A Higgslike Dilaton and Conformal Phase Transition

Oleg Antipin CP³ - Origins

Particle Physics & Origin of Mass

Corfu Summer Institute 2013

If electroweak symmetry is broken dynamically, need to explain $\frac{m_h}{4\pi v} = \frac{125 GeV}{4\pi \times 246 GeV} = 0.04 \ll 1 \qquad \text{[In QCD: } \frac{m_\pi}{4\pi \Lambda_{QCD}} \sim 0.06 \text{]}$

- Evidence of a "hidden" symmetry ?

If electroweak symmetry is broken dynamically, need to explain $\frac{m_h}{4\pi v} = \frac{125 GeV}{4\pi \times 246 GeV} = 0.04 \ll 1 \qquad \text{[In QCD: } \frac{m_\pi}{4\pi \Lambda_{QCD}} \sim 0.06 \text{]}$

- Evidence of a "hidden" symmetry ?

I establish a calculable model where this small ratio is understood:

If electroweak symmetry is broken dynamically, need to explain $\frac{m_h}{4\pi v} = \frac{125 GeV}{4\pi \times 246 GeV} = 0.04 \ll 1 \qquad \text{[In QCD: } \frac{m_\pi}{4\pi \Lambda_{QCD}} \sim 0.06 \text{]}$

- Evidence of a "hidden" symmetry ?

I establish a calculable model where this small ratio is understood:

The "hidden" symmetry: Conformal

If electroweak symmetry is broken dynamically, need to explain $\frac{m_h}{4\pi v} = \frac{125 GeV}{4\pi \times 246 GeV} = 0.04 \ll 1 \qquad \text{[In QCD: } \frac{m_\pi}{4\pi \Lambda_{QCD}} \sim 0.06 \text{]}$ - Evidence of a "hidden" symmetry ?

I establish a calculable model where this small ratio is understood:

The "hidden" symmetry: Conformal

> The spectrum: Fully computable

If electroweak symmetry is broken dynamically, need to explain $\frac{m_h}{4\pi v} = \frac{125 GeV}{4\pi \times 246 GeV} = 0.04 \ll 1 \qquad \text{[In QCD: } \frac{m_\pi}{4\pi \Lambda_{QCD}} \sim 0.06 \text{]}$ - Evidence of a "hidden" symmetry ?

I establish a calculable model where this small ratio is understood:

The "hidden" symmetry: Conformal

> The spectrum: Fully computable

> > The higgs: A dilaton

$+y_H \bar{\psi}_i H_{ij} \psi_j + \operatorname{Tr} |\partial_\mu H|^2 - u_1 \left(\operatorname{Tr} H^{\dagger} H \right)^2 - u_2 \operatorname{Tr} \left(H^{\dagger} H \right)^2$

 $\mathcal{L} = -\frac{1}{2} \operatorname{Tr} F^2 + \sum_{i}^{N_f} i \overline{\psi}_j \mathcal{D} \psi_j + i \lambda^a \sigma^\mu D^{ab}_\mu \overline{\lambda}^b$

D-like $\mathcal{L} = -\frac{1}{2} \operatorname{Tr} F^2 + \sum_{j} i \overline{\psi}_{j} D \psi_{j} + i \lambda^{a} \sigma^{\mu} D_{\mu}^{ab} \overline{\lambda}^{b}$ $+y_H \bar{\psi}_i H_{ij} \psi_j + \operatorname{Tr} |\partial_{\mu} H|^2 - u_1 \left(\operatorname{Tr} H^{\dagger} H \right)^2 - u_2 \operatorname{Tr} \left(H^{\dagger} H \right)^2$

-like

 $+y_H \bar{\psi}_i H_{ij} \psi_j + \operatorname{Tr} |\partial_\mu H|^2 - u_1 \left(\operatorname{Tr} H^{\dagger} H \right)^2 - u_2 \operatorname{Tr} \left(H^{\dagger} H \right)^2$ Higgs-sector

O. Antipin, M. Mojaza, F. Sannino - hep-ph/1107.2932

 $\mathcal{L} = -\frac{1}{2} \operatorname{Tr} F^2 + \sum_{i} i \overline{\psi}_{j} \mathcal{D} \psi_{j} + i \lambda^{a} \sigma^{\mu} D^{ab}_{\mu} \overline{\lambda}^{b}$

~ Mesons $H \sim \psi \bar{\psi}$!

D-like

Higgs-sector

$+y_H \bar{\psi}_i H_{ij} \psi_j + \operatorname{Tr} |\partial_\mu H|^2 - u_1 \left(\operatorname{Tr} H^{\dagger} H \right)^2 - u_2 \operatorname{Tr} \left(H^{\dagger} H \right)^2$ ~ Mesons $H \sim \psi \bar{\psi}$ $H_{ij} = (\sigma^a + i\phi^a)\lambda^a, a = 0, ...N_f^2 - 1$

 $\mathcal{L} = -\frac{1}{2} \operatorname{Tr} F^2 + \sum_{i} i \overline{\psi}_{j} \mathcal{D} \psi_{j} + i \lambda^{a} \sigma^{\mu} D^{ab}_{\mu} \overline{\lambda}^{b}$

CD-like

 $+y_H \bar{\psi}_i H_{ij} \psi_j + \operatorname{Tr} |\partial_\mu H|^2 - u_1 \left(\operatorname{Tr} H^{\dagger} H \right)^2 - u_2 \operatorname{Tr} \left(H^{\dagger} H \right)^2$ ~ Mesons $H \sim \psi \bar{\psi}$ Higgs-sector

O. Antipin, M. Mojaza, F. Sannino - hep-ph/1107.2932

Adjoint Weyl fermion $\mathcal{L} = -\frac{1}{2} \operatorname{Tr} F^2 + \sum_{i}^{J} i \overline{\psi}_{j} D \psi_{j} + i \lambda^{a} \sigma^{\mu} D^{ab}_{\mu} \overline{\lambda}^{b}$

 $H_{ij} = (\sigma^a + i\phi^a)\lambda^a, a = 0, ...N_f^2 - 1$

Adjoint Weyl fermion D-like $\mathcal{L} = -\frac{1}{2} \operatorname{Tr} F^2 + \sum_{i} i \overline{\psi}_{j} D \psi_{j} + i \lambda^{a} \sigma^{\mu} D_{\mu}^{ab} \overline{\lambda}^{b}$ $+y_H \bar{\psi}_i H_{ij} \psi_j + \operatorname{Tr} |\partial_\mu H|^2 - u_1 \left(\operatorname{Tr} H^{\dagger} H \right)^2 - u_2 \operatorname{Tr} \left(H^{\dagger} H \right)^2$ ~ Mesons $H \sim \psi \bar{\psi}$! Higgs-sector $H_{ij} = (\sigma^a + i\phi^a)\lambda^a, a = 0, ...N_f^2 - 1$

 $U(N_f) \propto U(N_f)$ massless linear sigma model coupled to the fermions

(toy-model for electroweak symmetry breaking)

Adjoint Weyl fermion D-like $\mathcal{L} = -\frac{1}{2} \operatorname{Tr} F^2 + \sum_{j} i \overline{\psi}_{j} D \psi_{j} + i \lambda^{a} \sigma^{\mu} D_{\mu}^{ab} \overline{\lambda}^{b}$ $+y_H \bar{\psi}_i H_{ij} \psi_j + \text{Tr} \left|\partial_{\mu} H\right|^2 - u_1 \left(\text{Tr} H^{\dagger} H\right)^2 - u_2 \text{Tr} \left(H^{\dagger} H\right)^2$ ~ Mesons $H \sim \psi \bar{\psi}$! Higgs-sector $H_{ij} = (\sigma^a + i\phi^a)\lambda^a, a = 0, ...N_f^2 - 1$

 $U(N_f) \propto U(N_f)$ massless linear sigma model coupled to the fermions

(toy-model for electroweak symmetry breaking)

Notice that there is no mass term for the "H" field so that the model is classically conformal at the tree level

Antipin, M. Mojaza, F. Sannino - hep-ph/1107.2932

Infrared Destiny $\mathcal{L} = \mathcal{L}_K(F_{\mu\nu}, \lambda, \psi, H; g) + y_H \bar{\psi} H \psi - u_1 \left(\mathrm{Tr} H^{\dagger} H \right)^2 - u_2 \mathrm{Tr} \left(H^{\dagger} H \right)^2$ Perturbative I-loop IR stable fixed point (a la Banks-Zaks)

Antipin, M. Mojaza, F. Sannino - hep-ph/1107.2932

Infrared Destiny $\mathcal{L} = \mathcal{L}_K(F_{\mu\nu}, \lambda, \psi, H; g) + y_H \bar{\psi} H \psi - u_1 \left(\text{Tr} H^{\dagger} H \right)^2 - u_2 \text{Tr} \left(H^{\dagger} H \right)^2$ Perturbative I-loop IR stable fixed point (a la Banks-Zaks)

 $ON_c \rightarrow \infty, N_f \rightarrow \infty$

Infrared Destiny tipin, M. Mojaza, F. Sannino - hep-ph/1107.2932 $\mathcal{L} = \mathcal{L}_K(F_{\mu\nu}, \lambda, \psi, H; g) + y_H \bar{\psi} H \psi - u_1 \left(\text{Tr} H^{\dagger} H \right)^2 - u_2 \text{Tr} \left(H^{\dagger} H \right)^2$

Perturbative I-loop IR stable fixed point (a la Banks-Zaks)

 $ON_c \rightarrow \infty, N_f \rightarrow \infty$

• $x = N_f / N_c$ constant

Infrared Destiny tipin, M. Mojaza, F. Sannino - hep-ph/1107.2932 $\mathcal{L} = \mathcal{L}_K(F_{\mu\nu}, \lambda, \psi, H; g) + y_H \bar{\psi} H \psi - u_1 \left(\text{Tr} H^{\dagger} H \right)^2 - u_2 \text{Tr} \left(H^{\dagger} H \right)^2$

Perturbative I-loop IR stable fixed point (a la Banks-Zaks)

 $ON_c \rightarrow \infty, N_f \rightarrow \infty$

• $x = N_f / N_c$ constant Rescaled couplings

Infrared Destiny tipin, M. Mojaza, F. Sannino - hep-ph/1107.2932 $\mathcal{L} = \mathcal{L}_K(F_{\mu\nu}, \lambda, \psi, H; g) + y_H \bar{\psi} H \psi - u_1 \left(\text{Tr} H^{\dagger} H \right)^2 - u_2 \text{Tr} \left(H^{\dagger} H \right)^2$

Perturbative I-loop IR stable fixed point (a la Banks-Zaks)

 $ON_c \rightarrow \infty, N_f \rightarrow \infty$

• $x = N_f / N_c$ constant Rescaled couplings

Infrared Destiny Antipin, M. Mojaza, F. Sannino - hep-ph/1107.2932 $\mathcal{L} = \mathcal{L}_K(F_{\mu\nu}, \lambda, \psi, H; g) + y_H \bar{\psi} H \psi - u_1 \left(\mathrm{Tr} H^{\dagger} H \right)^2 - u_2 \mathrm{Tr} \left(H^{\dagger} H \right)^2$

Perturbative I-loop IR stable fixed point (a la Banks-Zaks)

 $ON_c \rightarrow \infty, N_f \rightarrow \infty$ • $x = N_f / N_c$ constant Rescaled couplings

 $a_g = \frac{g^2 N_c}{(4\pi)^2}, a_H = \frac{y_H^2 N_c}{(4\pi)^2}$ $z_1 = \frac{u_1 N_f^2}{(4\pi)^2}, z_2 = \frac{u_2 N_f}{(4\pi)^2},$

β(a β(a

-loop beta functions:

$$(a_g) = -2a_g^2 \left[3 - \frac{2x}{3} + \left(6 - \frac{13x}{3}\right)a_g + x^2 a_H \right]$$

 $(a_H) = 2a_H \left[(1 + x) a_H - 3a_g \right]$

 $\beta(z_1) = 4(z_1^2 + 4z_1z_2 + 3z_2^2 + z_1a_H)$

 $\beta(z_2) = 4(2z_2^2 + z_2a_H - \frac{x}{2}a_H^2),$

Fixed point (simultaneous zero of the beta functions)

 $x \equiv \frac{N_f}{N} = \frac{9}{2}(1-\epsilon)$

O. Antipin, M. Moiaza, F. Sannino - hep-ph/1107.2932 $\mathcal{L} = \mathcal{L}_K \left(F_{\mu\nu}, \lambda, \psi, H; \sqrt{\frac{a_g}{N_c}} \right) + \sqrt{\frac{a_H}{N_f}} \bar{\psi} H \psi - \frac{z_1}{N_f^2} \left(\text{Tr} H^{\dagger} H \right)^2 - \frac{z_2}{N_f} \text{Tr} \left(H^{\dagger} H \right)^2 \right)$

Infrared Destiny O. Antipin, M. Mojaza, F. Sannino - hep-ph/1107.2932 $\mathcal{L} = \mathcal{L}_K \left(F_{\mu\nu}, \lambda, \psi, H; \sqrt{\frac{a_g}{N_c}} \right) + \sqrt{\frac{a_H}{N_f}} \bar{\psi} H \psi - \frac{z_1}{N_f^2} \left(\text{Tr} H^{\dagger} H \right)^2 - \frac{z_2}{N_f} \text{Tr} \left(H^{\dagger} H \right)^2$

Fixed point (simultaneous zero of the beta functions)

 $x \equiv \frac{N_f}{N} = \frac{9}{2}(1-\epsilon)$

O. Antipin, M. Mojaza, F. Sannino - hep-ph/1107.2932

Infrared Destiny $\mathcal{L} = \mathcal{L}_K \left(F_{\mu\nu}, \lambda, \psi, H; \sqrt{\frac{a_g}{N_c}} \right) + \sqrt{\frac{a_H}{N_f}} \bar{\psi} H \psi - \frac{z_1}{N_f^2} \left(\text{Tr} H^{\dagger} H \right)^2 - \frac{z_2}{N_f} \text{Tr} \left(H^{\dagger} H \right)^2$ Fixed point (simultaneous zero of the beta functions)

 $\frac{J}{c} = \frac{9}{2}(1 - \epsilon)$

Infrared Destiny

 $\mathcal{L} = \mathcal{L}_K \left(F_{\mu\nu}, \lambda, \psi, H; \sqrt{\frac{a_g}{N_c}} \right) + \sqrt{\frac{a_H}{N_f}} \bar{\psi} H \psi - \frac{z_1}{N_f^2} \left(\text{Tr} H^{\dagger} H \right)^2 - \frac{z_2}{N_f} \text{Tr} \left(H^{\dagger} H \right)^2$

Fixed point (simultaneous zero of the beta functions)

 $=\frac{9}{2}(1-$

This FP can become "hidden" by spontaneous symmetry breaking from radiative corrections (Coleman-Weinberg mechanism)

Spontaneous Symmetry Breaking O. Antipin, M. Mojaza, F. Sannino - hep-ph/1107.2932

Stability of the scalar potential is not encoded in the perturbative RG flow Minimize tree-level potential so that I-loop correction will dominate and test stability Idea:

 $\mathcal{L} = \mathcal{L}_K \left(F_{\mu\nu}, \lambda, \psi, H; \sqrt{\frac{a_g}{N_c}} \right) + \sqrt{\frac{a_H}{N_f}} \bar{\psi} H \psi - \frac{z_1}{N_f^2} \left(\text{Tr} H^{\dagger} H \right)^2 - \frac{z_2}{N_f} \text{Tr} \left(H^{\dagger} H \right)^2$

Stability of global minimum (flat direction) $H' = U_L H U_R = diag(h_1, \dots, h_{N_f})$

A. If $z_2(\mu) > 0$ and $z_1(\mu) + z_2(\mu) \le 0 \Rightarrow V|_{\min} = V(h_1, \dots, h_1)$, Classical background field: $H_{ij}^c = \langle 0 | H_{ij} | 0 \rangle = \phi_c \delta_{ij}$

Now, we have to test that ϕ_c actually obtains a vev from 1-loop corrections to potential...

Spontaneous Symmetry Breaking O. Antipin, M. Mojaza, F. Sannino - hep-ph/1107.2932 $\lambda_{gh} H \cdot \sqrt{\frac{a_g}{2}} + \sqrt{\frac{a_H}{4}} \overline{\mu} H_{gh} - \frac{z_1}{4} (\text{Tr} H^{\dagger} H)^2 - \frac{z_2}{4} \text{Tr} (H^{\dagger} H)^2$

$\mathcal{L} = \mathcal{L}_K \left(F_{\mu\nu}, \lambda, \psi, H; \sqrt{\frac{a_g}{N_c}} \right) + \sqrt{\frac{a_H}{N_f}} \bar{\psi} H \psi - \frac{z_1}{N_f^2} \left(\text{Tr} H^{\dagger} H \right)^2 - \frac{z_2}{N_f} \text{Tr} \left(H^{\dagger} H \right)^2$

Coleman-Weinberg mechanism solely controlled by beta functions

H.Yamagishi, 1980

Spontaneous Symmetry Breaking O. Antipin, M. Mojaza, F. Sannino - hep-ph/1107.2932 $\lambda, \psi, H: \sqrt{\frac{a_g}{24}} + \sqrt{\frac{a_H}{24}} \bar{\psi}H\psi - \frac{z_1}{24} (\operatorname{Tr} H^{\dagger}H)^2 - \frac{z_2}{24} \operatorname{Tr} (H^{\dagger}H)^2$

 $\mathcal{L} = \mathcal{L}_K \left(F_{\mu\nu}, \lambda, \psi, H; \sqrt{\frac{a_g}{N_c}} \right) + \sqrt{\frac{a_H}{N_f}} \bar{\psi} H \psi - \frac{z_1}{N_f^2} \left(\text{Tr} H^{\dagger} H \right)^2 - \frac{z_2}{N_f} \text{Tr} \left(H^{\dagger} H \right)^2 \right)$

Coleman-Weinberg mechanism solely controlled by beta functions H. Yamagishi, 1980

 $H_{ij}^{c} = \phi_{c} \delta_{ij} \quad H_{ij} \approx (\phi_{c} + \phi + i\pi^{0}) \delta_{ij} + h^{a} T_{ij}^{a} + i\pi^{a} T_{ij}^{a},$

 $a = 1, \dots N_{\rm f}^2 - 1$

M. Mojaza, F. Sannino - hep-ph/1107.2932

Spontaneous Symmetry Breaking $\mathcal{L} = \mathcal{L}_K \left(F_{\mu\nu}, \lambda, \psi, H; \sqrt{\frac{a_g}{N_c}} \right) + \sqrt{\frac{a_H}{N_f}} \bar{\psi} H \psi - \frac{z_1}{N_f^2} \left(\text{Tr} H^{\dagger} H \right)^2 - \frac{z_2}{N_f} \text{Tr} \left(H^{\dagger} H \right)^2 \right)$

Coleman-Weinberg mechanism solely controlled by beta functions H.Yamagishi, 1980

$H_{ij}^{c} = \phi_{c} \delta_{ij} \quad H_{ij} \approx (\phi_{c} + \phi + i\pi^{0}) \delta_{ij} + h^{a} T_{ij}^{a} + i\pi^{a} T_{ij}^{a}, \qquad a = 1, \dots N_{f}^{2} - 1$

Tree-level potential: $V_{\text{eff}}^{RG} \sim [z_1(t) + z_2(t)]\phi_c^4$ $\frac{d\bar{g}_i}{dt} \equiv \frac{\beta_i(g_i)}{1 - \gamma_\phi(q_i)}$, $t \equiv \ln \frac{\phi_c}{\mu}$

Spontaneous Symmetry Breaking M. Mojaza, F. Sannino - hep-ph/1107.2932

$\mathcal{L} = \mathcal{L}_K \left(F_{\mu\nu}, \lambda, \psi, H; \sqrt{\frac{a_g}{N_c}} \right) + \sqrt{\frac{a_H}{N_f}} \bar{\psi} H \psi - \frac{z_1}{N_f^2} \left(\text{Tr} H^{\dagger} H \right)^2 - \frac{z_2}{N_f} \text{Tr} \left(H^{\dagger} H \right)^2 \right)$

Coleman-Weinberg mechanism solely controlled by beta functions

$H_{ij}^{c} = \phi_{c} \delta_{ij} \quad H_{ij} \approx (\phi_{c} + \phi + i\pi^{0}) \delta_{ij} + h^{a} T_{ij}^{a} + i\pi^{a} T_{ij}^{a}, \qquad a = 1, \dots N_{f}^{2} - 1$

H.Yamagishi, 1980

Tree-level potential: $V_{\text{eff}}^{RG} \sim [z_1(t) + z_2(t)]\phi_c^4$ $\frac{d\bar{g}_i}{dt} \equiv \frac{\beta_i(g_i)}{1 - \gamma_\phi(q_i)}$, $t \equiv \ln \frac{\phi_c}{\mu}$

Traded μ for ϕ_c

Spontaneous Symmetry Breaking M. Mojaza, F. Sannino - hep-ph/1107.2932

$\mathcal{L} = \mathcal{L}_K \left(F_{\mu\nu}, \lambda, \psi, H; \sqrt{\frac{a_g}{N_c}} \right) + \sqrt{\frac{a_H}{N_f}} \bar{\psi} H \psi - \frac{z_1}{N_f^2} \left(\text{Tr} H^{\dagger} H \right)^2 - \frac{z_2}{N_f} \text{Tr} \left(H^{\dagger} H \right)^2$

Coleman-Weinberg mechanism solely controlled by beta functions H.Yamagishi, 1980

 $H_{ij}^{c} = \phi_{c} \delta_{ij} \quad H_{ij} \approx (\phi_{c} + \phi + i\pi^{0}) \delta_{ij} + h^{a} T_{ij}^{a} + i\pi^{a} T_{ij}^{a}, \qquad a = 1, \dots N_{f}^{2} - 1$ **Tree-level potential:** $V_{\text{eff}}^{RG} \sim [z_1(t) + z_2(t)]\phi_c^4$ $\frac{d\bar{g}_i}{dt} \equiv \frac{\beta_i(g_i)}{1 - \gamma_\phi(g_i)}$, $t \equiv \ln \frac{\phi_c}{\mu}$

 $V_{\text{eff}}^{\text{RG}'}(\phi_c) = 0 \implies 4[\bar{z}_1(t) + \bar{z}_2(t)] + \beta_1(\bar{g}_i) + \beta_2(\bar{g}_i) = 0$

Traded μ for ϕ_c

Spontaneous Symmetry Breaking M. Mojaza, F. Sannino - hep-ph/1107.2932

 $\mathcal{L} = \mathcal{L}_K \left(F_{\mu\nu}, \lambda, \psi, H; \sqrt{\frac{a_g}{N_c}} \right) + \sqrt{\frac{a_H}{N_f}} \bar{\psi} H \psi - \frac{z_1}{N_f^2} \left(\text{Tr} H^{\dagger} H \right)^2 - \frac{z_2}{N_f} \text{Tr} \left(H^{\dagger} H \right)^2 \right)$

Coleman-Weinberg mechanism solely controlled by beta functions H.Yamagishi, 1980

 $H_{ij}^{c} = \phi_{c} \delta_{ij} \quad H_{ij} \approx (\phi_{c} + \phi + i\pi^{0}) \delta_{ij} + h^{a} T_{ij}^{a} + i\pi^{a} T_{ij}^{a}, \qquad a = 1, \dots N_{f}^{2} - 1$ Tree-level potential: $V_{\text{eff}}^{RG} \sim [z_1(t) + z_2(t)]\phi_c^4$ $\frac{d\bar{g}_i}{dt} \equiv \frac{\beta_i(g_i)}{1 - \gamma_\phi(q_i)}$, $t \equiv \ln \frac{\phi_c}{\mu}$ Traded μ for ϕ_c $V_{\text{eff}}^{\text{RG}'}(\phi_c) = 0 \implies 4[\bar{z}_1(t) + \bar{z}_2(t)] + \beta_1(\bar{g}_i) + \beta_2(\bar{g}_i) = 0$ **Region of SSB:** $V_{\text{eff}}^{\text{RG}}(\phi_c) < 0$ and $V_{\text{eff}}^{\text{RG}''}(\phi_c) = m_{\phi}^{(1)^2} \propto 4z_2^2 - xa_H > 0$

$$V_{\text{eff}}^{\text{RG}'}(\phi_c) = 0$$
$$V_{\text{eff}}^{\text{RG}''}(\phi_c) = 0 \Rightarrow$$

 $V_{\rm eff}^{\rm RG}(\phi_c) = 0$

 $\mathcal{L} = \mathcal{L}_K(F_{\mu\nu}, \lambda, \psi, H; g) + \sqrt{\frac{a_H}{N_f}} \bar{\psi} H \psi - \frac{z_1}{N_f^2} \left(\text{Tr} H^{\dagger} H \right)^2 - \frac{z_2}{N_f} \text{Tr} \left(H^{\dagger} H \right)^2$

$$V_{\text{eff}}^{\text{RG}'}(\phi_c) = 0$$
$$V_{\text{eff}}^{\text{RG}''}(\phi_c) = 0 \Rightarrow$$

 $V_{\rm eff}^{\rm RG}(\phi_c) = 0$

O. Antipin, M. Mojaza, F. Sannino - hep-ph/1107.2932 Sedaratrix

IR Conformal

 $\mathcal{L} = \mathcal{L}_K(F_{\mu\nu}, \lambda, \psi, H; g) + \sqrt{\frac{a_H}{N_f}} \bar{\psi} H \psi - \frac{z_1}{N_f^2} \left(\text{Tr} H^{\dagger} H \right)^2 - \frac{z_2}{N_f} \text{Tr} \left(H^{\dagger} H \right)^2$

 $V_{\rm eff}^{\rm RG}(\phi_c) = 0$

O. Antipin, M. Mojaza, F. Sannino - hep-ph/1107.2932 sedaratrix

IR Conformal

 $\mathcal{L} = \mathcal{L}_K(F_{\mu\nu}, \lambda, \psi, H; g) + \sqrt{\frac{a_H}{N_f}} \bar{\psi} H \psi - \frac{z_1}{N_f^2} \left(\text{Tr} H^{\dagger} H \right)^2 - \frac{z_2}{N_f} \text{Tr} \left(H^{\dagger} H \right)^2$

 $V_{\text{eff}}^{\text{RG}}(\phi_c) = 0$

O. Antipin, M. Mojaza, F. Sannino - hep-ph/1107.2932

IR Conformal

0.2

0.0

Scale generation by dimensional transmutation.

 $\mathcal{L} = \mathcal{L}_K(F_{\mu\nu}, \lambda, \psi, H; g) + \sqrt{\frac{a_H}{N_f}} \bar{\psi} H \psi - \frac{z_1}{N_f^2} \left(\text{Tr} H^{\dagger} H \right)^2 - \frac{z_2}{N_f} \text{Tr} \left(H^{\dagger} H \right)^2$

 $V_{\text{eff}}^{\text{RG}}(\phi_c) = 0$

O. Antipin, M. Mojaza, F. Sannino - hep-ph/1107.2932

IR Conformal

0.2 0.0 $z_1 \quad g \approx g^* , y_H \approx y_H^*$

Scale generation by dimensional transmutation.

Near conformal symmetry spont. broken.

 $\mathcal{L} = \mathcal{L}_K(F_{\mu\nu}, \lambda, \psi, H; g) + \sqrt{\frac{a_H}{N_f}} \bar{\psi} H \psi - \frac{z_1}{N_f^2} \left(\text{Tr} H^{\dagger} H \right)^2 - \frac{z_2}{N_f} \text{Tr} \left(H^{\dagger} H \right)^2$

 $V_{\text{eff}}^{\text{RG}}(\phi_c) = 0$

O. Antipin, M. Mojaza, F. Sannino - hep-ph/1107.2932

Scale generation by dimensional transmutation.

Near conformal symmetry spont. broken.

 ϕ is a dilaton

 $V_{\text{eff}}^{\text{RG}}(\phi_c) = 0$

O. Antipin, M. Mojaza, F. Sannino - hep-ph/1107.2932

Scale generation by dimensional transmutation.

Near conformal symmetry spont. broken.

 ϕ is a dilaton Arbitrarily light by tuning:

 $\mathcal{L} = \mathcal{L}_K(F_{\mu\nu}, \lambda, \psi, H; g) + \sqrt{\frac{a_H}{N_f}} \bar{\psi} H \psi - \frac{z_1}{N_f^2} \left(\text{Tr} H^{\dagger} H \right)^2 - \frac{z_2}{N_f} \text{Tr} \left(H^{\dagger} H \right)^2$

 $V_{\text{eff}}^{\text{RG}}(\phi_c) = 0$

O. Antipin, M. Mojaza, F. Sannino - hep-ph/1107.2932

Scale generation by dimensional transmutation.

Near conformal symmetry spont. broken.

 ϕ is a dilaton

Arbitrarily light by tuning:

 $m_h^2 = (4z_2^2 - xa_H^2)\phi_c^2 \equiv \delta\phi_c^2$

$U(N_f) \times U(N_f) \to U(N_f)$

Conformal symmetry broken by scalar condensation (Coleman-Weinberg phenomenon).

This generates a massive dilaton.

 $\frac{m_h^2}{v^2} = \frac{m_h^2}{\phi_c^2} \sim 4z_2^2 - xa_H^2$

 $-rac{9}{32\pi^2}\Lambda_{SYM}^3$

$$\langle \lambda \lambda \rangle = -\frac{9}{32\pi^2} \Lambda_{SYM}^3$$

Quarks get mass from Yukawa interactions. The remaining massless adjoint fermion and gluons survive to low energies and form sypersymmetric

spectrum

$$= v^2 \left(\frac{3}{11\epsilon}\right)^{2/3} \exp\left(-\frac{6}{22\epsilon}\right)$$

 $\Lambda^2_{
m SYM}$ =

 $\mathcal{L} = \mathcal{L}_K(F_{\mu\nu}, \lambda, \psi, H; g) + y_H \bar{\psi} H \psi + \text{h.c.} - u_1 \left(\text{Tr}H^{\dagger}H\right)^2 - u_2 \text{Tr}\left(H^{\dagger}H\right)^2$

Mass eigenstates of quarks and mesons

$H_{ij} \approx (\phi_c + \phi + i\pi^0)\delta_{ij} + h^a T^a_{ij} + i\pi^a T^a_{ij}, \qquad a = 1, \dots N_{\rm f}^2 - 1$

1

 $\mathcal{L} = \mathcal{L}_K(F_{\mu\nu}, \lambda, \psi, H; g) + y_H \bar{\psi} H \psi + \text{h.c.} - u_1 \left(\text{Tr}H^{\dagger}H\right)^2 - u_2 \text{Tr} \left(H^{\dagger}H\right)^2$

Mass eigenstates of quarks and mesons

 $H_{ij} \approx (\phi_c + \phi + i\pi^0)\delta_{ij} + h^a T^a_{ij} + i\pi^a T^a_{ij},$

 $m_{\rm NGB}^2 = 0$ $m_{\rm SYM}^2 \sim e^{-1/\epsilon}$ $m_d^2 \sim \delta \epsilon$ $N_f^2 = 4(N_c^2 - 1)$

$a = 1, \dots N_{\rm f}^2 - 1$

 $m_{\psi}^2 \sim m_h^2 \sim \epsilon$

 $4N_f N_c + (N_f^2 - 1)$

 $\mathcal{L} = \mathcal{L}_K(F_{\mu\nu}, \lambda, \psi, H; g) + y_H \bar{\psi} H \psi + \text{h.c.} - u_1 \left(\text{Tr}H^{\dagger}H\right)^2 - u_2 \text{Tr} \left(H^{\dagger}H\right)^2$

Mass eigenstates of quarks and mesons

 $H_{ij} \approx (\phi_c + \phi + i\pi^0)\delta_{ij} + h^a T^a_{ij} + i\pi^a T^a_{ij},$

 $m_{\rm NGB}^2 = 0$ $m_{\rm SYM}^2 \sim e^{-1/\epsilon}$ $m_d^2 \sim \delta \epsilon$ $N_f^2 = 4(N_c^2 - 1)$

loy Model

$a = 1, \dots N_{\rm f}^2 - 1$

 $m_{\psi}^2 \sim m_h^2 \sim \epsilon$

 $4N_f N_c + (N_f^2 - 1)$

1

 $\mathcal{L} = \mathcal{L}_K(F_{\mu\nu}, \lambda, \psi, H; g) + y_H \bar{\psi} H \psi + \text{h.c.} - u_1 \left(\text{Tr}H^{\dagger}H\right)^2 - u_2 \text{Tr} \left(H^{\dagger}H\right)^2$

Mass eigenstates of quarks and mesons

 $H_{ij} \approx (\phi_c + \phi + i\pi^0)\delta_{ij} + h^a T^a_{ij} + i\pi^a T^a_{ij},$

 $m_{\rm NGB}^2 = 0$ $m_{\rm SYM}^2 \sim e^{-1/\epsilon}$ $m_d^2 \sim \delta \epsilon$ $N_f^2 = 4(N_c^2 - 1)$

loy Model

$a = 1, \dots N_{f}^{2} - 1$

 $m_{\psi}^2 \sim m_h^2 \sim \epsilon$

 $4N_f N_c + (N_f^2 - 1)$

EW

1

 $\mathcal{L} = \mathcal{L}_{K}(F_{\mu\nu}, \lambda, \psi, H; g) + y_{H}\bar{\psi}H\psi + \text{h.c.} - u_{1}\left(\text{Tr}H^{\dagger}H\right)^{2} - u_{2}\text{Tr}\left(H^{\dagger}H\right)^{2}$

Mass eigenstates of quarks and mesons

 $H_{ij} \approx (\phi_c + \phi + i\pi^0)\delta_{ij} + h^a T^a_{ij} + i\pi^a T^a_{ij},$ $a = 1, \dots N_{\rm f}^2 - 1$

 $m_{\rm NGB}^2 = 0$ $m_{\rm SYM}^2 \sim e^{-1/\epsilon}$

 $N_f^2 = 4(N_c^2 - 1)$

loy Model

Higgs

 $m_d^2 \sim \delta \epsilon$

1

 $m_{\psi}^2 \sim m_h^2 \sim \epsilon$

 $4N_f N_c + (N_f^2 - 1)$

EW

 $\mathcal{L} = \mathcal{L}_K(F_{\mu\nu}, \lambda, \psi, H; g) + y_H \bar{\psi} H \psi + \text{h.c.} - u_1 \left(\text{Tr}H^{\dagger}H\right)^2 - u_2 \text{Tr}\left(H^{\dagger}H\right)^2$

Mass eigenstates of quarks and mesons

 $H_{ij} \approx (\phi_c + \phi + i\pi^0)\delta_{ij} + h^a T^a_{ij} + i\pi^a T^a_{ij},$

$$m_{\rm NGB}^2 = 0$$
 $m_{\rm SYM}^2 \sim e^{-1/\epsilon}$ m_d^2

 $4(N_{c}^{2}-1)$

 N_f^2

DM

Toy Model

 $i\pi^a T^a_{ij}, \qquad a=1,\ldots N^2_{\mathrm{f}}-1$

Higgs

 $\sim \delta\epsilon$

1

 $m_{\psi}^2 \sim m_h^2 \sim \epsilon$

 $4N_f N_c + (N_f^2 - 1)$

EW

 $\mathcal{L} = \mathcal{L}_{K}(F_{\mu\nu}, \lambda, \psi, H; g) + y_{H}\bar{\psi}H\psi + \text{h.c.} - u_{1}\left(\text{Tr}H^{\dagger}H\right)^{2} - u_{2}\text{Tr}\left(H^{\dagger}H\right)^{2}$

Mass eigenstates of quarks and mesons

 $H_{ij} \approx (\phi_c + \phi + i\pi^0)\delta_{ij} + h^a T^a_{ij} + i\pi^a T^a_{ij},$

$$m_{\text{NGB}}^2 = 0 \qquad m_{\text{SYM}}^2 \sim e^{-1/\epsilon} \qquad m_d^2$$
$$N_f^2 \qquad 4(N_c^2 - 1)$$

loy Mode

 $a = 1, \dots N_{\rm f}^2 - 1$

Higgs

 $\sim \delta \epsilon$

1

 $m_{\psi}^2 \sim m_h^2 \sim \epsilon$

 $4N_f N_c + (N_f^2 - 1)$

EW

THANK YOU!

At the Quantum level

 $\partial_{\mu}D^{\mu} = \Theta^{\mu}_{\mu} = \sum_{i} \beta(g_{i}) \frac{\partial \mathcal{L}}{\partial g_{i}}$

At the Quantum level

O. Antipin, M. Mojaza, F. Sannino - hep-ph/1107.2932

 $\partial_{\mu}D^{\mu} = \Theta^{\mu}_{\mu} = \sum \beta(g_i) \frac{\partial \mathcal{L}}{\partial q_i}$

At the Quantum level

The dilaton mass is defined by the matrix element $\langle D|\partial_{\mu}D^{\mu}|0\rangle = -f_D m_D^2$

O. Antipin, M. Mojaza, F. Sannino - hep-ph/1107.2932

 $\partial_{\mu}D^{\mu} = \Theta^{\mu}_{\mu} = \sum \beta(g_i) \frac{\partial \mathcal{L}}{\partial q_i}$

At the Quantum level

The dilaton mass is defined by the matrix element $\langle D|\partial_{\mu}D^{\mu}|0\rangle = -f_D m_D^2$

Lightest spinless state that couples strongest to the EM-tensor

O. Antipin, M. Mojaza, F. Sannino - hep-ph/1107.2932

 $\partial_{\mu}D^{\mu} = \Theta^{\mu}_{\mu} = \sum_{i} \beta(g_{i}) \frac{\partial \mathcal{L}}{\partial g_{i}}$

At the Quantum level

The dilaton mass is defined by the matrix element $\langle D|\partial_{\mu}D^{\mu}|0\rangle = -f_D m_D^2$

Lightest spinless state that couples strongest to the EM-tensor $\Theta^{\mu}_{\mu} \propto (\beta_1 + \beta_2)\phi + \cdots$ since $\beta(g), \beta(y_H) \approx 0$ at μ_0

O. Antipin, M. Mojaza, F. Sannino - hep-ph/1107.2932