes

- Through t coupling
 - fermion masses...

- Through W/Z coupling
 - W/Z masses...
 - unitarity of SM

Vector Boson Fusion

VH

Can be tested for all modes with VBF sensitivity

request 2 hard, forward jets. Beware of significant gg contamination in VBF

- CMS: $\gamma\gamma$, ZZ, WW, $\tau\tau$
- ATLAS: γγ, ZZ, WW

Candidate VBF H -> $\tau(e) \tau(\mu)$

Production modes: [VBF (+VH)] / [ggF +ttH]

2 In A

14

12

10

8

6

2

0

- Atlas: evidence for VBF production 3.3σ
- CMS : evidence for VBF + VH : 3.2σ

Compatible with SM : W (Z) production of Higgs

Higgs couplings

For each observed final state, production and decay involve several couplings

Decay width : ~ $(\kappa_W - 0.2 \kappa_t)^2$ [note: interference]

- Need consistent parametrization => LHC Higgs -XS-WG
- Ideally: use all production and decay modes to measure all κ's
- Reality: some modes are statistically limited, or even invisible (κ_c, κ_μ...?)
 => Group some κ's in order to test salient/important features
- Loops : $\kappa_{\gamma_{1}} \kappa_{g}$: as functions of elementary κ 's, or left free to test BSM contributions

Fermion versus Vector couplings

Group couplings : $\kappa_F = \kappa_t = \kappa_b = \kappa_\tau$; $\kappa_V = \kappa_W = \kappa_Z$

Assume:

- gg \rightarrow H and H $\rightarrow \gamma\gamma$ only through SM particles: $\kappa_g (\kappa_F, \kappa_V), \kappa_\gamma (\kappa_F, \kappa_V)$
- only SM particles contribute to decay: $\kappa_{\rm H}$ ($\kappa_{\rm F}$, $\kappa_{\rm V}$) ~ 0.7 $\kappa_{\rm F}^2$ + 0.3 $\kappa_{\rm V}^2$

- sensitivity to relative sign: only from interference term in $H \rightarrow \gamma \gamma$
- sensitivity to κ_F is mostly through top in loops.

W and Z couplings (test of 'custodial symmetry')

• group $\kappa_{\rm F} = \kappa_{\rm t} = \kappa_{\rm b} = \kappa_{\rm \tau}$, un-group $\kappa_{\rm W}$, $\kappa_{\rm Z}$, test $\lambda_{\rm WZ} = \kappa_{\rm W} / \kappa_{\rm Z}$ Direct contribution: WW and ZZ; indirect: $\gamma\gamma$ (through W loop)

1) Use only inclusive WW and ZZ decay modes
 more model-independent

ATLAS: $\lambda_{WZ} = 0.81 \pm 0.16$

CMS: $\lambda_{WZ} \epsilon$ [0.60, 1.40] (95% CL)

- 2) Also use γγ and VBF (+VH) modes assuming SM content in γγloop ATLAS: $\lambda_{WZ} = [0.61, 1.04]$ (68% CL) CMS: $\lambda_{WZ} \in [0.62, 1.19]$ (95% CL)

Coupling to up / down fermions

• set $\kappa_u = \kappa_t$, $\kappa_d = \kappa_b = \kappa_\tau$, test $\lambda_{du} = \kappa_d / \kappa_u$; (profile κ_u and κ_V , assume $\Gamma_{BSM} = 0$)

• different $\kappa_{u_1} \kappa_d$: typical of 2 Higgs Doublet Models, ex MSSM.

- sensitivity :
 - $\kappa_u = \kappa_t$ from loops
 - $-\kappa_d = \kappa_b = \kappa_{\tau}$ from $b\bar{b}$ and $\tau\tau$ decay modes
- CMS: $\lambda_{du} \in [0.74, 1.95]$ (95% CL)

(i.e. seen at ~ 3 sigmas merging b and τ)

Loop couplings: contributions from non-SM particles?

- Introduce effective, *independent*, κ_g , κ_γ (allow additional contributions to loops)
- Assume all couplings to SM particles $\kappa_i = 1$
- Assume no contributions to the total width in undetected modes

BSM decay modes?

- **Reminder:** ZH , H invisible ($Z + E_{T}$ _missing)
- Here: test invisible and undetectable decay modes
 - Need assumption to normalize some width (eitherwise compensation possible)

-2 In A(B_{iu})

ATLAS:
assume tree-level couplings
of SM particles κ_t, ..., κ_{W,...} = 1
3 parameter fit: κ_γ, κ_g, BR_{invis, undet}
BR_{invis, undet} < 0.60 (95%CL)

• CMS:

assume $\kappa_{W,Z} < 1$ 7 parameter fit: κ_{γ} , κ_{g} , κ_{b} , κ_{τ} , κ_{t} , $BR_{invis, undet}$ $BR_{invis, undet} < 0.64 (95% CL)$

Conclusion

- Entering era of Higgs precision measurements
- No deviation from SM Higgs seen up to now
- Complete the work on run I (2011 + 2012) data
 - finalize present modes
 - tṫH
 - Add the new modes to the combination: ttH , ZH (inv), ...
 - Explore admixtures (like 0⁻)
 - Explore (further) particular models: 2HDM, MSSM...
- Extrapolate
 - Run II phase 0, 1
 - phase 2
 - role in big policy decisions

Additional slides

Fermions: quark / leptons?

- sensitivity :
 - $-\kappa_l = \kappa_\tau$ from $\tau\tau$ decay mode
 - $-\kappa_q = \kappa_b = \kappa_t$ from $b\bar{b}$ decay mode and loops

• CMS: λ_{lq} [0.57, 2.05] (95% CL)

Fermion versus Vector couplings (2)

- **Group couplings** : $\kappa_{\rm V} = \kappa_{\rm W} = \kappa_{\rm Z}$; $\kappa_{\rm F} = \kappa_{\rm t} = \kappa_{\rm b} = \kappa_{\rm \tau}$
 - Assume: $gg \rightarrow H$ and $H \rightarrow \gamma \gamma$ only through SM particles
- No assumption on total width:

•

 $\lambda_{\rm FV} = \kappa_{\rm F} / \kappa_{\rm V}$; $\kappa_{\rm VV} = \kappa_{\rm V} \kappa_{\rm V} / \kappa_{\rm H}$

μ_i dependence on assumed m_H

 $m_{\rm H} = 124.5$

 $m_{\rm H} = 125.5$

 $m_{\rm H} = 126.5$

• © Fabio Cerutti

The Couplings roadmap

Test Higgs boson couplings depending on available L:

- Total signal yield μ : tested at 20% (κ tested at 10%)
- Couplings to Fermions and Vector Bosons 20-30%
- Loop couplings tested at 40%
- *Custodial symmetry W/Z Couplings tested at 30%
- Test Down vs Up fermion couplings
- Test Lepton vs Quark fermion couplings
- Top Yukawa direct measurement ttH: κ_t
- Test second generation fermion couplings: κ_{μ}
- Higgs self-couplings couplings HHH: $\kappa_{_{\!H}}$

Today 7+8 TeV ~ 30 fb⁻¹

LHC Upgrade 14 TeV ~ 3000 fb⁻¹

*results in backup slides

High Luminosity LHC: The timeline

High Luminosity LHC: the detectors upgrades

- Both detectors are planning important upgrades to stand the harsher running conditions at HL-LHC: pile-up, rates, radiation damage
 - Pile-up ~ 4-5 times more pile-up then today
- Plan: keep detector performance for main physics objects at the same level as we have today
 - Improved trigger system
 - New tracking systems
 - Improved forward detectors
 -
- CRUCIAL to profit of L increase

Signal σ and Yields: HL/HE

Process	3000 fb ⁻¹ 14 TeV	300 fb ⁻¹ 33 TeV			
ggH→γγ	350k	123k			
ggH→4ℓ	19k	6.7k			
α н→γγ	42k	30k			
tt H→4ℓ/μμ	0.2k/0.4k	0.16k/0.3k			
_{gg} н→нн→ьь _{үү}	270	160			
LHC upgrades give access to <u>rare decays</u> Better signal Yields at HL-LHC BUT Pile-up and S/B better at HE-LHC					

CMS: Couplings f at HL-LHC

Goal: ultimate precision of ~5% or better

CMS Projection

Assumption NO invisible/undetectable contribution to Γ_{H} :

- Scenario 1: system./Theory err. unchanged w.r.t. current analysis (also unchanged)
- Scenario 2: systematics scaled by 1/sqrt(L), theory errors scaled by ½
- ✓ γγ loop at 2-5% level
- down-type fermion couplings at 2-10% level
- ✓ direct top coupling at 7-10% level
- ✓ gg loop at 3-5% level

ATLAS: Coupling Ratios at HL-LHC

- Fit to coupling ratios:
 - No assumption BSM contributions to $\Gamma_{\rm H}$
 - Some theory systematics cancels in the ratios
- Loop-induced Couplings yy and gg treated as independent parameter
 - κ_y/κ_z tested at 2%
 - gg loop (BSM) κ_t/κ_g at 7-12%
 - 2nd generation ferm. κ_u/κ_z at 8%

HL-LHC outlook

LHC 300 fb⁻¹ at 14 TeV:

- Mass: <100 MeV (statistical)
- Coupling κ rel. precision*
 - Z, W, b, τ 10-15%
 - t, μ
 3-2 σ observation
 - γγ and gg 5-11%

HL-LHC 3000 fb⁻¹ at 14 TeV:

- Mass: << 50 MeV (statistical)
- Couplings κ rel. precision*
 - Z, W, b, τ, t, μ
 2-10%
 - γγ and gg 2-5%

*Assuming sizeable (1/2) reduction of theory errors

- "QCD scale" go to Higher order QCD computation ?
- gg "PDF" from LHC data ?

Mass Measurement:

Several exp./theory challenges to reach 50 MeV (e/ γ/μ calibration E-scale, Interference, FSR, ..)