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The Standard Model 

With the discovery 
of the “Higgs” it 
now seems to be 

complete... so why 
the continued 

interest in SUSY 
after LHC8?

Lectures by Hollik, Pittau 



1. The origin of mass - the origin of the weak scale, its stability under     
radiative corrections, and the solution to the hierarchy problem 

2. The quest for unification - the question of whether the three known 
forces of the standard model may be related into a grand unified theory, 
and whether such a theory could also include a unification with gravity.

3. The problem of flavour - the problem of the undetermined fermion 
masses and mixing angles (including neutrino masses and mixing angles) 
together with the CP violating phases, in conjunction with the observed 
smallness of flavour changing neutral currents and very small strong CP 
violation.

Standard Model Puzzles



Cosmological Puzzles
1.  The origin of dark matter and dark energy: the embarrassing fact that 

95% of the mass-energy of the Universe is in a form that is presently 
unknown, including 27% dark matter and 68% dark energy                     

2. The problem of matter-antimatter asymmetry: the problem of why 
there is a tiny excess of matter over antimatter in the Universe, at a 
level of one part in a billion, without which there would be no stars, 
planets or life

3.  The question of the size, age, flatness and smoothness of the Universe: 
the question of why the Universe is much larger and older than the 
Planck size and time, and why it has a globally flat geometry with a 
very smooth cosmic microwave background radiation containing just 
enough fluctuations to seed the observed galaxy structures                



SUSY facilitates GUTs
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GUTs and Flavour Models are 
typically Supersymmetric
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Why is the Universe so big 
and flat? 

What seeds the density 
perturbations?

-- Inflation!

Many inflation models are 
supersymmetric



ΦTP2Why do we want to extend the SM

”Why does electroweak symmetry break?” or ”Why is µ2 < 0 in the SM?”

sign(m2)|m|

G. Kane, C. Kolda, L. Roszkowski, J. Wells, PRD 1994

Hierarchy problem

UNILHC 2012, Valencia, 29-31 August 2012 W. Porod, Uni. Würzburg – p. 5

SUSY explains EWSB 
Ibanez, Ross



ΦTP2Why do we want to extend the SM

What is the nature of dark matter ?

No Big Bang
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ΩB ∼ 5%

ΩDM ∼ 23%

ΩΛ ∼ 72%

R.A. Knopp et al., Astrophys. J. 598 (2003) 102 L. Roszkowski, astro-ph/0404052

What is the origin of the observed baryon asymmetry?

UNILHC 2012, Valencia, 29-31 August 2012 W. Porod, Uni. Würzburg – p. 4

SUSY candidates include

•Neutralino 

•Gravitino



Murayama







 Tree-level min cond

Including rad corr 

Fine-tuning is required if the cut-off 

 Higgs potential

Higgs Theory in SM
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Figure 15. Relative contributions to ∆M2
H

for Λ = 5 TeV

not have a proof that Nature is not fine tuned, but I think it highly likely that both a

Higgs boson and other new phenomena are to be found near the 1-TeV scale.

A new symmetry, not present in the standard model, could resolve the hierarchy

problem. Exploiting the fact that fermion loops contribute with an overall minus sign

relative to boson loops (because of Fermi statistics), supersymmetry [113; 149; 152]

balances the contributions of fermion and boson loops †. In unbroken supersymmetry,
the masses of bosons are degenerate with those of their fermion counterparts, so the

cancellation is exact. If supersymmetry is present in our world, it must be broken. The

contribution of the integrals may still be acceptably small if the fermion-boson mass

splittings ∆M are not too large. The condition that g2∆M2 be “small enough” leads to

the requirement that superpartner masses be less than about 1 TeV. It is provocative

to note that, with superpartners at O(1 TeV), the SU(3)c ⊗ SU(2)L ⊗ U(1)Y coupling
constants run to a common value at a unification scale of about 1016 GeV [154].

Theories of dynamical symmetry breaking (cf. section 10) offer a second solution

to the problem of the enormous range of integration in (49). In technicolor models, the

Higgs boson is composite, and its internal structure comes into play on the scale of its

binding, ΛTC " O(1 TeV). The integrand is damped, the effective range of integration

is cut off, and mass shifts are under control.
Dark matter offers one more independent indication that new phenomena should

be present on the Fermi scale. An appealing interpretation of the evidence that dark

matter makes up roughly one-quarter of the energy density of the Universe [155] is

that dark matter consists of thermal relics of the big bang: stable—or exceedingly

long-lived—neutral particles. If the particle has couplings of weak-interaction strength,

then generically the observed dark-matter density results if the mass of the dark-
matter particle lies between approximately 100 GeV and 1 TeV [156]. Whether based

† “Little Higgs” models [70] and “twin Higgs” models [153] employ different conspiracies of
contributions to defer the hierarchy problem to about 10 TeV.
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be present on the Fermi scale. An appealing interpretation of the evidence that dark

matter makes up roughly one-quarter of the energy density of the Universe [155] is

that dark matter consists of thermal relics of the big bang: stable—or exceedingly

long-lived—neutral particles. If the particle has couplings of weak-interaction strength,

then generically the observed dark-matter density results if the mass of the dark-
matter particle lies between approximately 100 GeV and 1 TeV [156]. Whether based

† “Little Higgs” models [70] and “twin Higgs” models [153] employ different conspiracies of
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FIG. 1. Higgs mass corrections

Next, we turn to quantum loops. We assume that q̃L, t̃R have approximately the same

mass, mt̃, for simplicity, and we also neglect the µ and A-terms. We work pre-EWSB since we

are concerned with sensitivity to parametrically higher scales. By evaluating the diagrams

in figure 1, we find that the m2
hu

parameter receives the following correction:

δm2
hu

= −
3y2t
4π2

m2
t̃ ln

(

ΛUV

mt̃

)

(5)

Naturalness therefore requires, very roughly,

mt̃ ! 400GeV. (6)

There are also electroweak gauge/gaugino/Higgsino one-loop contributions to Higgs mass-

squared. Again, working before electroweak symmetry breaking (gaugino-Higgsino mixing)

and just looking at the stronger SU(2)L coupling, the Higgs self-energy diagrams are in

figure 2.
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FIG. 2. Higgs mass correction

The Higgs mass correction is then given by

δm2
hu

=
3g2

8π2
(m2

W̃
+m2

h̃
) ln

ΛUV

mW̃

. (7)

We identify the Higgsino mass with µ. Because we are already taking µ ! 200 GeV, this

translates into a roughly natural wino mass range of

mW̃ ! TeV. (8)
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Leading quadratic divergence cancels 

In SUSY, stop loops dominate Higgs 
mass parameter correction 
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Gluino corrections to stop

Next, we compute the hypercharge D-term loop contribution to Higgs mass-squared, in

figure 3:

huhu

φi

FIG. 3. Higgs mass correction

This gives rise to a higgs mass correction:

δm2
hu

=
∑

scalars i

g′2YiYhu

16π2

(

Λ2
UV −m2

i ln
Λ2

UV +m2
i

m2
i

)

. (9)

Including both the right-handed sbottom and the down-type higgs, as we do in this

section, ensures that the quadratic divergence cancels, but there is still a residual correction

to the higgs mass. Given that other scalars have already been argued to be relatively light,

we can use this correction to estimate the natural range for the mass of b̃R,

mb̃R
! 3TeV. (10)

Finally, q̃L, t̃R also being relatively light scalars, suffer from their own naturalness problem,

with mass corrections dominated by the diagrams in figure 4:

t̃ t̃

t

g̃

g

t̃t̃ t̃
t̃ t̃

g t̃

t̃t̃

FIG. 4. Stop mass correction

This gives rise to a stop mass correction:

δm2
t̃ =

2g2s
3π2

m2
g̃ ln

ΛUV

mg̃

. (11)

For squark masses ∼ few hundred GeV, naturalness requires

mg̃ ! 2mt̃. (12)
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Other important loops
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Next, we turn to quantum loops. We assume that q̃L, t̃R have approximately the same

mass, mt̃, for simplicity, and we also neglect the µ and A-terms. We work pre-EWSB since we

are concerned with sensitivity to parametrically higher scales. By evaluating the diagrams

in figure 1, we find that the m2
hu

parameter receives the following correction:

δm2
hu

= −
3y2t
4π2

m2
t̃ ln

(

ΛUV

mt̃

)

(5)

Naturalness therefore requires, very roughly,

mt̃ ! 400GeV. (6)

There are also electroweak gauge/gaugino/Higgsino one-loop contributions to Higgs mass-

squared. Again, working before electroweak symmetry breaking (gaugino-Higgsino mixing)

and just looking at the stronger SU(2)L coupling, the Higgs self-energy diagrams are in

figure 2.
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The Higgs mass correction is then given by

δm2
hu

=
3g2

8π2
(m2

W̃
+m2

h̃
) ln

ΛUV

mW̃

. (7)

We identify the Higgsino mass with µ. Because we are already taking µ ! 200 GeV, this

translates into a roughly natural wino mass range of

mW̃ ! TeV. (8)
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Natural SUSY 
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History of SUSY



History of SUSY ΦTP2SUSY algebra

Coleman and Mandula, Phys. Rev. 159 (1967) 1251

Possible symmetries of the S-matrix

Poincaré invariance, the semi-direct product of translations and Lorentz rotations, with

generators Pµ, Mµν .

So-called “internal” global symmetries, related to conserved quantum numbers such

as electric charge and isospin. The symmetry generators are Lorentz scalars and

generate a Lie algebra,

[B", Bk] = iCj
"kBj

where the Cj
"k are structure constants.

Discrete symmetries: C, P , and T

UNILHC 2012, Valencia, 29-31 August 2012 W. Porod, Uni. Würzburg – p. 12

ΦTP2SUSY algebra

However:

above theorem assumes commutator only

allowing anticommuting generators as well as commuting generators leads to the

possibility of supersymmetry (SUSY)

introduce anticommuting symmetry generators which transform in the ( 1

2
, 0) and (0, 1

2
)

(i.e. spinor) representations of the Lorentz group.

R. Haag, J. Łopuszański, M. Sohnius, Nucl. Phys. B88 (1975) 257 proved that

supersymmetry is the only additional symmetry of the S-matrix allowed by this weaker

set of assumptions

UNILHC 2012, Valencia, 29-31 August 2012 W. Porod, Uni. Würzburg – p. 13

Porod



N=1 SUSY algebra
ΦTP2SUSY algebra

The novelty: the SUSY algebra has generators that are spinors under Lorentz invariance.

Notation for SUSY generators: complex, anticommuting Weyl spinors Qα and their complex

conjugates Qα̇.

Convention: Weyl spinors are just left-handed (α = 1, 2), but their complex conjugates are

right-handed.

Fundamental SUSY anti-commutator (with Pµ the four-momentum):

{Qα, Qα̇} = 2σµ
αα̇Pµ

{Qα, Qβ} = 0 = {Qα̇, Qβ̇}

Pauli-matrices:

σµ
αα̇ =

`

2, σi
´

, σ̄µαα̇ =
`

2,−σi
´

σ1 =

0

@
0 1

1 0

1

A , σ2 =

0

@
0 −i

i 0

1

A , σ3 =

0

@
1 0

0 −1

1

A

UNILHC 2012, Valencia, 29-31 August 2012 W. Porod, Uni. Würzburg – p. 14
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Qα Qα̇

bar and dot notation 
means right-handed



ΦTP2SUSY algebra

SUSY is an internal symmetry

[Pµ, Qα] = [Pµ, Qα̇] = 0

It is useful to keep track of ’SUSY-ness’ by the R-symmetry generator R:

[Qα, R] = Qα , [Qα̇, R] = −Qα̇

In short: Qα decreases the R-quantum number by 1, while Qα̇ increases

The SUSY generator is a spacetime spinor so due to the spin-statistics theorem its action

turns fermions into bosons, and vice versa:

{(−1)F , Qα} = 0

where

(−1)F |boson〉 = +|boson〉

(−1)F |fermion〉 = −|fermion〉

UNILHC 2012, Valencia, 29-31 August 2012 W. Porod, Uni. Würzburg – p. 15
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SUSY Multiplets 

ΦTP2SUSY multiplets

Examples of massive multiplets:

The massive ’chiral’ multiplet (s = 0):

state s3

|Ωs〉 0

Q
1̇
|Ωs〉, Q2̇

|Ωs〉 ± 1

2

Q
1̇
Q

2̇
|Ωs〉 0

contains: complex scalar and 2-component fermion (Majorana fermion)

The massive ’vector’ multiplet (s = 1

2
):

state s3

|Ωs〉 ± 1

2

Q
1̇
|Ωs〉, Q2̇

|Ωs〉 0, 1, 0,−1

Q
1̇
Q

2̇
|Ωs〉 ± 1

2

contains: a massive vector field, a real scalar field, and two Majorana fermions

UNILHC 2012, Valencia, 29-31 August 2012 W. Porod, Uni. Würzburg – p. 20

ΦTP2SUSY multiplets

Examples of massive multiplets:

The massive ’chiral’ multiplet (s = 0):

state s3

|Ωs〉 0

Q
1̇
|Ωs〉, Q2̇

|Ωs〉 ± 1

2

Q
1̇
Q

2̇
|Ωs〉 0

contains: complex scalar and 2-component fermion (Majorana fermion)

The massive ’vector’ multiplet (s = 1

2
):

state s3

|Ωs〉 ± 1

2

Q
1̇
|Ωs〉, Q2̇

|Ωs〉 0, 1, 0,−1

Q
1̇
Q

2̇
|Ωs〉 ± 1

2

contains: a massive vector field, a real scalar field, and two Majorana fermions
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squark
quark
squark

ΦTP2SUSY algebra

Consequences

members of a SUSY-multiplet have the same masses as [Pµ, Qα] = 0 = [P 2, Qα]

Hamilton

H = P0 =
1

4

`
Q1Q

1̇
+ Q

1̇
Q1 + Q2Q

2̇
+ Q

2̇
Q2

´
=

1

4
{Qα, Qα̇}

⇒ 〈i|H|i〉 ≥ 0

# fermions = # bosons in a multiplet with members |i〉

X

i

|i〉〈i| =

Tr[(−1)NF {Qα, Qα̇}] = Tr[(−1)NF QαQα̇ + (−1)NF Qα̇Qα]

= Tr[−Qα(−1)NF Qα̇ + Qα(−1)NF Qα̇]

= 0 = 4Tr[(−1)NF P0]

⇒ Tr[(−1)NF ] = 0
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SUSY Multiplets cont’d

gluino

ΦTP2SUSY multiplets

Massless chiral multiplet

starts wie λ = 0

state helicity

|Ω0〉 0

Q
1̇
|Ω0〉 1

2

+

state helicity

|Ω− 1

2

〉 − 1

2

Q
1̇
|Ω− 1

2

〉 0

consits of a complex scalar and a Weyl fermion

Massless vector multiplet

starts wie λ = 1

2

state helicity

|Ω 1

2

〉 1

2

Q
1̇
|Ω 1

2

〉 1

+

state helicity

|Ω−1〉 −1

Q
1̇
|Ω−1〉 − 1

2

consits of a vector particle and a Weyl fermion
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gluinogluon
gluon



Superfields for SUSY multiplets
chiral           

(left-handed)

ΦTP2Superfields

(Left-)Chiral superfield: used for matter/Higgs fields

defined via

D̄α̇Φ = 0

change of coordinates x → y such that D̄α̇yµ = 0

yµ = xµ − iθσµθ̄

yields

Φ(y, θ) = φ(y) +
√

2θψ(y) + θ2F (y)

= φ(x) − iθσµθ̄∂µφ(x) −
1

4
θ2θ̄2∂µ∂µφ(x) +

√
2θψ(x) +

i
√

2
∂µψ(x)σµθ̄ + θ2F (x)

SUSY transformations

δεφ = εψ

δεψα = 2εαF + i(σµε̄)α∂µφ

δεF = −
i

2
∂µψσµε̄
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ΦTP2Superfields

(Left-)Chiral superfield: used for matter/Higgs fields

defined via

D̄α̇Φ = 0

change of coordinates x → y such that D̄α̇yµ = 0

yµ = xµ − iθσµθ̄

yields

Φ(y, θ) = φ(y) +
√

2θψ(y) + θ2F (y)

= φ(x) − iθσµθ̄∂µφ(x) −
1

4
θ2θ̄2∂µ∂µφ(x) +

√
2θψ(x) +

i
√

2
∂µψ(x)σµθ̄ + θ2F (x)

SUSY transformations

δεφ = εψ

δεψα = 2εαF + i(σµε̄)α∂µφ

δεF = −
i

2
∂µψσµε̄
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squark quark auxiliary field

space-time super-space 
coordinates

vector          
(Wess-Zumino)

ΦTP2Superfields

Wess-Zumino gauge

adding the combination i(Λ − Λ†) of a left-chiral field yields

VWZ(x, θ, θ̄) = θσµθ̄Vµ(x) − iθ̄θ̄θλ(x) + iθθθ̄λ̄(x) + θθθ̄θ̄D(x)

giving the vector field in the Wess-Zumino gauge while still leaving the freedom

Vµ → Vµ + ∂µ(φ + φ†)
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gluon gluino auxiliary field
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SUSY Lagrangians
Chapter 1 Introduction 19

S =
�

d4x
��

d2θLF +
�

d2θd2θLD

�
(1.53)

Integration over Grassmann variables is defined by

�
dθα = 0,

�
θαdθα = 1 (1.54)

In order to integrate over superspace, we can define

d2θ =−1
4

dθ αdθ β εαβ , d2θ =−1
4

dθ̄α̇dθ̄β̇ εα̇β̇ (1.55)

Combining Eqs. (1.54) and (1.55) gives the results

�
d2θ(θθ) = 1,

�
d2θ̄(θ̄ θ̄) (1.56)

From this we can see that the result of integrating a superfield over d2θ picks out the θθ term;
integrating over d2θ picks out the θ̄ θ̄ term, and integrating over d2θd2θ picks out the θθθ̄ θ̄
term. This is just as required in order to select the highest component field of a chiral or vector
supermultiplet. Now that the mechanics have been developed for building supersymmetric La-
grangians, possible contributions to the Lagrangian can be analysed by looking at products of
superfields.

Firstly, it should be noted that the product of multiple left chiral superfields will always be left
chiral (and similarly for right chiral superfields) as there is no θ dependence. Any product of
left chiral superfields will always terminate at the θθ term in the expansion due to the fact that
θθθ = 0, and so all these types of terms are of the same type as LF in Eq. (1.53). Computing
the product of two or three left chiral superfields Φi,L = φi+

√
2θψi+θθFi and integrating over

superspace coordinates gives the following results

�
d2θΦ1,LΦ2,L = φ1F2 +φ2F1 −ψ1ψ2 (1.57)

�
d2θΦ1,LΦ2,LΦ3,L = φ1φ2F3 +φ1F2φ3 +F1φ2φ3 −ψ1φ2ψ3 −φ1ψ2ψ3 −ψ1ψ2φ3 (1.58)

Note that we can’t have any higher product of superfields of this kind due to the fact that it
would give rise to terms of mass dimension greater than 4 in the Lagrangian, leading to non
renormalisable interactions. In order to find terms of the same type as LD in Eq. (1.53), we
can consider the product of a left and a right chiral superfield, ΦLΦ†

L. Due to the fact that the
conjugate of a left chiral field is right chiral, this term is clearly a vector superfield, and hence it
is of the same type as LD:
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�
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renormalisable interactions. In order to find terms of the same type as LD in Eq. (1.53), we
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General Form is F-terms + D-terms:
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Integration over Grassmann variables is defined by

�
dθα = 0,

�
θαdθα = 1 (1.54)

In order to integrate over superspace, we can define

d2θ =−1
4

dθ αdθ β εαβ , d2θ =−1
4
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Combining Eqs. (1.54) and (1.55) gives the results

�
d2θ(θθ) = 1,

�
d2θ̄(θ̄ θ̄) (1.56)

From this we can see that the result of integrating a superfield over d2θ picks out the θθ term;
integrating over d2θ picks out the θ̄ θ̄ term, and integrating over d2θd2θ picks out the θθθ̄ θ̄
term. This is just as required in order to select the highest component field of a chiral or vector
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grangians, possible contributions to the Lagrangian can be analysed by looking at products of
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Firstly, it should be noted that the product of multiple left chiral superfields will always be left
chiral (and similarly for right chiral superfields) as there is no θ dependence. Any product of
left chiral superfields will always terminate at the θθ term in the expansion due to the fact that
θθθ = 0, and so all these types of terms are of the same type as LF in Eq. (1.53). Computing
the product of two or three left chiral superfields Φi,L = φi+

√
2θψi+θθFi and integrating over

superspace coordinates gives the following results

�
d2θΦ1,LΦ2,L = φ1F2 +φ2F1 −ψ1ψ2 (1.57)

�
d2θΦ1,LΦ2,LΦ3,L = φ1φ2F3 +φ1F2φ3 +F1φ2φ3 −ψ1φ2ψ3 −φ1ψ2ψ3 −ψ1ψ2φ3 (1.58)

Note that we can’t have any higher product of superfields of this kind due to the fact that it
would give rise to terms of mass dimension greater than 4 in the Lagrangian, leading to non
renormalisable interactions. In order to find terms of the same type as LD in Eq. (1.53), we
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L. Due to the fact that the
conjugate of a left chiral field is right chiral, this term is clearly a vector superfield, and hence it
is of the same type as LD:

integration acts like differentiation

ΦTP2Superfields

(Left-)Chiral superfield: used for matter/Higgs fields

defined via

D̄α̇Φ = 0

change of coordinates x → y such that D̄α̇yµ = 0

yµ = xµ − iθσµθ̄

yields

Φ(y, θ) = φ(y) +
√

2θψ(y) + θ2F (y)

= φ(x) − iθσµθ̄∂µφ(x) −
1

4
θ2θ̄2∂µ∂µφ(x) +

√
2θψ(x) +

i
√

2
∂µψ(x)σµθ̄ + θ2F (x)

SUSY transformations

δεφ = εψ

δεψα = 2εαF + i(σµε̄)α∂µφ

δεF = −
i

2
∂µψσµε̄
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�
d2θΦ = F

similarly integrating over              picks out D-termd2θd2θ
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d4x
��

d2θLF +
�

d2θd2θLD

�
(1.53)

Integration over Grassmann variables is defined by

�
dθα = 0,

�
θαdθα = 1 (1.54)

In order to integrate over superspace, we can define

d2θ =−1
4

dθ αdθ β εαβ , d2θ =−1
4

dθ̄α̇dθ̄β̇ εα̇β̇ (1.55)

Combining Eqs. (1.54) and (1.55) gives the results

�
d2θ(θθ) = 1,

�
d2θ̄(θ̄ θ̄) (1.56)

From this we can see that the result of integrating a superfield over d2θ picks out the θθ term;
integrating over d2θ picks out the θ̄ θ̄ term, and integrating over d2θd2θ picks out the θθθ̄ θ̄
term. This is just as required in order to select the highest component field of a chiral or vector
supermultiplet. Now that the mechanics have been developed for building supersymmetric La-
grangians, possible contributions to the Lagrangian can be analysed by looking at products of
superfields.

Firstly, it should be noted that the product of multiple left chiral superfields will always be left
chiral (and similarly for right chiral superfields) as there is no θ dependence. Any product of
left chiral superfields will always terminate at the θθ term in the expansion due to the fact that
θθθ = 0, and so all these types of terms are of the same type as LF in Eq. (1.53). Computing
the product of two or three left chiral superfields Φi,L = φi+

√
2θψi+θθFi and integrating over

superspace coordinates gives the following results

�
d2θΦ1,LΦ2,L = φ1F2 +φ2F1 −ψ1ψ2 (1.57)

�
d2θΦ1,LΦ2,LΦ3,L = φ1φ2F3 +φ1F2φ3 +F1φ2φ3 −ψ1φ2ψ3 −φ1ψ2ψ3 −ψ1ψ2φ3 (1.58)

Note that we can’t have any higher product of superfields of this kind due to the fact that it
would give rise to terms of mass dimension greater than 4 in the Lagrangian, leading to non
renormalisable interactions. In order to find terms of the same type as LD in Eq. (1.53), we
can consider the product of a left and a right chiral superfield, ΦLΦ†

L. Due to the fact that the
conjugate of a left chiral field is right chiral, this term is clearly a vector superfield, and hence it
is of the same type as LD:

F
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Superpotential:

20 Chapter 1 Introduction

�
d2θd2θΦLΦ†

L = FF∗ −φ∂µ∂ µφ ∗ − iψσµ∂ µψ (1.59)

It is useful when considering the F-fields to combine Eqs. (1.57) and (1.58) to form the super-
potential

W (Φi) =
1

2
Mi jΦiΦ j +

1

6
yi jkΦiΦ jΦk (1.60)

As such, the Lagrangian so far can be written

L = ∑
i
(FiF∗

i +
��∂µφ

��2 − iψ iσµ∂ µψi)

�

∑
j

∂W (φi)

∂φ j
Fj −

1

2
∑
j,k

∂ 2W (φi)

∂φ j∂φk
ψ jψk +h.c

�
(1.61)

where the superpotential is now written as a function of the scalar fields φi rather than the

superfields. We can now integrate out the Fi fields using their equations of motion, given by

∂L
∂Fi

= 0, leading to

Fi =−
�

∂W (φ j)

∂φi

�∗
(1.62)

Now our Lagrangian consists of kinetic terms for the scalar and fermion components of a chi-

ral supermultiplet but no kinetic term for the auxiliary fields Fi, as well as terms describing

both fermion and scalar masses, and Yukawa and scalar interactions. However, the Lagrangian

doesn’t yet describe vector (gauge) superfields, and so in order to achieve this, we must consider

consider the superspace Lagrangian for a gauge theory. For simplicity, we will take the case of

a U(1) theory where the vector superfield transforms as in Eq. (1.50), and we will specialise to

the Wess-Zumino gauge where the vector superfield can be written as Eq. (1.51). In order to

write down a field strength, the following spinor chiral superfields are defined
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Actually, we can include a linear term in the superpotential without disturbing the validity of the
previous discussion at all:

W = Liφi +
1

2
M ijφiφj +

1

6
yijkφiφjφk. (3.2.15)

Here Li are parameters with dimensions of [mass]2, which affect only the scalar potential part of the
Lagrangian. Such linear terms are only allowed when φi is a gauge singlet, and there are no such gauge
singlet chiral supermultiplets in the MSSM with minimal field content. I will therefore omit this term
from the remaining discussion of this section. However, this type of term does play an important role
in the discussion of spontaneous supersymmetry breaking, as we will see in section 7.1.

To recap, we have found that the most general non-gauge interactions for chiral supermultiplets
are determined by a single holomorphic function of the complex scalar fields, the superpotential W .
The auxiliary fields Fi and F ∗i can be eliminated using their classical equations of motion. The part
of Lfree + Lint that contains the auxiliary fields is FiF ∗i +W iFi +W ∗

i F
∗i, leading to the equations of

motion

Fi = −W ∗
i , F ∗i = −W i . (3.2.16)

Thus the auxiliary fields are expressible algebraically (without any derivatives) in terms of the scalar
fields.

After making the replacement† eq. (3.2.16) in Lfree + Lint, we obtain the Lagrangian density

L = −∂µφ∗i∂µφi + iψ†iσµ∂µψi −
1

2

(
W ijψiψj +W ∗

ijψ
†iψ†j

)
−W iW ∗

i . (3.2.17)

Now that the non-propagating fields Fi, F ∗i have been eliminated, it follows from eq. (3.2.17) that the
scalar potential for the theory is just given in terms of the superpotential by

V (φ,φ∗) = W kW ∗
k = F ∗kFk =

M∗
ikM

kjφ∗iφj +
1

2
M iny∗jknφiφ

∗jφ∗k +
1

2
M∗

iny
jknφ∗iφjφk +

1

4
yijny∗klnφiφjφ

∗kφ∗l . (3.2.18)

This scalar potential is automatically bounded from below; in fact, since it is a sum of squares of
absolute values (of the W k), it is always non-negative. If we substitute the general form for the
superpotential eq. (3.2.11) into eq. (3.2.17), we obtain for the full Lagrangian density

L = −∂µφ∗i∂µφi − V (φ,φ∗) + iψ†iσµ∂µψi −
1

2
M ijψiψj −

1

2
M∗

ijψ
†iψ†j

−1

2
yijkφiψjψk −

1

2
y∗ijkφ

∗iψ†jψ†k. (3.2.19)

Now we can compare the masses of the fermions and scalars by looking at the linearized equations
of motion:

∂µ∂µφi = M∗
ikM

kjφj + . . . , (3.2.20)

iσµ∂µψi = M∗
ijψ

†j + . . . , iσµ∂µψ
†i = M ijψj + . . . . (3.2.21)

One can eliminate ψ in terms of ψ† and vice versa in eq. (3.2.21), obtaining [after use of the identities
eqs. (2.24) and (2.25)]:

∂µ∂µψi = M∗
ikM

kjψj + . . . , ∂µ∂µψ
†j = ψ†iM∗

ikM
kj + . . . . (3.2.22)

†Since Fi and F ∗i appear only quadratically in the action, the result of instead doing a functional integral over them
at the quantum level has precisely the same effect.
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Figure 3.1: The dimensionless non-gauge interaction vertices in a supersymmetric theory: (a) scalar-
fermion-fermion Yukawa interaction yijk, (b) the complex conjugate interaction yijk, and (c) quartic
scalar interaction yijny∗kln.
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Figure 3.2: Supersymmetric dimensionful couplings: (a) (scalar)3 interaction vertex M∗
iny

jkn and (b)
the conjugate interaction M iny∗jkn, (c) fermion mass term M ij and (d) conjugate fermion mass term

M∗
ij , and (e) scalar squared-mass term M∗

ikM
kj.

(3.2.19), and are shown† in Figures 3.1 and 3.2. Those in Figure 3.1 are all determined by the dimen-
sionless parameters yijk. The Yukawa interaction in Figure 3.1a corresponds to the next-to-last term
in eq. (3.2.19). For each particular Yukawa coupling of φiψjψk with strength yijk, there must be equal
couplings of φjψiψk and φkψiψj, since yijk is completely symmetric under interchange of any two of
its indices as shown in section 3.2. The arrows on the fermion and scalar lines point in the direction
for propagation of φ and ψ and opposite the direction of propagation of φ∗ and ψ†. Thus there is also
a vertex corresponding to the one in Figure 3.1a but with all arrows reversed, corresponding to the
complex conjugate [the last term in eq. (3.2.19)]. It is shown in Figure 3.1b. There is also a dimension-
less coupling for φiφjφ∗kφ∗l, with strength yijny∗kln, as required by supersymmetry [see the last term
in eq. (3.2.18)]. The relationship between the Yukawa interactions in Figures 3.1a,b and the scalar
interaction of Figure 3.1c is exactly of the special type needed to cancel the quadratic divergences
in quantum corrections to scalar masses, as discussed in the Introduction [compare Figure 1.1, and
eq. (1.11)].

Figure 3.2 shows the only interactions corresponding to renormalizable and supersymmetric vertices
with coupling dimensions of [mass] and [mass]2. First, there are (scalar)3 couplings in Figure 3.2a,b,
which are entirely determined by the superpotential mass parameters M ij and Yukawa couplings yijk,
as indicated by the second and third terms in eq. (3.2.18). The propagators of the fermions and scalars
in the theory are constructed in the usual way using the fermion mass M ij and scalar squared mass
M∗

ikM
kj. The fermion mass terms M ij and Mij each lead to a chirality-changing insertion in the

fermion propagator; note the directions of the arrows in Figure 3.2c,d. There is no such arrow-reversal
for a scalar propagator in a theory with exact supersymmetry; as depicted in Figure 3.2e, if one treats
the scalar squared-mass term as an insertion in the propagator, the arrow direction is preserved.

Figure 3.3 shows the gauge interactions in a supersymmetric theory. Figures 3.3a,b,c occur only
when the gauge group is non-Abelian, for example for SU(3)C color and SU(2)L weak isospin in the
MSSM. Figures 3.3a and 3.3b are the interactions of gauge bosons, which derive from the first term in

†Here, the auxiliary fields have been eliminated using their equations of motion (“integrated out”). One can instead
give Feynman rules that include the auxiliary fields, or directly in terms of superfields on superspace, although this is
usually less practical for phenomenological applications.
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†Here, the auxiliary fields have been eliminated using their equations of motion (“integrated out”). One can instead
give Feynman rules that include the auxiliary fields, or directly in terms of superfields on superspace, although this is
usually less practical for phenomenological applications.
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interactions with the gauginos of the form
√

2gφ∗T aψλa, where T a is the generator
of the corresponding gauge symmetry. These terms can be regarded as the super-
symmetric completion of the usual gauge couplings of the matter fields. In addition,
the Lagrangian includes kinetic terms for the gauginos of the form −iλa†σµDµλa,
recalling that the generator in the covariant derivative is written in the adjoint rep-
resentation. Finally, there are couplings of the auxiliary field Da. All of these terms
are fixed once the gauge structure and particle content of a model is specified.

In globally supersymmetric theories, the scalar potential has a specific form:

V (φi) = |Fi|2 +
1

2
DaDa, (2.4)

i.e., it consists of a sum of F terms and D terms, which are given by

F ∗
i ≡ Wi =

∂W

∂φi
(2.5)

Da = −g(φ∗
i T

a
ijφj). (2.6)

See also Eq. (A.7) and Eq. (A.14). The positive definite form of Eq. (2.4) has impli-
cations for supersymmetry breaking. From the form of the supersymmetry algebra,
it can be proven that 〈V 〉 = 0, the global minimum of this potential, is a signal of un-
broken supersymmetry. Spontaneous supersymmetry breaking is thus characterized
by nonvanishing VEVs of Fi and/or Da, as discussed further in Section 3.

Quantum field theories with global supersymmetry provide a natural context in
which to investigate questions within particle physics. However, in such models the
gravitational sector has been disregarded, even though it must be included to fully
address high energy phenomena. Supersymmetrizing the gravitational sector requires
that the global supersymmetry transformations Eq. (2.1) must be gauged.∗ For this
reason, local supersymmetry is known as supergravity, or SUGRA for short. Within
supergravity theories, the spin 2 graviton is accompanied by its superpartner, the
spin 3

2 gravitino, G̃n (n is a spacetime index; the spinor index is suppressed). The
off-shell N = 1 supergravity multiplet contains a number of auxiliary fields, which
will generally not be of importance for our purposes within this review.

The most general N = 1 supergravity Lagrangian [38] consists of a sum of ki-
netic terms, gravitational terms, topological terms, scalar self-couplings, and fermion
interaction terms. The scalar self-couplings and fermion interactions include both
renormalizable and nonrenormalizable terms. The theory is specified by the same
three functions W , K, and f as in the global case. We describe further aspects of
this theory in Appendix B.

The supergravity scalar potential is particularly relevant for phenomenology, be-
cause it plays an important role in supersymmetry breaking. Following [38] (but

∗Recall that the Poincaré algebra is a subalgebra of the supersymmetry algebra. Since gen-
eral relativity arises from gauging the Poincare spacetime symmetry, within supersymmetry the
accompanying fermionic translations generated by the Qs must also be gauged.
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Naively, this simple procedure achieves the goal of coupling the vector bosons in the gauge supermul-
tiplet to the scalars and fermions in the chiral supermultiplets. However, we also have to consider
whether there are any other interactions allowed by gauge invariance and involving the gaugino and
Da fields, which might have to be included to make a supersymmetric Lagrangian. Since Aa

µ couples
to φi and ψi, it makes sense that λa and Da should as well.

In fact, there are three such possible interaction terms that are renormalizable (of field mass di-
mension ≤ 4), namely

(φ∗T aψ)λa, λ†a(ψ†T aφ), and (φ∗T aφ)Da. (3.4.5)

Now one can add them, with unknown dimensionless coupling coefficients, to the Lagrangians for
the chiral and gauge supermultiplets, and demand that the whole mess be real and invariant under
supersymmetry, up to a total derivative. Not surprisingly, this is possible only if the supersymmetry
transformation laws for the matter fields are modified to include gauge-covariant rather than ordinary
derivatives. Also, it is necessary to include one strategically chosen extra term in δFi, so:

δφi = εψi (3.4.6)

δψiα = −i(σµε†)α ∇µφi + εαFi (3.4.7)

δFi = −iε†σµ∇µψi +
√
2g(T aφ)i ε

†λ†a. (3.4.8)

After some algebra one can now fix the coefficients for the terms in eq. (3.4.5), with the result that the
full Lagrangian density for a renormalizable supersymmetric theory is

L = Lchiral + Lgauge

−
√
2g(φ∗T aψ)λa −

√
2gλ†a(ψ†T aφ) + g(φ∗T aφ)Da. (3.4.9)

Here Lchiral means the chiral supermultiplet Lagrangian found in section 3.2 [e.g., eq. (3.2.17) or
(3.2.19)], but with ordinary derivatives replaced everywhere by gauge-covariant derivatives, and Lgauge

was given in eq. (3.3.3). To prove that eq. (3.4.9) is invariant under the supersymmetry transformations,
one must use the identity

W i(T aφ)i = 0. (3.4.10)

This is precisely the condition that must be satisfied anyway in order for the superpotential, and thus
Lchiral, to be gauge invariant.

The second line in eq. (3.4.9) consists of interactions whose strengths are fixed to be gauge couplings
by the requirements of supersymmetry, even though they are not gauge interactions from the point of
view of an ordinary field theory. The first two terms are a direct coupling of gauginos to matter fields;
this can be thought of as the “supersymmetrization” of the usual gauge boson couplings to matter
fields. The last term combines with the DaDa/2 term in Lgauge to provide an equation of motion

Da = −g(φ∗T aφ). (3.4.11)

Thus, like the auxiliary fields Fi and F ∗i, the Da are expressible purely algebraically in terms of the
scalar fields. Replacing the auxiliary fields in eq. (3.4.9) using eq. (3.4.11), one finds that the complete
scalar potential is (recall that L contains −V ):

V (φ,φ∗) = F ∗iFi +
1

2

∑

a

DaDa = W ∗
i W

i +
1

2

∑

a

g2a(φ
∗T aφ)2. (3.4.12)

The two types of terms in this expression are called “F -term” and “D-term” contributions, respectively.
In the second term in eq. (3.4.12), we have now written an explicit sum

∑
a to cover the case that the
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SUSY Lagrangians cont’d

Gauge interaction terms:
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view of an ordinary field theory. The first two terms are a direct coupling of gauginos to matter fields;
this can be thought of as the “supersymmetrization” of the usual gauge boson couplings to matter
fields. The last term combines with the DaDa/2 term in Lgauge to provide an equation of motion

Da = −g(φ∗T aφ). (3.4.11)

Thus, like the auxiliary fields Fi and F ∗i, the Da are expressible purely algebraically in terms of the
scalar fields. Replacing the auxiliary fields in eq. (3.4.9) using eq. (3.4.11), one finds that the complete
scalar potential is (recall that L contains −V ):

V (φ,φ∗) = F ∗iFi +
1

2

∑

a

DaDa = W ∗
i W

i +
1

2

∑

a

g2a(φ
∗T aφ)2. (3.4.12)

The two types of terms in this expression are called “F -term” and “D-term” contributions, respectively.
In the second term in eq. (3.4.12), we have now written an explicit sum

∑
a to cover the case that the

26

Aµ λ D

on-shell (nB = nF = 2) 2 2 0

off-shell (nB = nF = 4) 3 4 1

Table 3.2: Counting of real degrees of freedom for each gauge supermultiplet.

Therefore, the fermions and the bosons satisfy the same wave equation with exactly the same squared-
mass matrix with real non-negative eigenvalues, namely (M2)i

j
= M∗

ikM
kj . It follows that diagonalizing

this matrix by redefining the fields with a unitary matrix gives a collection of chiral supermultiplets,
each of which contains a mass-degenerate complex scalar and Weyl fermion, in agreement with the
general argument in the Introduction.

3.3 Lagrangians for gauge supermultiplets

The propagating degrees of freedom in a gauge supermultiplet are a massless gauge boson field Aa
µ and

a two-component Weyl fermion gaugino λa. The index a here runs over the adjoint representation of
the gauge group (a = 1, . . . , 8 for SU(3)C color gluons and gluinos; a = 1, 2, 3 for SU(2)L weak isospin;
a = 1 for U(1)Y weak hypercharge). The gauge transformations of the vector supermultiplet fields are

Aa
µ → Aa

µ + ∂µΛ
a + gfabcAb

µΛ
c, (3.3.1)

λa → λa + gfabcλbΛc, (3.3.2)

where Λa is an infinitesimal gauge transformation parameter, g is the gauge coupling, and fabc are the
totally antisymmetric structure constants that define the gauge group. The special case of an Abelian
group is obtained by just setting fabc = 0; the corresponding gaugino is a gauge singlet in that case.
The conventions are such that for QED, Aµ = (V, #A) where V and #A are the usual electric potential
and vector potential, with electric and magnetic fields given by #E = −#∇V − ∂0 #A and #B = #∇× #A.

The on-shell degrees of freedom for Aa
µ and λa

α amount to two bosonic and two fermionic helicity
states (for each a), as required by supersymmetry. However, off-shell λa

α consists of two complex, or
four real, fermionic degrees of freedom, while Aa

µ only has three real bosonic degrees of freedom; one
degree of freedom is removed by the inhomogeneous gauge transformation eq. (3.3.1). So, we will need
one real bosonic auxiliary field, traditionally called Da, in order for supersymmetry to be consistent
off-shell. This field also transforms as an adjoint of the gauge group [i.e., like eq. (3.3.2) with λa

replaced by Da] and satisfies (Da)∗ = Da. Like the chiral auxiliary fields Fi, the gauge auxiliary field
Da has dimensions of [mass]2 and no kinetic term, so it can be eliminated on-shell using its algebraic
equation of motion. The counting of degrees of freedom is summarized in Table 3.2.

Therefore, the Lagrangian density for a gauge supermultiplet ought to be

Lgauge = −1

4
F a
µνF

µνa + iλ†aσµ∇µλ
a +

1

2
DaDa, (3.3.3)

where

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν (3.3.4)

is the usual Yang-Mills field strength, and

∇µλ
a = ∂µλ

a + gfabcAb
µλ

c (3.3.5)

is the covariant derivative of the gaugino field. To check that eq. (3.3.3) is really supersymmetric,
one must specify the supersymmetry transformations of the fields. The forms of these follow from
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Lagrangian (gauge terms):

Aµ λ D
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Figure 3.3: Supersymmetric gauge interaction vertices.

eq. (3.3.3). In the MSSM these are exactly the same as the well-known QCD gluon and electroweak
gauge boson vertices of the Standard Model. (We do not show the interactions of ghost fields, which
are necessary only for consistent loop amplitudes.) Figures 3.3c,d,e,f are just the standard interactions
between gauge bosons and fermion and scalar fields that must occur in any gauge theory because of the
form of the covariant derivative; they come from eqs. (3.3.5) and (3.4.2)-(3.4.4) inserted in the kinetic
part of the Lagrangian. Figure 3.3c shows the coupling of a gaugino to a gauge boson; the gaugino line
in a Feynman diagram is traditionally drawn as a solid fermion line superimposed on a wavy line. In
Figure 3.3g we have the coupling of a gaugino to a chiral fermion and a complex scalar [the first term
in the second line of eq. (3.4.9)]. One can think of this as the “supersymmetrization” of Figure 3.3e or
3.3f; any of these three vertices may be obtained from any other (up to a factor of

√
2) by replacing two

of the particles by their supersymmetric partners. There is also an interaction in Figure 3.3h which
is just like Figure 3.3g but with all arrows reversed, corresponding to the complex conjugate term in
the Lagrangian [the second term in the second line in eq. (3.4.9)]. Finally in Figure 3.3i we have a
scalar quartic interaction vertex [the last term in eq. (3.4.12)], which is also determined by the gauge
coupling.

The results of this section can be used as a recipe for constructing the supersymmetric interactions
for any model. In the case of the MSSM, we already know the gauge group, particle content and the
gauge transformation properties, so it only remains to decide on the superpotential. This we will do
in section 6.1. However, first we will revisit the structure of supersymmetric Lagrangians in section 4
using the manifestly supersymmetric formalism of superspace and superfields, and then describe the
general form of soft supersymmetry breaking terms in section 5.

4 Superspace and superfields

4.1 Supercoordinates, general superfields, and superspace differentiation and in-
tegration

Supersymmetry can be given a geometric interpretation using superspace, a manifold obtained by
adding four fermionic coordinates to the usual bosonic spacetime coordinates t, x, y, z. Points in su-
perspace are labeled by coordinates:

xµ, θα, θ†α̇. (4.1.1)

Here θα and θ†α̇ are constant complex anticommuting two-component spinors with dimension [mass]−1/2.
In the superspace formulation, the component fields of a supermultiplet are united into a single su-
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Figure 3.3: Supersymmetric gauge interaction vertices.

eq. (3.3.3). In the MSSM these are exactly the same as the well-known QCD gluon and electroweak
gauge boson vertices of the Standard Model. (We do not show the interactions of ghost fields, which
are necessary only for consistent loop amplitudes.) Figures 3.3c,d,e,f are just the standard interactions
between gauge bosons and fermion and scalar fields that must occur in any gauge theory because of the
form of the covariant derivative; they come from eqs. (3.3.5) and (3.4.2)-(3.4.4) inserted in the kinetic
part of the Lagrangian. Figure 3.3c shows the coupling of a gaugino to a gauge boson; the gaugino line
in a Feynman diagram is traditionally drawn as a solid fermion line superimposed on a wavy line. In
Figure 3.3g we have the coupling of a gaugino to a chiral fermion and a complex scalar [the first term
in the second line of eq. (3.4.9)]. One can think of this as the “supersymmetrization” of Figure 3.3e or
3.3f; any of these three vertices may be obtained from any other (up to a factor of

√
2) by replacing two

of the particles by their supersymmetric partners. There is also an interaction in Figure 3.3h which
is just like Figure 3.3g but with all arrows reversed, corresponding to the complex conjugate term in
the Lagrangian [the second term in the second line in eq. (3.4.9)]. Finally in Figure 3.3i we have a
scalar quartic interaction vertex [the last term in eq. (3.4.12)], which is also determined by the gauge
coupling.

The results of this section can be used as a recipe for constructing the supersymmetric interactions
for any model. In the case of the MSSM, we already know the gauge group, particle content and the
gauge transformation properties, so it only remains to decide on the superpotential. This we will do
in section 6.1. However, first we will revisit the structure of supersymmetric Lagrangians in section 4
using the manifestly supersymmetric formalism of superspace and superfields, and then describe the
general form of soft supersymmetry breaking terms in section 5.

4 Superspace and superfields

4.1 Supercoordinates, general superfields, and superspace differentiation and in-
tegration

Supersymmetry can be given a geometric interpretation using superspace, a manifold obtained by
adding four fermionic coordinates to the usual bosonic spacetime coordinates t, x, y, z. Points in su-
perspace are labeled by coordinates:

xµ, θα, θ†α̇. (4.1.1)

Here θα and θ†α̇ are constant complex anticommuting two-component spinors with dimension [mass]−1/2.
In the superspace formulation, the component fields of a supermultiplet are united into a single su-
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the requirements that they should be linear in the infinitesimal parameters ε, ε† with dimensions of
[mass]−1/2, that δAa

µ is real, and that δDa should be real and proportional to the field equations for
the gaugino, in analogy with the role of the auxiliary field F in the chiral supermultiplet case. Thus
one can guess, up to multiplicative factors, that†

δAa
µ = − 1√

2

(
ε†σµλ

a + λ†aσµε
)
, (3.3.6)

δλa
α =

i

2
√
2
(σµσνε)α F a

µν +
1√
2
εα Da, (3.3.7)

δDa =
i√
2

(
−ε†σµ∇µλ

a +∇µλ
†aσµε

)
. (3.3.8)

The factors of
√
2 are chosen so that the action obtained by integrating Lgauge is indeed invariant, and

the phase of λa is chosen for future convenience in treating the MSSM.
It is now a little bit tedious, but straightforward, to also check that

(δε2δε1 − δε1δε2)X = i(−ε1σ
µε†2 + ε2σ

µε†1)∇µX (3.3.9)

for X equal to any of the gauge-covariant fields F a
µν , λ

a, λ†a, Da, as well as for arbitrary covariant
derivatives acting on them. This ensures that the supersymmetry algebra eqs. (3.1.30)-(3.1.31) is
realized on gauge-invariant combinations of fields in gauge supermultiplets, as they were on the chiral
supermultiplets [compare eq. (3.1.16)]. This check requires the use of identities eqs. (2.19), (2.21) and
(2.26). If we had not included the auxiliary field Da, then the supersymmetry algebra eq. (3.3.9) would
hold only after using the equations of motion for λa and λ†a. The auxiliary fields satisfies a trivial
equation of motion Da = 0, but this is modified if one couples the gauge supermultiplets to chiral
supermultiplets, as we now do.

3.4 Supersymmetric gauge interactions

Now we are ready to consider a general Lagrangian density for a supersymmetric theory with both
chiral and gauge supermultiplets. Suppose that the chiral supermultiplets transform under the gauge
group in a representation with hermitian matrices (T a)i

j satisfying [T a, T b] = ifabcT c. [For example,
if the gauge group is SU(2), then fabc = εabc, and for a chiral supermultiplet transforming in the
fundamental representation the T a are 1/2 times the Pauli matrices.] Since supersymmetry and gauge
transformations commute, the scalar, fermion, and auxiliary fields must be in the same representation
of the gauge group, so

Xi → Xi + igΛa(T aX)i (3.4.1)

for Xi = φi,ψi, Fi. To have a gauge-invariant Lagrangian, we now need to replace the ordinary
derivatives ∂µφi, ∂µφ∗i, and ∂µψi in eq. (3.2.1) with covariant derivatives:

∇µφi = ∂µφi − igAa
µ(T

aφ)i (3.4.2)

∇µφ
∗i = ∂µφ

∗i + igAa
µ(φ

∗T a)i (3.4.3)

∇µψi = ∂µψi − igAa
µ(T

aψ)i. (3.4.4)

†The supersymmetry transformations eqs. (3.3.6)-(3.3.8) are non-linear for non-Abelian gauge symmetries, since there
are gauge fields in the covariant derivatives acting on the gaugino fields and in the field strength F a

µν . By adding even
more auxiliary fields besides Da, one can make the supersymmetry transformations linear in the fields; this is easiest to
do in superfield language (see sections 4.5, 4.8, and 4.9). The version in this section, in which those extra auxiliary fields
have been removed by gauge transformations, is called “Wess-Zumino gauge” [50].
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Covariant derivatives {
Rule: take any SM 

diagram and replace 
any two lines by 
SUSY particles           

(preserving mass 
dimensions)

This introduces and defines Θa, a CP-violating parameter, whose effect is to include a total derivative
term in the Lagrangian density:

LΘa =
g2aΘa

64π2
εµνρσF a

µνF
a
ρσ. (4.9.20)

In the non-Abelian case, this can have physical effects due to topologically non-trivial field configu-
rations (instantons). For a globally non-trivial gauge configuration with integer winding number n,
one has

∫
d4x εµνρσF a

µνF
a
ρσ = 64π2n/g2a for a simple gauge group, so that the contribution to the path

integral is exp(i
∫
d4xLΘa) = einΘa . Note that for non-Abelian gauge groups, a Fayet-Iliopoulos term

−2κ[V a]D is not allowed, because it is not a gauge singlet.
When the superfields are restricted to the Wess-Zumino gauge, the supersymmetry transformations

are not realized linearly in superspace, but the Lagrangian is polynomial. The non-polynomial form
of the superspace Lagrangian is thus seen to be a supergauge artifact. Within Wess-Zumino gauge,
supersymmetry transformations are still realized, but non-linearly, as we found in sections 3.3 and 3.4.

The gauge coupling ga and CP-violating angle Θa are often combined into a single holomorphic
coupling τa defined by

τa =
Θa

2π
+

4πi

g2a
. (4.9.21)

Then, with redefined vector and field strength superfields that include ga as part of their normalization,

V̂ a ≡ gaV
a, (4.9.22)

Ŵa
α ≡ gaWa

α = −1

4
D†D†

(
DαV̂

a − ifabcV̂ bDαV̂
c + . . .

)
, (4.9.23)

the gauge part of the Lagrangian is written as

L =
1

16πi

[
τaŴaαŴa

α

]

F
+ c.c. +

[
Φ∗i(e2T

aV̂ a
)i
jΦj

]

D
. (4.9.24)

An advantage of this normalization convention is that when written in terms of V̂ a, the only appearance
of the gauge coupling and θa is explicitly in the τa in eq. (4.9.24). It is then sometimes useful to treat
the complex holomorphic coupling τa as a chiral superfield with an expectation value for its scalar
component. An expectation value for the F -term component of τa will give gaugino masses; this is
sometimes a useful way to implement the effects of explicit soft supersymmetry breaking.

4.10 Non-renormalizable supersymmetric Lagrangians

So far, we have discussed only renormalizable supersymmetric Lagrangians. However, when any real-
istic supersymmetric theory is extended to include gravity, the resulting supergravity theory is non-
renormalizable as a quantum field theory. It is therefore clear that, in principle, non-renormalizable
interactions must be present in any low-energy effective description of the MSSM. Fortunately, these
can be neglected for most phenomenological purposes, because non-renormalizable interactions have
couplings of negative mass dimension, proportional to powers of 1/MP (or perhaps 1/ΛUV, where ΛUV

is some other cutoff scale associated with new physics). This means that their effects at energy scales
E ordinarily accessible to experiment are typically suppressed by powers of E/MP (or by powers of
E/ΛUV). For energies E <∼ 1 TeV, the consequences of non-renormalizable interactions are therefore
usually far too small to be interesting.

Still, there are several reasons why one may need to include non-renormalizable contributions to
supersymmetric Lagrangians. First, some very rare processes (like proton decay) might only be de-
scribed using an effective MSSM Lagrangian that includes non-renormalizable terms. Second, one may
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Minimal Supersymmetric Standard 
Model (MSSM) at a glance



Minimal Supersymmetric Standard 
Model (MSSM) ΦTP2MSSM, generalities

Superfield Bosons Fermions SU(3)C SU(2)L U(1)Y

Gauge Multiplets

bG g eg 8 1 0

bV Wa fWa 1 3 0

bV ′ B eB 1 1 0

Matter Multiplets

bL (ν̃, ẽ−L ) (ν, e−L ) 1 2 -1/2

bEC ẽ+
R ec

R 1 1 1

bQ (ũL, d̃L) (uL, dL) 3 2 1/6

bUC ũ∗
R uc

L 3∗ 1 -2/3

bDC d̃∗R dc
L 3∗ 1 1/3

Higgs Multiplets

bHd (H0
d , H−

d ) (H̃0
d , H̃−

d ) 1 2 -1/2

bHu (H+
u , H0

u) (H̃+
u , H̃0

u) 1 2 1/2

UNILHC 2012, Valencia, 29-31 August 2012 W. Porod, Uni. Würzburg – p. 16

Two Higgs doublets 
required for anomaly 

cancellation ( and 
holomorphicity of W)



Names Spin PR Gauge Eigenstates Mass Eigenstates

Higgs bosons 0 +1 H0
u H0

d H+
u H−

d h0 H0 A0 H±

ũL ũR d̃L d̃R (same)

squarks 0 −1 s̃L s̃R c̃L c̃R (same)

t̃L t̃R b̃L b̃R t̃1 t̃2 b̃1 b̃2

ẽL ẽR ν̃e (same)

sleptons 0 −1 µ̃L µ̃R ν̃µ (same)

τ̃L τ̃R ν̃τ τ̃1 τ̃2 ν̃τ

neutralinos 1/2 −1 B̃0 W̃ 0 H̃0
u H̃0

d Ñ1 Ñ2 Ñ3 Ñ4

charginos 1/2 −1 W̃± H̃+
u H̃−

d C̃±
1 C̃±

2

gluino 1/2 −1 g̃ (same)

goldstino
(gravitino)

1/2
(3/2) −1 G̃ (same)

Table 8.1: The undiscovered particles in the Minimal Supersymmetric Standard Model (with sfermion
mixing for the first two families assumed to be negligible).

that the scalar potential gives correct electroweak symmetry breaking. This allows us to trade |µ|
and b for one parameter tan β, as in eqs. (8.1.9)-(8.1.8). So, to a reasonable approximation, the entire
mass spectrum in MSUGRA models is determined by only five unknown parameters: m2

0, m1/2, A0,
tan β, and Arg(µ), while in the simplest gauge-mediated supersymmetry breaking models one can pick
parameters Λ, Mmess, N5, 〈F 〉, tan β, and Arg(µ). Both frameworks are highly predictive. Of course,
it is easy to imagine that the essential physics of supersymmetry breaking is not captured by either of
these two scenarios in their minimal forms. For example, the anomaly mediated contributions could
play a role, perhaps in concert with the gauge-mediation or Planck-scale mediation mechanisms.

Figure 8.4 shows the RG running of scalar and gaugino masses in a typical model based on the
MSUGRA boundary conditions imposed at Q0 = 2 × 1016 GeV. [The parameter values used for this
illustration were m0 = 200 GeV, m1/2 = −A0 = 600 GeV, tan β = 10, and sign(µ)= +.] The running
gaugino masses are solid lines labeled by M1, M2, and M3. The dot-dashed lines labeled Hu and Hd

are the running values of the quantities (µ2 +m2
Hu

)1/2 and (µ2 +m2
Hd

)1/2, which appear in the Higgs
potential. The other lines are the running squark and slepton masses, with dashed lines for the square
roots of the third family parameters m2

d3
, m2

Q3
, m2

u3
, m2

L3
, and m2

e3 (from top to bottom), and solid

lines for the first and second family sfermions. Note that µ2+m2
Hu

runs negative because of the effects
of the large top Yukawa coupling as discussed above, providing for electroweak symmetry breaking. At
the electroweak scale, the values of the Lagrangian soft parameters can be used to extract the physical
masses, cross-sections, and decay widths of the particles, and other observables such as dark matter
abundances and rare process rates. There are a variety of publicly available programs that do these
tasks, including radiative corrections; see for example [214]-[223],[201].

Figure 8.5 shows deliberately qualitative sketches of sample MSSM mass spectrum obtained from
four different types of models assumptions. The first, in Figure 8.5(a), is the output from an MSUGRA
model with relatively low m2

0 compared to m2
1/2 (in fact the same model parameters as used for fig. 8.4).

This model features a near-decoupling limit for the Higgs sector, and a bino-like Ñ1 LSP, nearly
degenerate wino-like Ñ2, C̃1, and higgsino-like Ñ3, Ñ4, C̃2. The gluino is the heaviest superpartner.
The squarks are all much heavier than the sleptons, and the lightest sfermion is a stau. (The second-
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With the exception of the Higgs sector, the MSSM particle content, which is listed
in Table 1, includes only the known SM fields and their superpartners. Supersym-
metric theories with additional matter and/or gauge content can of course easily be
constructed. We discuss several possible extensions of the MSSM in Section 10.

Table 1: The MSSM Particle Spectrum

Superfield Bosons Fermions

Gauge

Ĝ g g̃

V̂ a W a W̃ a

V̂ ′ B B̃

Matter

L̂

Êc
leptons

{
L̃ = (ν̃, ẽ−)L

Ẽ = ẽ+
R

(ν, e−)L

ec
L

Q̂

Û c

D̂c

quarks






Q̃ = (ũL, d̃L)

Ũ c = ũ∗
R

D̃c = d̃∗
R

(u, d)L

uc
L

dc
L

Ĥd

Ĥu
Higgs

{
H i

d

H i
u

(H̃0
d , H̃−

d )L

(H̃+
u , H̃0

u)L

The renormalizable interactions of the MSSM are encoded as terms of dimension
two and three in the superpotential of the theory. The superpotential terms include
the Yukawa couplings of the quarks and leptons to the Higgs doublets, as well as a
mass term which couples Hu to Hd.

Additional renormalizable superpotential couplings which violate baryon number
and lepton number are also allowed by gauge invariance, as shown explicitly in Sec-
tion 10.2. Such couplings would lead to rapid proton decay, and hence at least certain
combinations of these terms must be forbidden by imposing additional symmetries
on the theory. A common, though not absolutely necessary, choice is to impose a
discrete symmetry known as R-parity, which forbids all baryon and lepton number
violation in the renormalizable superpotential. R-parity and related issues will be
discussed in Section 10.2. In this review, the definition of the MSSM always includes
the assumption of a conserved R-parity. Hence, the MSSM superpotential is

W = εαβ [−Ĥα
u Q̂β

i Yuij Û
c
j + Ĥα

d Q̂β
i YdijD̂

c
j + Ĥα

d L̂β
i Yeij Ê

c
j − µĤα

d Ĥβ
u ]. (2.9)
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Superpotential: YUkawa couplings and SUSY masses

Minimal Supersymmetric Standard 
Model (MSSM)
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Figure 6.1: The top-quark Yukawa coupling (a) and its “supersymmetrizations” (b), (c), all of
strength yt.
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Figure 6.2: Some of the (scalar)4 interactions with strength proportional to y2t .

Since the Yukawa interactions yijk in a general supersymmetric theory must be completely sym-
metric under interchange of i, j, k, we know that yu, yd and ye imply not only Higgs-quark-quark and
Higgs-lepton-lepton couplings as in the Standard Model, but also squark-Higgsino-quark and slepton-
Higgsino-lepton interactions. To illustrate this, Figures 6.1a,b,c show some of the interactions involving
the top-quark Yukawa coupling yt. Figure 6.1a is the Standard Model-like coupling of the top quark
to the neutral complex scalar Higgs boson, which follows from the first term in eq. (6.1.3). For variety,

we have used tL and t†R in place of their synonyms t and t (see the discussion near the end of section
2). In Figure 6.1b, we have the coupling of the left-handed top squark t̃L to the neutral higgsino field
H̃0

u and right-handed top quark, while in Figure 6.1c the right-handed top anti-squark field (known

either as t̃ or t̃∗R depending on taste) couples to H̃0
u and tL. For each of the three interactions, there is

another with H0
u → H+

u and tL → −bL (with tildes where appropriate), corresponding to the second
part of the first term in eq. (6.1.3). All of these interactions are required by supersymmetry to have
the same strength yt. These couplings are dimensionless and can be modified by the introduction of
soft supersymmetry breaking only through finite (and small) radiative corrections, so this equality of
interaction strengths is also a prediction of softly broken supersymmetry. A useful mnemonic is that
each of Figures 6.1a,b,c can be obtained from any of the others by changing two of the particles into
their superpartners.

There are also scalar quartic interactions with strength proportional to y2t , as can be seen from
Figure 3.1c or the last term in eq. (3.2.18). Three of them are shown in Figure 6.2. Using eq. (3.2.18)
and eq. (6.1.3), one can see that there are five more, which can be obtained by replacing t̃L → b̃L
and/or H0

u → H+
u in each vertex. This illustrates the remarkable economy of supersymmetry; there

are many interactions determined by only a single parameter. In a similar way, the existence of all
the other quark and lepton Yukawa couplings in the superpotential eq. (6.1.1) leads not only to Higgs-
quark-quark and Higgs-lepton-lepton Lagrangian terms as in the ordinary Standard Model, but also
to squark-higgsino-quark and slepton-higgsino-lepton terms, and scalar quartic couplings [(squark)4,
(slepton)4, (squark)2(slepton)2, (squark)2(Higgs)2, and (slepton)2(Higgs)2]. If needed, these can all be
obtained in terms of the Yukawa matrices yu, yd, and ye as outlined above.

However, the dimensionless interactions determined by the superpotential are usually not the most
important ones of direct interest for phenomenology. This is because the Yukawa couplings are already
known to be very small, except for those of the third family (top, bottom, tau). Instead, production
and decay processes for superpartners in the MSSM are typically dominated by the supersymmetric
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the same strength yt. These couplings are dimensionless and can be modified by the introduction of
soft supersymmetry breaking only through finite (and small) radiative corrections, so this equality of
interaction strengths is also a prediction of softly broken supersymmetry. A useful mnemonic is that
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There are also scalar quartic interactions with strength proportional to y2t , as can be seen from
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u in each vertex. This illustrates the remarkable economy of supersymmetry; there

are many interactions determined by only a single parameter. In a similar way, the existence of all
the other quark and lepton Yukawa couplings in the superpotential eq. (6.1.1) leads not only to Higgs-
quark-quark and Higgs-lepton-lepton Lagrangian terms as in the ordinary Standard Model, but also
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However, the dimensionless interactions determined by the superpotential are usually not the most
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Figure 6.3: Couplings of the gluino, wino, and bino to MSSM (scalar, fermion) pairs.

interactions of gauge-coupling strength, as we will explore in more detail in sections 9 and 10. The
couplings of the Standard Model gauge bosons (photon, W±, Z0 and gluons) to the MSSM particles are
determined completely by the gauge invariance of the kinetic terms in the Lagrangian. The gauginos
also couple to (squark, quark) and (slepton, lepton) and (Higgs, higgsino) pairs as illustrated in the
general case in Figure 3.3g,h and the first two terms in the second line in eq. (3.4.9). For instance, each
of the squark-quark-gluino couplings is given by

√
2g3(q̃ T aqg̃+ c.c.) where T a = λa/2 (a = 1 . . . 8) are

the matrix generators for SU(3)C . The Feynman diagram for this interaction is shown in Figure 6.3a.
In Figures 6.3b,c we show in a similar way the couplings of (squark, quark), (lepton, slepton) and
(Higgs, higgsino) pairs to the winos and bino, with strengths proportional to the electroweak gauge
couplings g and g′ respectively. For each of these diagrams, there is another with all arrows reversed.
Note that the winos only couple to the left-handed squarks and sleptons, and the (lepton, slepton)
and (Higgs, higgsino) pairs of course do not couple to the gluino. The bino coupling to each (scalar,
fermion) pair is also proportional to the weak hypercharge Y as given in Table 1.1. The interactions
shown in Figure 6.3 provide, for example, for decays q̃ → qg̃ and q̃ → W̃ q′ and q̃ → B̃q when the final
states are kinematically allowed to be on-shell. However, a complication is that the W̃ and B̃ states
are not mass eigenstates, because of splitting and mixing due to electroweak symmetry breaking, as
we will see in section 8.2.

There are also various scalar quartic interactions in the MSSM that are uniquely determined by
gauge invariance and supersymmetry, according to the last term in eq. (3.4.12), as illustrated in Fig-
ure 3.3i. Among them are (Higgs)4 terms proportional to g2 and g′2 in the scalar potential. These are
the direct generalization of the last term in the Standard Model Higgs potential, eq. (1.1), to the case
of the MSSM. We will have occasion to identify them explicitly when we discuss the minimization of
the MSSM Higgs potential in section 8.1.

The dimensionful couplings in the supersymmetric part of the MSSM Lagrangian are all dependent
on µ. Using the general result of eq. (3.2.19), µ provides for higgsino fermion mass terms

− Lhiggsino mass = µ(H̃+
u H̃−

d − H̃0
uH̃

0
d ) + c.c., (6.1.4)

as well as Higgs squared-mass terms in the scalar potential

− Lsupersymmetric Higgs mass = |µ|2(|H0
u|2 + |H+

u |2 + |H0
d |2 + |H−

d |2). (6.1.5)

Since eq. (6.1.5) is non-negative with a minimum at H0
u = H0

d = 0, we cannot understand electroweak
symmetry breaking without including a negative supersymmetry-breaking squared-mass soft term for
the Higgs scalars. An explicit treatment of the Higgs scalar potential will therefore have to wait
until we have introduced the soft terms for the MSSM. However, we can already see a puzzle: we
expect that µ should be roughly of order 102 or 103 GeV, in order to allow a Higgs VEV of order
174 GeV without too much miraculous cancellation between |µ|2 and the negative soft squared-mass
terms that we have not written down yet. But why should |µ|2 be so small compared to, say, M2

P,
and in particular why should it be roughly of the same order as m2

soft? The scalar potential of the
MSSM seems to depend on two types of dimensionful parameters that are conceptually quite distinct,
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namely the supersymmetry-respecting mass µ and the supersymmetry-breaking soft mass terms. Yet
the observed value for the electroweak breaking scale suggests that without miraculous cancellations,
both of these apparently unrelated mass scales should be within an order of magnitude or so of 100
GeV. This puzzle is called “the µ problem”. Several different solutions to the µ problem have been
proposed, involving extensions of the MSSM of varying intricacy. They all work in roughly the same
way; the µ term is required or assumed to be absent at tree-level before symmetry breaking, and then
it arises from the VEV(s) of some new field(s). These VEVs are in turn determined by minimizing a
potential that depends on soft supersymmetry-breaking terms. In this way, the value of the effective
parameter µ is no longer conceptually distinct from the mechanism of supersymmetry breaking; if we
can explain why msoft ! MP, we will also be able to understand why µ is of the same order. In sections
11.2 and 11.3 we will study three such mechanisms: the Next-to-Minimal Supersymmetric Standard
Model, the Kim-Nilles mechanism [64], and the Giudice-Masiero mechanism [65]. Another solution
appropriate for GMSB models and based on loop effects was proposed in ref. [66]. From the point of
view of the MSSM, however, we can just treat µ as an independent parameter, without committing to
a specific mechanism.

The µ-term and the Yukawa couplings in the superpotential eq. (6.1.1) combine to yield (scalar)3

couplings [see the second and third terms on the right-hand side of eq. (3.2.18)] of the form

Lsupersymmetric (scalar)3 = µ∗(ũyuũH
0∗
d + d̃ydd̃H

0∗
u + ẽyeẽH

0∗
u

+ũyud̃H
−∗
d + d̃ydũH

+∗
u + ẽyeν̃H

+∗
u ) + c.c. (6.1.6)

Figure 6.4 shows some of these couplings, proportional to µ∗yt, µ∗yb, and µ∗yτ respectively. These play
an important role in determining the mixing of top squarks, bottom squarks, and tau sleptons, as we
will see in section 8.4.

6.2 R-parity (also known as matter parity) and its consequences

The superpotential eq. (6.1.1) is minimal in the sense that it is sufficient to produce a phenomenolog-
ically viable model. However, there are other terms that one can write that are gauge-invariant and
holomorphic in the chiral superfields, but are not included in the MSSM because they violate either
baryon number (B) or total lepton number (L). The most general gauge-invariant and renormalizable
superpotential would include not only eq. (6.1.1), but also the terms

W∆L=1 =
1

2
λijkLiLjek + λ′ijkLiQjdk + µ′iLiHu (6.2.1)

W∆B=1 =
1

2
λ′′ijkuidjdk (6.2.2)

where family indices i = 1, 2, 3 have been restored. The chiral supermultiplets carry baryon number
assignments B = +1/3 for Qi; B = −1/3 for ui, di; and B = 0 for all others. The total lepton number
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assignments are L = +1 for Li, L = −1 for ei, and L = 0 for all others. Therefore, the terms in
eq. (6.2.1) violate total lepton number by 1 unit (as well as the individual lepton flavors) and those in
eq. (6.2.2) violate baryon number by 1 unit.

The possible existence of such terms might seem rather disturbing, since corresponding B- and
L-violating processes have not been seen experimentally. The most obvious experimental constraint
comes from the non-observation of proton decay, which would violate both B and L by 1 unit. If both
λ′ and λ′′ couplings were present and unsuppressed, then the lifetime of the proton would be extremely
short. For example, Feynman diagrams like the one in Figure 6.5† would lead to p+ → e+π0 (shown) or
e+K0 or µ+π0 or µ+K0 or νπ+ or νK+ etc. depending on which components of λ′ and λ′′ are largest.‡

As a rough estimate based on dimensional analysis, for example,

Γp→e+π0 ∼ m5
proton

∑

i=2,3

|λ′11iλ′′11i|2/m4
d̃i
, (6.2.3)

which would be a tiny fraction of a second if the couplings were of order unity and the squarks have
masses of order 1 TeV. In contrast, the decay time of the proton into lepton+meson final states is
known experimentally to be in excess of 1032 years. Therefore, at least one of λ′ijk or λ′′11k for each of
i = 1, 2; j = 1, 2; k = 2, 3 must be extremely small. Many other processes also give strong constraints
on the violation of lepton and baryon numbers [67, 68].

One could simply try to take B and L conservation as a postulate in the MSSM. However, this
is clearly a step backward from the situation in the Standard Model, where the conservation of these
quantum numbers is not assumed, but is rather a pleasantly “accidental” consequence of the fact
that there are no possible renormalizable Lagrangian terms that violate B or L. Furthermore, there
is a quite general obstacle to treating B and L as fundamental symmetries of Nature, since they are
known to be necessarily violated by non-perturbative electroweak effects [69] (even though those effects
are calculably negligible for experiments at ordinary energies). Therefore, in the MSSM one adds a
new symmetry, which has the effect of eliminating the possibility of B and L violating terms in the
renormalizable superpotential, while allowing the good terms in eq. (6.1.1). This new symmetry is
called “R-parity” [8] or equivalently “matter parity” [70].

Matter parity is a multiplicatively conserved quantum number defined as

PM = (−1)3(B−L) (6.2.4)

for each particle in the theory. It is easy to check that the quark and lepton supermultiplets all
have PM = −1, while the Higgs supermultiplets Hu and Hd have PM = +1. The gauge bosons and
gauginos of course do not carry baryon number or lepton number, so they are assigned matter parity
PM = +1. The symmetry principle to be enforced is that a candidate term in the Lagrangian (or in
the superpotential) is allowed only if the product of PM for all of the fields in it is +1. It is easy to see
that each of the terms in eqs. (6.2.1) and (6.2.2) is thus forbidden, while the good and necessary terms

†In this diagram and others below, the arrows on propagators are often omitted for simplicity, and external fermion
label refer to physical particle states rather than 2-component fermion fields.

‡The coupling λ′′ must be antisymmetric in its last two flavor indices, since the color indices are combined antisym-
metrically. That is why the squark in Figure 6.5 can be s̃ or b̃, but not d̃, for u, d quarks in the proton.
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assignments are L = +1 for Li, L = −1 for ei, and L = 0 for all others. Therefore, the terms in
eq. (6.2.1) violate total lepton number by 1 unit (as well as the individual lepton flavors) and those in
eq. (6.2.2) violate baryon number by 1 unit.

The possible existence of such terms might seem rather disturbing, since corresponding B- and
L-violating processes have not been seen experimentally. The most obvious experimental constraint
comes from the non-observation of proton decay, which would violate both B and L by 1 unit. If both
λ′ and λ′′ couplings were present and unsuppressed, then the lifetime of the proton would be extremely
short. For example, Feynman diagrams like the one in Figure 6.5† would lead to p+ → e+π0 (shown) or
e+K0 or µ+π0 or µ+K0 or νπ+ or νK+ etc. depending on which components of λ′ and λ′′ are largest.‡

As a rough estimate based on dimensional analysis, for example,

Γp→e+π0 ∼ m5
proton

∑

i=2,3

|λ′11iλ′′11i|2/m4
d̃i
, (6.2.3)

which would be a tiny fraction of a second if the couplings were of order unity and the squarks have
masses of order 1 TeV. In contrast, the decay time of the proton into lepton+meson final states is
known experimentally to be in excess of 1032 years. Therefore, at least one of λ′ijk or λ′′11k for each of
i = 1, 2; j = 1, 2; k = 2, 3 must be extremely small. Many other processes also give strong constraints
on the violation of lepton and baryon numbers [67, 68].

One could simply try to take B and L conservation as a postulate in the MSSM. However, this
is clearly a step backward from the situation in the Standard Model, where the conservation of these
quantum numbers is not assumed, but is rather a pleasantly “accidental” consequence of the fact
that there are no possible renormalizable Lagrangian terms that violate B or L. Furthermore, there
is a quite general obstacle to treating B and L as fundamental symmetries of Nature, since they are
known to be necessarily violated by non-perturbative electroweak effects [69] (even though those effects
are calculably negligible for experiments at ordinary energies). Therefore, in the MSSM one adds a
new symmetry, which has the effect of eliminating the possibility of B and L violating terms in the
renormalizable superpotential, while allowing the good terms in eq. (6.1.1). This new symmetry is
called “R-parity” [8] or equivalently “matter parity” [70].

Matter parity is a multiplicatively conserved quantum number defined as

PM = (−1)3(B−L) (6.2.4)

for each particle in the theory. It is easy to check that the quark and lepton supermultiplets all
have PM = −1, while the Higgs supermultiplets Hu and Hd have PM = +1. The gauge bosons and
gauginos of course do not carry baryon number or lepton number, so they are assigned matter parity
PM = +1. The symmetry principle to be enforced is that a candidate term in the Lagrangian (or in
the superpotential) is allowed only if the product of PM for all of the fields in it is +1. It is easy to see
that each of the terms in eqs. (6.2.1) and (6.2.2) is thus forbidden, while the good and necessary terms

†In this diagram and others below, the arrows on propagators are often omitted for simplicity, and external fermion
label refer to physical particle states rather than 2-component fermion fields.

‡The coupling λ′′ must be antisymmetric in its last two flavor indices, since the color indices are combined antisym-
metrically. That is why the squark in Figure 6.5 can be s̃ or b̃, but not d̃, for u, d quarks in the proton.
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namely the supersymmetry-respecting mass µ and the supersymmetry-breaking soft mass terms. Yet
the observed value for the electroweak breaking scale suggests that without miraculous cancellations,
both of these apparently unrelated mass scales should be within an order of magnitude or so of 100
GeV. This puzzle is called “the µ problem”. Several different solutions to the µ problem have been
proposed, involving extensions of the MSSM of varying intricacy. They all work in roughly the same
way; the µ term is required or assumed to be absent at tree-level before symmetry breaking, and then
it arises from the VEV(s) of some new field(s). These VEVs are in turn determined by minimizing a
potential that depends on soft supersymmetry-breaking terms. In this way, the value of the effective
parameter µ is no longer conceptually distinct from the mechanism of supersymmetry breaking; if we
can explain why msoft ! MP, we will also be able to understand why µ is of the same order. In sections
11.2 and 11.3 we will study three such mechanisms: the Next-to-Minimal Supersymmetric Standard
Model, the Kim-Nilles mechanism [64], and the Giudice-Masiero mechanism [65]. Another solution
appropriate for GMSB models and based on loop effects was proposed in ref. [66]. From the point of
view of the MSSM, however, we can just treat µ as an independent parameter, without committing to
a specific mechanism.

The µ-term and the Yukawa couplings in the superpotential eq. (6.1.1) combine to yield (scalar)3

couplings [see the second and third terms on the right-hand side of eq. (3.2.18)] of the form

Lsupersymmetric (scalar)3 = µ∗(ũyuũH
0∗
d + d̃ydd̃H

0∗
u + ẽyeẽH

0∗
u

+ũyud̃H
−∗
d + d̃ydũH

+∗
u + ẽyeν̃H

+∗
u ) + c.c. (6.1.6)

Figure 6.4 shows some of these couplings, proportional to µ∗yt, µ∗yb, and µ∗yτ respectively. These play
an important role in determining the mixing of top squarks, bottom squarks, and tau sleptons, as we
will see in section 8.4.

6.2 R-parity (also known as matter parity) and its consequences

The superpotential eq. (6.1.1) is minimal in the sense that it is sufficient to produce a phenomenolog-
ically viable model. However, there are other terms that one can write that are gauge-invariant and
holomorphic in the chiral superfields, but are not included in the MSSM because they violate either
baryon number (B) or total lepton number (L). The most general gauge-invariant and renormalizable
superpotential would include not only eq. (6.1.1), but also the terms

W∆L=1 =
1

2
λijkLiLjek + λ′ijkLiQjdk + µ′iLiHu (6.2.1)

W∆B=1 =
1

2
λ′′ijkuidjdk (6.2.2)

where family indices i = 1, 2, 3 have been restored. The chiral supermultiplets carry baryon number
assignments B = +1/3 for Qi; B = −1/3 for ui, di; and B = 0 for all others. The total lepton number
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assignments are L = +1 for Li, L = −1 for ei, and L = 0 for all others. Therefore, the terms in
eq. (6.2.1) violate total lepton number by 1 unit (as well as the individual lepton flavors) and those in
eq. (6.2.2) violate baryon number by 1 unit.

The possible existence of such terms might seem rather disturbing, since corresponding B- and
L-violating processes have not been seen experimentally. The most obvious experimental constraint
comes from the non-observation of proton decay, which would violate both B and L by 1 unit. If both
λ′ and λ′′ couplings were present and unsuppressed, then the lifetime of the proton would be extremely
short. For example, Feynman diagrams like the one in Figure 6.5† would lead to p+ → e+π0 (shown) or
e+K0 or µ+π0 or µ+K0 or νπ+ or νK+ etc. depending on which components of λ′ and λ′′ are largest.‡

As a rough estimate based on dimensional analysis, for example,

Γp→e+π0 ∼ m5
proton

∑

i=2,3

|λ′11iλ′′11i|2/m4
d̃i
, (6.2.3)

which would be a tiny fraction of a second if the couplings were of order unity and the squarks have
masses of order 1 TeV. In contrast, the decay time of the proton into lepton+meson final states is
known experimentally to be in excess of 1032 years. Therefore, at least one of λ′ijk or λ′′11k for each of
i = 1, 2; j = 1, 2; k = 2, 3 must be extremely small. Many other processes also give strong constraints
on the violation of lepton and baryon numbers [67, 68].

One could simply try to take B and L conservation as a postulate in the MSSM. However, this
is clearly a step backward from the situation in the Standard Model, where the conservation of these
quantum numbers is not assumed, but is rather a pleasantly “accidental” consequence of the fact
that there are no possible renormalizable Lagrangian terms that violate B or L. Furthermore, there
is a quite general obstacle to treating B and L as fundamental symmetries of Nature, since they are
known to be necessarily violated by non-perturbative electroweak effects [69] (even though those effects
are calculably negligible for experiments at ordinary energies). Therefore, in the MSSM one adds a
new symmetry, which has the effect of eliminating the possibility of B and L violating terms in the
renormalizable superpotential, while allowing the good terms in eq. (6.1.1). This new symmetry is
called “R-parity” [8] or equivalently “matter parity” [70].

Matter parity is a multiplicatively conserved quantum number defined as

PM = (−1)3(B−L) (6.2.4)

for each particle in the theory. It is easy to check that the quark and lepton supermultiplets all
have PM = −1, while the Higgs supermultiplets Hu and Hd have PM = +1. The gauge bosons and
gauginos of course do not carry baryon number or lepton number, so they are assigned matter parity
PM = +1. The symmetry principle to be enforced is that a candidate term in the Lagrangian (or in
the superpotential) is allowed only if the product of PM for all of the fields in it is +1. It is easy to see
that each of the terms in eqs. (6.2.1) and (6.2.2) is thus forbidden, while the good and necessary terms

†In this diagram and others below, the arrows on propagators are often omitted for simplicity, and external fermion
label refer to physical particle states rather than 2-component fermion fields.

‡The coupling λ′′ must be antisymmetric in its last two flavor indices, since the color indices are combined antisym-
metrically. That is why the squark in Figure 6.5 can be s̃ or b̃, but not d̃, for u, d quarks in the proton.
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Matter superfields  = -1,  
Higgs superfields = +1,
Gauge superfields = +1

in eq. (6.1.1) are allowed. This discrete symmetry commutes with supersymmetry, as all members of
a given supermultiplet have the same matter parity. The advantage of matter parity is that it can
in principle be an exact and fundamental symmetry, which B and L themselves cannot, since they
are known to be violated by non-perturbative electroweak effects. So even with exact matter parity
conservation in the MSSM, one expects that baryon number and total lepton number violation can
occur in tiny amounts, due to non-renormalizable terms in the Lagrangian. However, the MSSM does
not have renormalizable interactions that violate B or L, with the standard assumption of matter parity
conservation.

It is often useful to recast matter parity in terms of R-parity, defined for each particle as

PR = (−1)3(B−L)+2s (6.2.5)

where s is the spin of the particle. Now, matter parity conservation and R-parity conservation are
precisely equivalent, since the product of (−1)2s for the particles involved in any interaction vertex in
a theory that conserves angular momentum is always equal to +1. However, particles within the same
supermultiplet do not have the same R-parity. In general, symmetries with the property that fields
within the same supermultiplet have different transformations are called R symmetries; they do not
commute with supersymmetry. Continuous U(1) R symmetries were described in section 4.11, and are
often encountered in the model-building literature; they should not be confused with R-parity, which is
a discrete Z2 symmetry. In fact, the matter parity version of R-parity makes clear that there is really
nothing intrinsically “R” about it; in other words it secretly does commute with supersymmetry, so its
name is somewhat suboptimal. Nevertheless, the R-parity assignment is very useful for phenomenology
because all of the Standard Model particles and the Higgs bosons have even R-parity (PR = +1), while
all of the squarks, sleptons, gauginos, and higgsinos have odd R-parity (PR = −1).

The R-parity odd particles are known as “supersymmetric particles” or “sparticles” for short, and
they are distinguished by a tilde (see Tables 1.1 and 1.2). If R-parity is exactly conserved, then there can
be no mixing between the sparticles and the PR = +1 particles. Furthermore, every interaction vertex
in the theory contains an even number of PR = −1 sparticles. This has three extremely important
phenomenological consequences:

• The lightest sparticle with PR = −1, called the “lightest supersymmetric particle” or LSP, must
be absolutely stable. If the LSP is electrically neutral, it interacts only weakly with ordinary
matter, and so can make an attractive candidate [71] for the non-baryonic dark matter that
seems to be required by cosmology.

• Each sparticle other than the LSP must eventually decay into a state that contains an odd number
of LSPs (usually just one).

• In collider experiments, sparticles can only be produced in even numbers (usually two-at-a-time).

We define the MSSM to conserve R-parity or equivalently matter parity. While this decision seems
to be well-motivated phenomenologically by proton decay constraints and the hope that the LSP will
provide a good dark matter candidate, it might appear somewhat artificial from a theoretical point of
view. After all, the MSSM would not suffer any internal inconsistency if we did not impose matter
parity conservation. Furthermore, it is fair to ask why matter parity should be exactly conserved,
given that the discrete symmetries in the Standard Model (ordinary parity P , charge conjugation C,
time reversal T , etc.) are all known to be inexact symmetries. Fortunately, it is sensible to formulate
matter parity as a discrete symmetry that is exactly conserved. In general, exactly conserved, or
“gauged” discrete symmetries [72] can exist provided that they satisfy certain anomaly cancellation
conditions [73] (much like continuous gauged symmetries). One particularly attractive way this could
occur is if B−L is a continuous gauge symmetry that is spontaneously broken at some very high energy

55

Equivalent effect 
to R-Parity

SM particles  = 1,  
SUSY particles = -1

  LSP with PR=-1 is absolutely stable (WIMP dark matter candidate)
  Each sparticle must decay eventually into an odd number of  LSPs
  Sparticles must be produced in pairs at the LHC

R-parity violating theories preserve either lepton number or baryon number but not both 

Both terms 
forbidden in 

MSSM

spin 

How to forbid the extra terms



Non-renormalisable operators 
1

M
(QQQL+ LLHuHu)

To satisfy proton decay need M>1025GeV !

Forbidden by baryon parity ZB
3:                      

Q=1,   D=Hu=α,   L=E=U=Hd=α2  which allows:
1

M
(QUEHd + LLHuHu)

Matter parity 
ZM

2 allowed:

Proton hexality applies both ZM
2 xZB

3 

RPV LSP unstable

1

M
(LLHuHu)



R-symmetry in the MSSM
Do not confuse R-parity with continuous U(1) R-symmetry

with

W i =
δW

δΦi

∣∣∣∣
Φi→φi

, W ij =
δ2W

δΦiδΦj

∣∣∣∣
Φi→φi

, (4.10.4)

where the superfields have been replaced by their scalar components after differentiation. [Compare
eqs. (3.2.6), (3.2.10), (3.2.14) and the surrounding discussion.] After integrating out the auxiliary fields
Fi, the part of the scalar potential coming from the superpotential is

V = W iW ∗
j (K

−1)ji , (4.10.5)

where K−1 is the inverse matrix of the Kähler metric:

Ki
j =

δ2K

δΦiδΦ̃∗j

∣∣∣∣
Φi→φi, Φ̃∗i→φ∗i

. (4.10.6)

More generally, the whole component field Lagrangian after integrating out the auxiliary fields is
determined in terms of the functions W , K and fab and their derivatives with respect to the chiral
superfields, with the remaining chiral superfields replaced by their scalar components. The complete
form of this is straightforward to evaluate, but somewhat complicated. In supergravity, there are
additional contributions, some of which are discussed in section 7.6 below.

4.11 R symmetries

Some supersymmetric Lagrangians are also invariant under a global U(1)R symmetry. The defining
feature of a continuous R symmetry is that the anticommuting coordinates θ and θ† transform under
it with charges +1 and −1 respectively, so

θ → eiαθ, θ† → e−iαθ† (4.11.1)

where α parameterizes the global R transformation. It follows that

Q̂ → e−iαQ̂, Q̂† → eiαQ̂†, (4.11.2)

which in turn implies that the supersymmetry generators have R-charges −1 and +1, and so do not
commute with the R symmetry charge:

[R,Q] = −Q, [R,Q†] = Q† (4.11.3)

Thus the distinct components within a superfield always have different R charges.
If the theory is invariant under an R symmetry, then each superfield S(x, θ, θ†) can be assigned an

R charge, denoted rS , defined by its transformation rule

S(x, θ, θ†) → eirSαS(x, e−iαθ, eiαθ†). (4.11.4)

The R charge of a product of superfields is the sum of the individual R charges. For a chiral superfield
Φ with R-charge rΦ, the φ, ψ, and F components transform with charges rΦ, rΦ − 1, and rΦ − 2,
respectively:

φ → eirΦαφ, ψ → ei(rΦ−1)αψ, F → ei(rΦ−2)αF. (4.11.5)

The components of Φ∗ carry the opposite charges.
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defined via

D̄α̇Φ = 0

change of coordinates x → y such that D̄α̇yµ = 0

yµ = xµ − iθσµθ̄

yields

Φ(y, θ) = φ(y) +
√

2θψ(y) + θ2F (y)

= φ(x) − iθσµθ̄∂µφ(x) −
1

4
θ2θ̄2∂µ∂µφ(x) +

√
2θψ(x) +

i
√

2
∂µψ(x)σµθ̄ + θ2F (x)

SUSY transformations

δεφ = εψ

δεψα = 2εαF + i(σµε̄)α∂µφ

δεF = −
i

2
∂µψσµε̄
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W i =
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δΦi
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Φi→φi

, W ij =
δ2W

δΦiδΦj

∣∣∣∣
Φi→φi
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where the superfields have been replaced by their scalar components after differentiation. [Compare
eqs. (3.2.6), (3.2.10), (3.2.14) and the surrounding discussion.] After integrating out the auxiliary fields
Fi, the part of the scalar potential coming from the superpotential is

V = W iW ∗
j (K

−1)ji , (4.10.5)

where K−1 is the inverse matrix of the Kähler metric:

Ki
j =

δ2K

δΦiδΦ̃∗j

∣∣∣∣
Φi→φi, Φ̃∗i→φ∗i

. (4.10.6)

More generally, the whole component field Lagrangian after integrating out the auxiliary fields is
determined in terms of the functions W , K and fab and their derivatives with respect to the chiral
superfields, with the remaining chiral superfields replaced by their scalar components. The complete
form of this is straightforward to evaluate, but somewhat complicated. In supergravity, there are
additional contributions, some of which are discussed in section 7.6 below.

4.11 R symmetries

Some supersymmetric Lagrangians are also invariant under a global U(1)R symmetry. The defining
feature of a continuous R symmetry is that the anticommuting coordinates θ and θ† transform under
it with charges +1 and −1 respectively, so

θ → eiαθ, θ† → e−iαθ† (4.11.1)

where α parameterizes the global R transformation. It follows that

Q̂ → e−iαQ̂, Q̂† → eiαQ̂†, (4.11.2)

which in turn implies that the supersymmetry generators have R-charges −1 and +1, and so do not
commute with the R symmetry charge:

[R,Q] = −Q, [R,Q†] = Q† (4.11.3)

Thus the distinct components within a superfield always have different R charges.
If the theory is invariant under an R symmetry, then each superfield S(x, θ, θ†) can be assigned an

R charge, denoted rS , defined by its transformation rule

S(x, θ, θ†) → eirSαS(x, e−iαθ, eiαθ†). (4.11.4)

The R charge of a product of superfields is the sum of the individual R charges. For a chiral superfield
Φ with R-charge rΦ, the φ, ψ, and F components transform with charges rΦ, rΦ − 1, and rΦ − 2,
respectively:

φ → eirΦαφ, ψ → ei(rΦ−1)αψ, F → ei(rΦ−2)αF. (4.11.5)

The components of Φ∗ carry the opposite charges.
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Gauge vector superfields will always have 0 R-charge, since they are real. It follows that the
components that are non-zero in Wess-Zumino gauge transform as:

Aµ → Aµ, λ → eiαλ, D → D. (4.11.6)

and so have R charges 0, 1, and 0 respectively. Therefore, a gaugino mass term 1
2Mλλλ, which will

appear when supersymmetry is broken, also always breaks a continuous R-symmetry.
The superspace integration measures d2θ and d2θ† and the chiral covariant derivatives Dα and D†

α̇
carry R-charges −2, +2, −1, and +1 respectively. It follows that the gauge field-strength superfield
Wα carries R-charge +1. It is then not hard to check that all supersymmetric Lagrangian terms
found above that involve gauge superfields are automatically and necessarily R-symmetric, including
the couplings to chiral superfields. This is also true of the canonical Kähler potential contribution.
However, the superfieldW (Φi) must carry R charge +2 if R symmetry is conserved, and this is certainly
not automatic, and often not true. For example, with a single gauge-singlet superfield Φ, the allowed
renormalizable terms in the superpotential are W (Φ) = LΦ + M

2 Φ
2 + y

6Φ
3. If one wants to impose a

continuous R symmetry, then one can have at most one of these terms; L is allowed only if rΦ = 2,
M is allowed only if rΦ = 1, and y is allowed only if rΦ = 2/3. Since continuous R symmetries do not
commute with supersymmetry, one might wonder why they are considered at all. Perhaps the most
important answer to this involves the role of R symmetries in theories that break global supersymmetry
spontaneously, as will be discussed in section 7.3 below.

It is also possible to have a discrete Zn R symmetry, which can be obtained by restricting the
transformation parameter α in eqs. (4.11.1)-(4.11.6) to integer multiples of 2π/n. The Zn R charges
of all fields are then integers modulo n. However, note that the case n = 2 is trivial, in the sense
that any Z2 R symmetry is exactly equivalent to a corresponding ordinary (non-R) symmetry under
which all components of each supermultiplet transform the same way. This is because when α is an
integer multiple of π, then both θ and θ† always just transform by changing sign, which means that
fermionic fields change sign and bosonic fields do not, or vice versa. The number of fermionic fields in
any Lagrangian term, in any theory, is always even, so the extra sign change for fermionic fields has
no effect.

5 Soft supersymmetry breaking interactions

A realistic phenomenological model must contain supersymmetry breaking. From a theoretical per-
spective, we expect that supersymmetry, if it exists at all, should be an exact symmetry that is broken
spontaneously. In other words, the underlying model should have a Lagrangian density that is invari-
ant under supersymmetry, but a vacuum state that is not. In this way, supersymmetry is hidden at
low energies in a manner analogous to the fate of the electroweak symmetry in the ordinary Standard
Model.

Many models of spontaneous symmetry breaking have indeed been proposed and we will mention
the basic ideas of some of them in section 7. These always involve extending the MSSM to include
new particles and interactions at very high mass scales, and there is no consensus on exactly how this
should be done. However, from a practical point of view, it is extremely useful to simply parameterize
our ignorance of these issues by just introducing extra terms that break supersymmetry explicitly
in the effective MSSM Lagrangian. As was argued in the Introduction, the supersymmetry-breaking
couplings should be soft (of positive mass dimension) in order to be able to naturally maintain a
hierarchy between the electroweak scale and the Planck (or any other very large) mass scale. This
means in particular that dimensionless supersymmetry-breaking couplings should be absent.

The possible soft supersymmetry-breaking terms in the Lagrangian of a general theory are

Lsoft = −
(
1

2
Ma λ

aλa +
1

6
aijkφiφjφk +

1

2
bijφiφj + tiφi

)
+ c.c.− (m2)ijφ

j∗φi, (5.1)
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In the above expression, i and j are family indices, while α and β are SU(2)L doublet
indices (the color indices are suppressed). εαβ is defined in the standard way; see
Appendix C.1.

The superpotential of the MSSM dictates all of the supersymmetric couplings of
the theory, aside from the gauge couplings. The superpotential and gauge couplings
thus dictate the couplings of the Higgs potential of the theory. This would appear to
reduce the number of independent parameters of the MSSM; for example, the tree-
level Higgs quartic couplings are fixed by superysmmetry to be gauge couplings rather
than arbitrary couplings as in the SM. However, the phenomenological requirement of
supersymmetry breaking terms in the Lagrangian introduces many new parameters,
which play crucial roles in the phenomenology of the model. The rest of the review
will focus on theoretical and phenomenological aspects of the soft supersymmetry-
breaking sector of the MSSM.

2.3 The parameters of the MSSM

At low energies, supersymmetry must be a broken symmetry. Since this implies
the appearance of supersymmetry-breaking terms in the Lagrangian, an immediate
question is whether such terms spoil supersymmetry’s elegant solution to the hierar-
chy problem. As generic quantum field theories with scalars generally have a hierar-
chy problem, if all supersymmetry-breaking terms consistent with other symmetries
of the theory are allowed the dangerous UV divergences may indeed be reintroduced.

Fortunately, such dangerous divergences are not generated to any order in pertur-
bation theory if only a certain subset of supersymmetry-breaking terms are present
in the theory. Such operators, are said to break supersymmetry softly, and their cou-
plings are collectively denoted the soft parameters. The part of the Lagrangian which
contains these terms is generically called the soft supersymmetry-breaking Lagrangian
Lsoft , or simply the soft Lagrangian. The soft supersymmetry-breaking operators
comprise a consistent truncation of all possible operators in that the presence of
soft supersymmetry-breaking parameters does not regenerate “hard” supersymmetry-
breaking terms at higher order. The complete set of possible soft supersymmetry-
breaking parameters was first classified in the seminal papers [37, 13, 14, 15]. The
classic proof of Girardello and Grisaru [37] will not be repeated here. The power
counting method, which explains why certain terms are soft while others are not, is
reviewed in Appendix A.4.

The soft supersymmetry-breaking Lagrangian is defined to include all allowed
terms that do not introduce quadratic divergences in the theory: all gauge invariant
and Lorentz invariant terms of dimension two and three (i.e., the relevant operators
from an effective field theory viewpoint). The terms of Lsoft can be categorized as
follows (summation convention implied):

• Soft trilinear scalar interactions: 1
3!Ãijkφiφjφk + h.c..
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• Soft bilinear scalar interactions: 1
2bijφiφj + h.c..

• Soft scalar mass-squares: m2
ijφ

†
iφj.

• Soft gaugino masses: 1
2Maλaλa + h.c..

In the expression above, a labels the gauge group (i.e., the generator index is sup-
pressed here). We will not discuss in depth the terms in Lsoft which can be only be
soft under certain conditions, as described briefly in Appendix A.4. Such terms are
usually not included since they turn out to be negligible in most models of the soft
supersymmetry-breaking parameters.

As stated, our attention will mainly be focused on the MSSM, which is defined
to be the supersymmetrized Standard Model with minimal particle content and the
most general set of soft supersymmetry-breaking parameters.‡ Of course, the correct
theory could be larger than the MSSM. If the theory is extended, for example by
adding an extra singlet scalar or an additional U(1) symmetry, the associated terms
can be added in a straightforward way; see e.g. the discussion of the next-to-minimal
supersymmetric standard model (NMSSM) in Section 10.3. Similarly, just as it is
necessary to add new fields such as right-handed neutrinos to the SM to incorporate
neutrino masses in the SM, such fields and their superpartners and the associated
terms in Lsoft must be added to include neutrino masses. This issue is somewhat
model-dependent, and will be discussed further in Section 10.1.

The matter content and superpotential of the MSSM were presented in Table 1
and Eq. (2.9) in Section 2.2; further details are presented in Appendix C.1. The soft
Lagrangian for the MSSM is presented in Eq. (C.3), which we repeat here:

− Lsoft =
1

2

[
M3g̃g̃ + M2W̃ W̃ + M1B̃B̃

]

+ εαβ [−bHα
d Hβ

u − Hα
u Q̃β

i Ãuij Ũ
c
j + Hα

d Q̃β
i Ãdij D̃

c
j + Hα

d L̃β
i ÃeijẼ

c
j + h.c.]

+ m2
Hd
|Hd|2 + m2

Hu
|Hu|2 + Q̃α

i m2
Qij

Q̃α∗
j

+ L̃α
i m2

LijL̃
α∗
j + Ũ c∗

i m2
U ijŨ

c
j + D̃c∗

i m2
DijD̃

c
j + Ẽc∗

i m2
EijẼ

c
j . (2.10)

Supersymmetry is broken because these terms contribute explicitly to masses and
interactions of (say) winos or squarks but not to their superpartners. The under-
lying supersymmetry breaking is assumed to be spontaneous (and presumably take
place in a hidden sector, as discussed in Section 3). How supersymmetry breaking
is transmitted to the superpartners is encoded in the parameters of Lsoft. All of the
quantities in Lsoft receive radiative corrections and thus are scale-dependent, satis-
fying known renormalization group equations. The beta functions depend on what
new physics is present between the two scales. Lsoft has the same form at any scale.

‡The label MSSM has been used in the literature to denote simpler versions of the theory (e.g.
with a restricted set of soft supersymmetry-breaking parameters). Here “minimal” refers to the
particle content, not the parameters.
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Figure 7.1: Scalar potentials for (a) unbroken supersymmetry, (b) spontaneously broken supersymme-
try, and (c) metastable supersymmetry breaking, as a function of an order parameter φ.

as the broken symmetry generator. In the case of global supersymmetry, the broken generator is the
fermionic charge Qα, so the Nambu-Goldstone particle ought to be a massless neutral Weyl fermion,
called the goldstino. To prove it, consider a general supersymmetric model with both gauge and chiral
supermultiplets as in section 3. The fermionic degrees of freedom consist of gauginos (λa) and chiral
fermions (ψi). After some of the scalar fields in the theory obtain VEVs, the fermion mass matrix has
the form:

mF =
(

0
√
2gb(〈φ∗〉T b)i√

2ga(〈φ∗〉T a)j 〈W ji〉

)
(7.1.3)

in the (λa, ψi) basis. [The off-diagonal entries in this matrix come from the first term in the second line
of eq. (3.4.9), and the lower right entry can be seen in eq. (3.2.17).] Now observe that mF annihilates
the vector

G̃ =
(
〈Da〉/

√
2

〈Fi〉

)
. (7.1.4)

The first row of mF annihilates G̃ by virtue of the requirement eq. (3.4.10) that the superpotential is
gauge invariant, and the second row does so because of the condition 〈∂V/∂φi〉 = 0, which must be
satisfied at any local minimum of the scalar potential. Equation (7.1.4) is therefore proportional to the
goldstino wavefunction; it is non-trivial if and only if at least one of the auxiliary fields has a VEV,
breaking supersymmetry. So we have proved that if global supersymmetry is spontaneously broken,
then there must be a massless goldstino, and that its components among the various fermions in the
theory are just proportional to the corresponding auxiliary field VEVs.

There is also a useful sum rule that governs the tree-level squared masses of particles in theories
with spontaneously broken supersymmetry. For a general theory of the type discussed in section 3, the
squared masses of the real scalar degrees of freedom are the eigenvalues of the matrix

m2
S =

(
W ∗

jkW
ik + g2a(T

aφ)j(φ∗T a)i − gaT ai
j Da W ∗

ijkW
k + g2a(T

aφ)i(T aφ)j

W ijkW ∗
k + g2a(φ

∗T a)i(φ∗T a)j W ∗
ikW

jk + g2a(T
aφ)i(φ∗T a)j − gaT

aj
i Da

)

, (7.1.5)

since the quadratic part of the tree-level potential is

V =
1

2
(φ∗j φj )m

2
S

(
φi

φ∗i

)
. (7.1.6)
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interactions with the gauginos of the form
√

2gφ∗T aψλa, where T a is the generator
of the corresponding gauge symmetry. These terms can be regarded as the super-
symmetric completion of the usual gauge couplings of the matter fields. In addition,
the Lagrangian includes kinetic terms for the gauginos of the form −iλa†σµDµλa,
recalling that the generator in the covariant derivative is written in the adjoint rep-
resentation. Finally, there are couplings of the auxiliary field Da. All of these terms
are fixed once the gauge structure and particle content of a model is specified.

In globally supersymmetric theories, the scalar potential has a specific form:

V (φi) = |Fi|2 +
1

2
DaDa, (2.4)

i.e., it consists of a sum of F terms and D terms, which are given by

F ∗
i ≡ Wi =

∂W

∂φi
(2.5)

Da = −g(φ∗
i T

a
ijφj). (2.6)

See also Eq. (A.7) and Eq. (A.14). The positive definite form of Eq. (2.4) has impli-
cations for supersymmetry breaking. From the form of the supersymmetry algebra,
it can be proven that 〈V 〉 = 0, the global minimum of this potential, is a signal of un-
broken supersymmetry. Spontaneous supersymmetry breaking is thus characterized
by nonvanishing VEVs of Fi and/or Da, as discussed further in Section 3.

Quantum field theories with global supersymmetry provide a natural context in
which to investigate questions within particle physics. However, in such models the
gravitational sector has been disregarded, even though it must be included to fully
address high energy phenomena. Supersymmetrizing the gravitational sector requires
that the global supersymmetry transformations Eq. (2.1) must be gauged.∗ For this
reason, local supersymmetry is known as supergravity, or SUGRA for short. Within
supergravity theories, the spin 2 graviton is accompanied by its superpartner, the
spin 3

2 gravitino, G̃n (n is a spacetime index; the spinor index is suppressed). The
off-shell N = 1 supergravity multiplet contains a number of auxiliary fields, which
will generally not be of importance for our purposes within this review.

The most general N = 1 supergravity Lagrangian [38] consists of a sum of ki-
netic terms, gravitational terms, topological terms, scalar self-couplings, and fermion
interaction terms. The scalar self-couplings and fermion interactions include both
renormalizable and nonrenormalizable terms. The theory is specified by the same
three functions W , K, and f as in the global case. We describe further aspects of
this theory in Appendix B.

The supergravity scalar potential is particularly relevant for phenomenology, be-
cause it plays an important role in supersymmetry breaking. Following [38] (but

∗Recall that the Poincaré algebra is a subalgebra of the supersymmetry algebra. Since gen-
eral relativity arises from gauging the Poincare spacetime symmetry, within supersymmetry the
accompanying fermionic translations generated by the Qs must also be gauged.
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to break SUSY need F or D non-zero

to familiarize the reader with certain theoretical frameworks and prototype models
which are often used in phenomenological analyses.

3.1 TeV scale supersymmetry breaking

The basic question to be addressed is how to understand the explicit soft su-
persymmetry breaking encoded in the Lsoft parameters as the result of spontaneous
supersymmetry breaking in a more fundamental theory. To predict the values of the
Lsoft parameters unambiguously within a more fundamental theory requires a knowl-
edge of the origin and dynamics of supersymmetry breaking. Despite significant effort
and many model-building attempts, the mechanism of spontaneous supersymmetry
breaking and how it might be implemented consistently within the underlying theory
is still largely unknown.

The most straightforward approach to a theory of Lsoft is to look at spontaneous
breaking of supersymmetry through the generation of TeV scale F and/or D term
VEVs in the MSSM, or simple extensions of the MSSM. Scenarios of TeV scale
supersymmetry breaking are also called “visible sector” supersymmetry breaking, for
reasons which will become apparent in the next subsection.

Remarkably, it is already known that any tree level approach to TeV scale spon-
taneous supersymmetry breaking necessarily leads to an experimentally excluded
pattern of bosonic and fermionic masses assuming the particle content of the MSSM.
Consider a supersymmetric theory with gauge-neutral matter fields Φi, for which the
scalar potential V ∝

∑
FiF ∗

i . The potential is positive definite and hence the abso-
lute minimum occurs when Fi = 0. The supersymmetric transformation rules imply
that this absolute minimum is also supersymmetry preserving.∗ It is possible though
to construct a scalar potential in such a way that the Fi’s can not be set to zero si-
multaneously. This can be achieved using a simple renormalizable Lagrangian as first
shown by O’Raifeartaigh [58]. The MSSM coupled directly to such an O’Raifeartaigh
sector will exhibit spontaneous supersymmetry breaking at tree level.

Unfortunately this does not lead to a phenomenologically viable pattern of
supersymmetry-breaking parameters. This can be seen from the following sum rule,
known as the supertrace relation, for particles of spin J [59, 17]

∑
m2

J=0 − 2
∑

m2
J= 1

2

+ 3
∑

m2
J=1 = 0, (3.1)

which is valid in the presence of tree level supersymmetry breaking. The vanishing
of this supertrace is fundamental to tree level soft supersymmetry breaking, as it is
simply the condition that one-loop quadratic divergences cancel.

∗To see this explicitly, consider the vacuum expectation value of the supersymmetric transforma-
tion rules of the fermions: 〈δψ〉 = 〈i(σµε†)∂µφ+ εF 〉. Lorentz invariance forbids a nonzero VEV for
the first term but allows a nonzero VEV for the F term. If 〈F 〉 %= 0, < δψ > %= 0 and supersymmetry
is not preserved.
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Figure 7.2: The presumed schematic structure for supersymmetry breaking.

candidate gauge singlet whose F -term could develop a VEV. Therefore one must ask what effects are
responsible for spontaneous supersymmetry breaking, and how supersymmetry breakdown is “com-
municated” to the MSSM particles. It is very difficult to achieve the latter in a phenomenologically
viable way working only with renormalizable interactions at tree-level, even if the model is extended to
involve new supermultiplets including gauge singlets. First, on general grounds it would be problematic
to give masses to the MSSM gauginos, because the results of section 3 inform us that renormalizable
supersymmetry never has any (scalar)-(gaugino)-(gaugino) couplings that could turn into gaugino mass
terms when the scalar gets a VEV. Second, at least some of the MSSM squarks and sleptons would
have to be unacceptably light, and should have been discovered already. This can be understood from
the existence of sum rules that can be obtained in the same way as eq. (7.1.13) when the restrictions
imposed by flavor symmetries are taken into account. For example, in the limit in which lepton flavors
are conserved, the selectron mass eigenstates ẽ1 and ẽ2 could in general be mixtures of ẽL and ẽR.
But if they do not mix with other scalars, then part of the sum rule decouples from the rest, and one
obtains:

m2
ẽ1 +m2

ẽ2 = 2m2
e, (7.4.1)

which is of course ruled out by experiment. Similar sum rules follow for each of the fermions of the
Standard Model, at tree-level and in the limits in which the corresponding flavors are conserved. In
principle, the sum rules can be evaded by introducing flavor-violating mixings, but it is very difficult to
see how to make a viable model in this way. Even ignoring these problems, there is no obvious reason
why the resulting MSSM soft supersymmetry-breaking terms in this type of model should satisfy
flavor-blindness conditions like eqs. (6.4.4) or (6.4.5).

For these reasons, we expect that the MSSM soft terms arise indirectly or radiatively, rather than
from tree-level renormalizable couplings to the supersymmetry-breaking order parameters. Supersym-
metry breaking evidently occurs in a “hidden sector” of particles that have no (or only very small)
direct couplings to the “visible sector” chiral supermultiplets of the MSSM. However, the two sectors
do share some interactions that are responsible for mediating supersymmetry breaking from the hidden
sector to the visible sector, resulting in the MSSM soft terms. (See Figure 7.2.) In this scenario, the
tree-level squared mass sum rules need not hold, even approximately, for the physical masses of the
visible sector fields, so that a phenomenologically viable superpartner mass spectrum is, in principle,
achievable. As a bonus, if the mediating interactions are flavor-blind, then the soft terms appearing in
the MSSM will automatically obey conditions like eqs. (6.4.4), (6.4.5) and (6.4.6).

There have been two main competing proposals for what the mediating interactions might be.
The first (and historically the more popular) is that they are gravitational. More precisely, they are
associated with the new physics, including gravity, that enters near the Planck scale. In this “gravity-
mediated”, or Planck-scale-mediated supersymmetry breaking (PMSB) scenario, if supersymmetry is
broken in the hidden sector by a VEV 〈F 〉, then the soft terms in the visible sector should be roughly

msoft ∼ 〈F 〉/MP, (7.4.2)

by dimensional analysis. This is because we know that msoft must vanish in the limit 〈F 〉 → 0 where
supersymmetry is unbroken, and also in the limit MP → ∞ (corresponding to GNewton → 0) in which
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do not get. These facts make it plausible that the Higgs scalars in the MSSM get VEVs, while the
squarks and sleptons, having large positive squared mass, do not.

An examination of the RG equations (6.5.29)-(6.5.32), (6.5.34), and (6.5.39)-(6.5.45) reveals that if
the gaugino mass parameters M1, M2, and M3 are non-zero at the input scale, then all of the other soft
terms will be generated too. This implies that models in which gaugino masses dominate over all other
effects in the soft supersymmetry breaking Lagrangian at the input scale can be viable. On the other
hand, if the gaugino masses were to vanish at tree-level, then they would not get any contributions
to their masses at one-loop order; in that case the gauginos would be extremely light and the model
would not be phenomenologically acceptable.

Viable models for the origin of supersymmetry breaking typically make predictions for the MSSM
soft terms that are refinements of eqs. (6.4.4)-(6.4.6). These predictions can then be used as boundary
conditions for the RG equations listed above. In the next section we will study the ideas that go into
making such predictions, before turning to their implications for the MSSM spectrum in section 8.

7 Origins of supersymmetry breaking

7.1 General considerations for spontaneous supersymmetry breaking

In the MSSM, supersymmetry breaking is simply introduced explicitly. However, we have seen that
the soft parameters cannot be arbitrary. In order to understand how patterns like eqs. (6.4.4), (6.4.5)
and (6.4.6) can emerge, it is necessary to consider models in which supersymmetry is spontaneously
broken. By definition, this means that the vacuum state |0〉 is not invariant under supersymmetry

transformations, so Qα|0〉 "= 0 and Q†
α̇|0〉 "= 0. Now, in global supersymmetry, the Hamiltonian

operator H is related to the supersymmetry generators through the algebra eq. (3.1.30):

H = P 0 =
1

4
(Q1Q

†
1 +Q†

1Q1 +Q2Q
†
2 +Q†

2Q2). (7.1.1)

If supersymmetry is unbroken in the vacuum state, it follows that H|0〉 = 0 and the vacuum has zero
energy. Conversely, if supersymmetry is spontaneously broken in the vacuum state, then the vacuum
must have positive energy, since

〈0|H|0〉 = 1

4

(
‖Q†

1|0〉‖
2 + ‖Q1|0〉‖2 + ‖Q†

2|0〉‖
2 + ‖Q2|0〉‖2

)
> 0 (7.1.2)

if the Hilbert space is to have positive norm. If spacetime-dependent effects and fermion condensates
can be neglected, then 〈0|H|0〉 = 〈0|V |0〉, where V is the scalar potential in eq. (3.4.12). Therefore,
supersymmetry will be spontaneously broken if the expectation value of Fi and/or Da does not vanish
in the vacuum state.

If any state exists in which all Fi and Da vanish, then it will have zero energy, implying that
supersymmetry is not spontaneously broken in the true ground state. Conversely, one way to guarantee
spontaneous supersymmetry breaking is to look for models in which the equations Fi = 0 and Da = 0
cannot all be simultaneously satisfied for any values of the fields. Then the true ground state necessarily
has broken supersymmetry, as does the vacuum state we live in (if it is different). However, another
possibility is that the vacuum state in which we live is not the true ground state (which may preserve
supersymmetry), but is instead a higher energy metastable supersymmetry-breaking state with lifetime
at least of order the present age of the universe [126]-[128]. Finite temperature effects can indeed cause
the early universe to prefer the metastable supersymmetry-breaking local minimum of the potential
over the supersymmetry-breaking global minimum [129]. Scalar potentials for the three possibilities
are illustrated qualitatively in Figure 7.1.

Regardless of whether the vacuum state is stable or metastable, the spontaneous breaking of a
global symmetry always implies a massless Nambu-Goldstone mode with the same quantum numbers
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Figure 7.2: The presumed schematic structure for supersymmetry breaking.

candidate gauge singlet whose F -term could develop a VEV. Therefore one must ask what effects are
responsible for spontaneous supersymmetry breaking, and how supersymmetry breakdown is “com-
municated” to the MSSM particles. It is very difficult to achieve the latter in a phenomenologically
viable way working only with renormalizable interactions at tree-level, even if the model is extended to
involve new supermultiplets including gauge singlets. First, on general grounds it would be problematic
to give masses to the MSSM gauginos, because the results of section 3 inform us that renormalizable
supersymmetry never has any (scalar)-(gaugino)-(gaugino) couplings that could turn into gaugino mass
terms when the scalar gets a VEV. Second, at least some of the MSSM squarks and sleptons would
have to be unacceptably light, and should have been discovered already. This can be understood from
the existence of sum rules that can be obtained in the same way as eq. (7.1.13) when the restrictions
imposed by flavor symmetries are taken into account. For example, in the limit in which lepton flavors
are conserved, the selectron mass eigenstates ẽ1 and ẽ2 could in general be mixtures of ẽL and ẽR.
But if they do not mix with other scalars, then part of the sum rule decouples from the rest, and one
obtains:

m2
ẽ1 +m2

ẽ2 = 2m2
e, (7.4.1)

which is of course ruled out by experiment. Similar sum rules follow for each of the fermions of the
Standard Model, at tree-level and in the limits in which the corresponding flavors are conserved. In
principle, the sum rules can be evaded by introducing flavor-violating mixings, but it is very difficult to
see how to make a viable model in this way. Even ignoring these problems, there is no obvious reason
why the resulting MSSM soft supersymmetry-breaking terms in this type of model should satisfy
flavor-blindness conditions like eqs. (6.4.4) or (6.4.5).

For these reasons, we expect that the MSSM soft terms arise indirectly or radiatively, rather than
from tree-level renormalizable couplings to the supersymmetry-breaking order parameters. Supersym-
metry breaking evidently occurs in a “hidden sector” of particles that have no (or only very small)
direct couplings to the “visible sector” chiral supermultiplets of the MSSM. However, the two sectors
do share some interactions that are responsible for mediating supersymmetry breaking from the hidden
sector to the visible sector, resulting in the MSSM soft terms. (See Figure 7.2.) In this scenario, the
tree-level squared mass sum rules need not hold, even approximately, for the physical masses of the
visible sector fields, so that a phenomenologically viable superpartner mass spectrum is, in principle,
achievable. As a bonus, if the mediating interactions are flavor-blind, then the soft terms appearing in
the MSSM will automatically obey conditions like eqs. (6.4.4), (6.4.5) and (6.4.6).

There have been two main competing proposals for what the mediating interactions might be.
The first (and historically the more popular) is that they are gravitational. More precisely, they are
associated with the new physics, including gravity, that enters near the Planck scale. In this “gravity-
mediated”, or Planck-scale-mediated supersymmetry breaking (PMSB) scenario, if supersymmetry is
broken in the hidden sector by a VEV 〈F 〉, then the soft terms in the visible sector should be roughly

msoft ∼ 〈F 〉/MP, (7.4.2)

by dimensional analysis. This is because we know that msoft must vanish in the limit 〈F 〉 → 0 where
supersymmetry is unbroken, and also in the limit MP → ∞ (corresponding to GNewton → 0) in which
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candidate gauge singlet whose F -term could develop a VEV. Therefore one must ask what effects are
responsible for spontaneous supersymmetry breaking, and how supersymmetry breakdown is “com-
municated” to the MSSM particles. It is very difficult to achieve the latter in a phenomenologically
viable way working only with renormalizable interactions at tree-level, even if the model is extended to
involve new supermultiplets including gauge singlets. First, on general grounds it would be problematic
to give masses to the MSSM gauginos, because the results of section 3 inform us that renormalizable
supersymmetry never has any (scalar)-(gaugino)-(gaugino) couplings that could turn into gaugino mass
terms when the scalar gets a VEV. Second, at least some of the MSSM squarks and sleptons would
have to be unacceptably light, and should have been discovered already. This can be understood from
the existence of sum rules that can be obtained in the same way as eq. (7.1.13) when the restrictions
imposed by flavor symmetries are taken into account. For example, in the limit in which lepton flavors
are conserved, the selectron mass eigenstates ẽ1 and ẽ2 could in general be mixtures of ẽL and ẽR.
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ẽ1 +m2
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gravity becomes irrelevant. For msoft of order a few hundred GeV, one would therefore expect that
the scale associated with the origin of supersymmetry breaking in the hidden sector should be roughly√
〈F 〉 ∼ 1010 or 1011 GeV.
A second possibility is that the flavor-blind mediating interactions for supersymmetry breaking are

the ordinary electroweak and QCD gauge interactions. In this gauge-mediated supersymmetry breaking
(GMSB) scenario, the MSSM soft terms come from loop diagrams involving some messenger particles.
The messengers are new chiral supermultiplets that couple to a supersymmetry-breaking VEV 〈F 〉,
and also have SU(3)C × SU(2)L × U(1)Y interactions, which provide the necessary connection to the
MSSM. Then, using dimensional analysis, one estimates for the MSSM soft terms

msoft ∼
αa

4π

〈F 〉
Mmess

(7.4.3)

where the αa/4π is a loop factor for Feynman diagrams involving gauge interactions, and Mmess is a
characteristic scale of the masses of the messenger fields. So ifMmess and

√
〈F 〉 are roughly comparable,

then the scale of supersymmetry breaking can be as low as about
√
〈F 〉 ∼ 104 GeV (much lower than

in the gravity-mediated case!) to give msoft of the right order of magnitude.

7.5 The goldstino and the gravitino

As shown in section 7.1, the spontaneous breaking of global supersymmetry implies the existence of a
massless Weyl fermion, the goldstino. The goldstino is the fermionic component of the supermultiplet
whose auxiliary field obtains a VEV.

We can derive an important property of the goldstino by considering the form of the conserved
supercurrent eq. (3.4.13). Suppose for simplicity† that the only non-vanishing auxiliary field VEV is
〈F 〉 with goldstino superpartner G̃. Then the supercurrent conservation equation tells us that

0 = ∂µJ
µ
α = −i〈F 〉(σµ∂µG̃

†)α + ∂µj
µ
α + . . . (7.5.1)

where jµα is the part of the supercurrent that involves all of the other supermultiplets, and the ellipses
represent other contributions of the goldstino supermultiplet to ∂µJµ

α , which we can ignore. [The first
term in eq. (7.5.1) comes from the second term in eq. (3.4.13), using the equation of motion Fi = −W ∗

i

for the goldstino’s auxiliary field.] This equation of motion for the goldstino field allows us to write an
effective Lagrangian

Lgoldstino = iG̃†σµ∂µG̃− 1

〈F 〉 (G̃∂µj
µ + c.c.), (7.5.2)

which describes the interactions of the goldstino with all of the other fermion-boson pairs [144]. In par-
ticular, since jµα = (σνσµψi)α∂νφ∗i−σνσρσµλ†aF a

νρ/2
√
2+ . . ., there are goldstino-scalar-chiral fermion

and goldstino-gaugino-gauge boson vertices as shown in Figure 7.3. Since this derivation depends only
on supercurrent conservation, eq. (7.5.2) holds independently of the details of how supersymmetry
breaking is communicated from 〈F 〉 to the MSSM sector fields (φi,ψi) and (λa, Aa). It may appear
strange at first that the interaction couplings in eq. (7.5.2) get larger in the limit 〈F 〉 goes to zero.
However, the interaction term G̃∂µjµ contains two derivatives, which turn out to always give a kine-
matic factor proportional to the squared-mass difference of the superpartners when they are on-shell,
i.e. m2

φ−m2
ψ and m2

λ−m2
A for Figures 7.3a and 7.3b respectively. These can be non-zero only by virtue

of supersymmetry breaking, so they must also vanish as 〈F 〉 → 0, and the interaction is well-defined in
that limit. Nevertheless, for fixed values of m2

φ −m2
ψ and m2

λ −m2
A, the interaction term in eq. (7.5.2)

can be phenomenologically important if 〈F 〉 is not too large [144]-[147].

†More generally, if supersymmetry is spontaneously broken by VEVs for several auxiliary fields Fi and Da, then one
should make the replacement 〈F 〉 → (

∑
i
|〈Fi〉|2 + 1

2

∑
a
〈Da〉2)1/2 everywhere in the following.
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supercurrent eq. (3.4.13). Suppose for simplicity† that the only non-vanishing auxiliary field VEV is
〈F 〉 with goldstino superpartner G̃. Then the supercurrent conservation equation tells us that

0 = ∂µJ
µ
α = −i〈F 〉(σµ∂µG̃

†)α + ∂µj
µ
α + . . . (7.5.1)

where jµα is the part of the supercurrent that involves all of the other supermultiplets, and the ellipses
represent other contributions of the goldstino supermultiplet to ∂µJµ

α , which we can ignore. [The first
term in eq. (7.5.1) comes from the second term in eq. (3.4.13), using the equation of motion Fi = −W ∗

i

for the goldstino’s auxiliary field.] This equation of motion for the goldstino field allows us to write an
effective Lagrangian

Lgoldstino = iG̃†σµ∂µG̃− 1

〈F 〉 (G̃∂µj
µ + c.c.), (7.5.2)

which describes the interactions of the goldstino with all of the other fermion-boson pairs [144]. In par-
ticular, since jµα = (σνσµψi)α∂νφ∗i−σνσρσµλ†aF a

νρ/2
√
2+ . . ., there are goldstino-scalar-chiral fermion

and goldstino-gaugino-gauge boson vertices as shown in Figure 7.3. Since this derivation depends only
on supercurrent conservation, eq. (7.5.2) holds independently of the details of how supersymmetry
breaking is communicated from 〈F 〉 to the MSSM sector fields (φi,ψi) and (λa, Aa). It may appear
strange at first that the interaction couplings in eq. (7.5.2) get larger in the limit 〈F 〉 goes to zero.
However, the interaction term G̃∂µjµ contains two derivatives, which turn out to always give a kine-
matic factor proportional to the squared-mass difference of the superpartners when they are on-shell,
i.e. m2

φ−m2
ψ and m2

λ−m2
A for Figures 7.3a and 7.3b respectively. These can be non-zero only by virtue

of supersymmetry breaking, so they must also vanish as 〈F 〉 → 0, and the interaction is well-defined in
that limit. Nevertheless, for fixed values of m2

φ −m2
ψ and m2

λ −m2
A, the interaction term in eq. (7.5.2)

can be phenomenologically important if 〈F 〉 is not too large [144]-[147].

†More generally, if supersymmetry is spontaneously broken by VEVs for several auxiliary fields Fi and Da, then one
should make the replacement 〈F 〉 → (

∑
i
|〈Fi〉|2 + 1

2

∑
a
〈Da〉2)1/2 everywhere in the following.
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Figure 1: Value of mh in mGMSB and in mAMSB versus Λ and m3/2 from [40].

In the mSUGRA/CMSSM model, requiring a Higgs mass of about 125GeV pushes the best fit point in
m0 and m 1

2
space into the multi-TeV range [113] and makes global fits of the model to data increasingly

difficult [115, 116]. This has provided motivation for extending the MSSM with gauge singlets [117, 118] or
vector-like matter [119] both of which allow for somewhat heavier values of mh.

While the experimental uncertainty of the mass has shrunken to about 0.5GeV, a considerable theoretical
uncertainty needs to be taken into account when comparing this number to Higgs mass predictions calculated
from SUSY parameters. We therefore consider Higgs masses in the range of 122−128GeV to be in agreement
with current observations.

Although the interpretation of the 125GeV particle as the light, CP -even Higgs boson h is the most obvious
one, it is not the only possibility. With the current precision on the signal strengths and the current limits
on the heavy Higgs bosons and SUSY particles, the heavy CP -even Higgs boson, H , could be SM-like and
the one observed at the LHC [114, 120, 121, 122].

3.2 Review of sparticle searches at LHC

3.2.1 Gluinos and first/second generation squarks

The ATLAS and CMS collaborations have searched for multi-jet+Emiss
T events arising from gluino and squark

pair production in 20 fb−1 of data taken at
√
s = 8TeV [123, 124]. In a simplified squark-gluino-LSP model,

they exclude up to mg̃ <
∼ 1.4TeV in the limit of very heavy squark masses, while mg̃ <

∼ 1.7TeV is excluded
for mq̃ # mg̃. Here, mq̃ refers to a generic first generation squark mass scale, since these are the ones whose
production rates depend strongly on valence quark PDFs in the proton.

If the gluino decays dominantly via third generation squarks, the gluino mass limits are somewhat weaker,
typically in the range of 1.0 to 1.2TeV, again depending on the exact decay chain [125, 126, 127, 128, 129, 130].
Similar limits have been found for the case of intermediate charginos [123].

It has been shown that these limits get considerable weaker if not all squarks are mass degenerate or in case
of compressed spectra. In the latter case, the best sensitivity is often obtained from mono-jet searches [131],
and limits on squark masses can reduce to as low as 340GeV.
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Supergravity
Non-Minimal and Non-Universal Supersymmetry

2. Elements of a SUGRA theory

As indicated in Figs. 1-3 the superpotential and Kahler potential [4] have the form

W = Whid + Wobs

K = Khid + Kobs (1)

and the Kahler function

G = K/M2
P + ln |W/M3

P |2 (2)

when inserted into the F-terms of the SUGRA potential

VF = M4
P eG[Gi(G−1)j

iGj − 3] (3)

where Gi = δG
δφi

, Gi = δG
δφ∗i , (G−1)k

i Gj
k = δj

i , leads to a hidden sector SUSY breaking

order parameter Fi = −M2
P eG/2(G−1)j

iGj and a gravitino mass

m2
3/2 =

1

3M2
P

< Ki
jFiF

∗j >= M2
P e<G> (4)

where the last equality assumes < VF >= 0. Terms in the expansion of VF then
lead to soft SUSY breaking masses in the observable sector depending on the details
of the Kahler potential. The common feature of the models we consider is that the
gravitino mass is m3/2 ∼ TeV which corresponds to a SUSY breaking scale in the
hidden sector of < Fi >∼ (3 × 1010GeV )2.

In minimal SUGRA the Kahler potential is postulated to have the form

K = Khid + Q̃∗iQ̃i + . . . (5)

where Q̃i represents one of the squarks or sleptons, which are thereby assumed
to have diagonal metric and minimal kinetic terms. This results in universal soft
scalar masses

Vsoft = m2
0(Q̃

∗iQ̃i + . . .) (6)

where m2
0 = m2

3/2, and universal soft trilinear parameters of order m3/2 proportional
to the Yukawa couplings in the superpotential. If the gauge kinetic functions fa are
independent of a then this results in universal gaugino masses M1/2 of order m3/2

at high energies.
In string theory the hidden sector consists of the dilaton S and moduli Ti, which

get vacuum expectation values (VEVs) of order MP . Although the string mecha-
nism of SUSY breaking is unclear it may be parametrised in terms of the F-terms
of S, Ti [7],

FS =
√

3m3/2(S + S∗) sin θe−iγS

F i =
√

3m3/2(Ti + T ∗

i ) cos θΘie
−iγi (7)
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3.5.3 Minimal supergravity

This model is obtained by assuming universal gauge kinetic functions for the three
SM gauge groups, with tree level gaugino mass generation, and by assuming that the
supergravity Kähler potential has the “canonical” form:

K(Φi) =
∑

i

|Φi|2 , (3.18)

where the label i runs over all the MSSM chiral superfields and at least those hid-
den superfields which participate in supersymmetry breaking. The assumption of a
canonical Kähler potential produces (at the high scale) universal soft scalar masses,
and a common overall soft trilinear parameter [75]. The resulting model of the
Lsoft parameters is often labeled as the minimal supergravity (mSUGRA) model
[43]. A subset of the mSUGRA parameter space gives low energy models that sat-
isfy the basic phenomenological requirements (e.g. electroweak symmetry break-
ing) incorporated into what is known as the constrained MSSM (CMSSM) [106].
The CMSSM is by far the most popular scenario for Lsoft amongst phenomenolo-
gists and experimenters; more phenomenological analyses have been performed for
mSUGRA/CMSSM than for all other scenarios combined.

The complete list of mSUGRA soft parameters is:

• a common gaugino mass m1/2

• a common soft scalar mass m0

• a common soft trilinear parameter A0 (Ãij = A0Yij)

• a bilinear term b0

These parameters plus the µ term are often traded for the mass of the Z boson
mZ , tanβ, and the sign of µ relative to m1/2 or A0 by imposing consistent radiative
electroweak symmetry breaking, as will be discussed in Section 4.1. The origin of µ
and b is quite model-dependent, and hence it is can be useful to trade their mag-
nitudes for mZ and tanβ to implement the phenomenologically desirable radiative
electroweak symmetry breaking mechanism. This, however, does not constrain the
phases of the parameters, or the overall signs (if the parameters are real). The phase
of b can always be consistently rotated to zero using the PQ symmetry, while the
phase of µ relative to the other soft parameters is undetermined. These issues will
be discussed in Section 4.1. In general the PQ and R symmetries allow only two
irremovable phases. The two reparameterization invariant combinations are often
written as Arg(A∗

0m1/2) and Arg(A0B∗).
The alert reader will have already objected that the assumption of a canonical

supergravity Kähler potential has very poor theoretical motivation, since from (3.11)
we see that this assumption requires that, with supergravity turned off, we have a

39

SUGRA potential can be negative

Lectures by Nilles

Gravitino problems:
1. Over-production of dark matter
2. Late (>1s) decaying gravitinos

Gravitino solutions:
1. Low reheat TR<105 GeV

2.Heavy gravitinos>5 TeV  
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FIG. 1: The SUSY particle spectra for the benchmark points corresponding to SPS 1a, SPS 1b, SPS 2 and SPS 3 as
obtained with ISAJET 7.58 (see Ref. [33]).

two-points lie in the “bulk” of the cosmological region. For the collider phenomenology in particular the
τ -rich neutralino and chargino decays are important.

SPS 1a:

Point:

m0 = 100 GeV, m1/2 = 250 GeV, A0 = −100 GeV, tan β = 10, µ > 0.

Slope:

m0 = −A0 = 0.4 m1/2, m1/2 varies.

The point is similar to BDEGMOPW point B. The slope equals model line A [4].
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τ -rich neutralino and chargino decays are important.
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Point:

m0 = 100 GeV, m1/2 = 250 GeV, A0 = −100 GeV, tan β = 10, µ > 0.
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LHC14 [159]. The Higgs bosons, apart from the light CP -even one, can most probably not be observed at
the LHC in this low tanβ and mA region [160].

At the ILC with
√
s " 0.5TeV, we expect e+e− → Ah, ZH to occur at observable rates. As

√
s rises

beyond 600GeV, AH and H+H− production becomes accessible while mixed χ̃0
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0
2 pair production, though

accessible, is suppressed. At 1TeV, χ̃±
1 and χ̃0

2 pairs will be produced in addition. Due to heavy sleptons and
the sizable mass gap between χ̃±

1 , χ̃
0
2 and the χ̃0

1, one expects electroweakino decays to realW
± and Z bosons,

very similar to the “Point 5” benchmark studied in the Letter of Intents of the ILC experiments [161, 162].

4.4 mSUGRA/CMSSM

Large portions of mSUGRA model parameter space are now ruled out by direct searches for gluino and
squark production at LHC8. In addition, if one requires mh " 124− 126GeV, then even larger portions of
parameter space are excluded: m1/2 < 1TeV (corresponding to mg̃ < 2.2TeV) for low m0 and m0 < 2.5TeV
(corresponding to mq̃ < 2.5TeV) for low m1/2 [113]. These tight constraints rule out almost all of the co-
annihilation and A-funnel annihilation regions [113, 40]. The HB/FP region moves to very largem0 >

∼ 10TeV
since now |A0| must be large to accommodate the rather large value of mh. Some remaining dark matter
allowed parameter space thus remains.

An example is provided by an mSUGRA benchmark point with m0 = 10TeV, m1/2 = 0.8TeV, A0 =
−5.45TeV and tanβ = 15. The masses are shown in Table 1 and in Figure 5 for all sparticles (left), and for
masses below 500GeV only (right).
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Figure 5: Left: Full spectrum of the mSugra benchmark. Right: Zoom into the spectrum below 500GeV.

At this point, mg̃ = 2130GeV and mq̃ " 10TeV so colored sparticles may be beyond LHC14 reach. The
most promising signature for the LHC may again be pp → χ̃+

1 χ̃
0
2 → W ∗h∗ + Emiss

T .

However, µ " 234GeV and so mχ̃±
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= 248GeV, mχ̃0
2
= 247GeV and mχ̃0
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although still fine-tuned in the EW sector (with ∆EW = 321 due to mt̃1,2 " 6− 8TeV)– would allow χ̃+
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4.5 Non-universal gaugino masses (NUGM)
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Gluinos are produced in pairs via the 
strong interaction 

Then decay weakly into:
Quarks, Leptons 
and Dark Matter Dark Matter

Dark Matter



Gluino pair production
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FIG. 5. The tree-level cross section for gluino pair production as a function of the gluino mass, mg̃. The solid (or dashed)
lines represent, from bottom to top, the LHC at 7 TeV (black), 8 TeV (red), and 14 TeV (blue). The CTEQ6LL set is used
for PDFs. The QCD scale, Q, is set to the gluino mass, Q = mg̃, for the solid lines and to the centre of mass energy, Q =

√
ŝ,

for the dashed lines. The scale dependence of the cross section is an effect of the uncertainty of the leading order calculation.
Including NLO corrections is known to bring up the cross section by at least a factor 2 [30], so we are underestimating the
production rate for gluinos slightly with this leading order calculation.

Another important feature of the long decay chains of the E6SSM is the increase in lepton as well as jet multiplicity,
as shown in Fig. 7, again for the benchmarks MSSM and E6SSM-I. This feature allows us to rely on multi-lepton
requirements for background reduction rather than cuts on missing energy. There is a significant loss of statistics by
using this strategy, however it turns out to be the most favourable channel for discovery of gluinos with long decay
chains and indeed a channel in which the E6SSM is largely dominant compared to the MSSM.

C. Searches at
√
s = 7 TeV LHC

There has not been any indications of SUSY from the LHC during its run at
√
s = 7 TeV. We have investigated

different SUSY search channels at this energy to understand the status of our benchmarks and what limits can be put
on the E6SSM and which channels we expect to be the most favourable for discovery and distinguishing the models.
We compare our signals with published backgrounds used by CMS and ATLAS at this energy. We have scaled all the
channels to an integrated luminosity of 10 fb−1 for comparison, which is approximately the amount of 7 TeV data

Nevents = σ ×
�

Ldt

= σ × 20fb−1

√
s = 8TeV

Need to consider branching 
ratios into observable final 

states, efficiency, 
backgrounds...not so easy...

Belyaev, Svantesson, SFK
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Inclusive searches for squark and gluino production 
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- Powerful for gluino pair production with many jets 

- Complementary to 2-6 jets analysis, uses jet only 

trigger allows lower MET cut (~50GeV) 

-Data driven multi-jet background method (MET 

significance independent of jet multiplicity) 

- Jet pT > 50 (80) GeV, MET sig. > 4 GeV!   

- SRs w/wo b-tags and w/wo fat jets 
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Example of cascade 
decays via charginos

Two extra W’s in the 
final state ->leptons
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Top production background

Figure 6.3: An example of the type of processes we will be interested in in order to ascertain

more information on the top quark such as its mass. This an example of lepton+jets decay.

with branching ratios (calculated using CalcHEP),

B(W+ → �+ν�+) ∼ 0.1 ∀ � ∈ {e, µ, τ},

B(W+ → d̄u) ∼ 0.3,

B(W+ → d̄c) ∼ 0.02,

B(W+ → s̄u) ∼ 0.02,

B(W+ → s̄c) ∼ 0.3,

B(W+ → b̄u) ∼ 4× 10
−6,

B(W+ → b̄c) ∼ 5× 10
−4.

(6.8)

As is clear from (6.8), there are two channels which are essentially negligible and this is to do

with the supressed values of the CKM matrix elements |Vub| and |Vcb|, yet the other paths must

be considered in all further calculations and analyses. For a diagrammatic example of the decay

procedure which we will be analysing see Figure 6.3. If we now take in the whole picture in

which our quarks from the protons collide and form a top-antitop pair, we can see that, after

decaying the top quarks and the W bosons, our ‘end’ particles will form three categories. The

first will be the so-called dilepton channel in which both the W+
from the top decay and the

W−
from the antitop decay will both decay into a pair of leptons (�, ν�) giving us the process,

tt̄ → b+ b̄+ �+1 + �−2 + ν�1 + ν̄�2 . (6.9)

The second possible category of decay path is the lepton + jet channel, which, as is evident

from its name, requires either the W+
or W−

to decay into a quark-antiquark pair and the

28

Copious source 
of leptons + jets 

+ missing 
energy
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Closing the charm window



Figure 7.2: Gluino production from proton-proton collision with subsequent decays to two

bottom type quarks and a neutralino each side of the decay.

with all data fully extractable from the CalcHEP[1] simulations, we have the benefit of being

able to calculate the invariant mass data to ascertain the mass of the gluino, mg̃. This value

can then be used to compare against the values of mg̃ determined from other mass variable

distributions. Staying with the values of the SUSY parameters of Appendix A, the mass of the

neutralino, χ̃0
1, is given to be,

mχ̃0
1
= 84.00GeV. (7.7)

Assuming the massless limit for all b-quarks, we have, by equation (6.15),

m2
I,g̃ = m2

χ̃0
1
+ 2

�
|pb1 ||pb2 |(1− cos θb1b2) + |pb2 ||pχ̃0

1
|(1− cos θb2χ̃0

1
) + |pχ̃0

1
||pb1 |(1− cos θχ̃0

1b1
)

�
,

(7.8)

where the subscripts on the bottom quark labels distinguish the quarks from one another, i.e. it

is unrelated to the SUSY b̃1 and b̃2 eigenstates. The angle θij represents the true angle between

the momentum vectors of the particles. Using data simulated within CalcHEP[1] we’re able to

use (7.8) to plot the invariant mass distribution (see Figure 7.3). Figure 7.3 easily shows that

the gluino mass (as given by the spike peak) is mg̃ = 840±1GeV, with the error stemming from

the bin-size of the distribution.

The value of the gluino mass within SUSY models is strictly approximate to the value of

M3 which is set by the values in Appendix A to 800GeV. The invariant mass distribution thus

yields a value compatible with our expectations and with theory. We are now at liberty, unlike

true experimentalists, to cross check further obtained values of mg̃ with this one.
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4b-jet+missing energy 
final state

Gluino mediated stop 
production obtained 

by replacing b➪t

Gluino mediated 
sbottom production



Gluinos at 1450 GeV not excluded
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MSUGRA/CMSSM 0 2-6 jets Yes 20.3 m(q̃)=m(g̃ ) ATLAS-CONF-2013-0471.7 TeVq̃, g̃

MSUGRA/CMSSM 1 e,µ 3-6 jets Yes 20.3 any m(q̃) ATLAS-CONF-2013-0621.2 TeVg̃

MSUGRA/CMSSM 0 7-10 jets Yes 20.3 any m(q̃) 1308.18411.1 TeVg̃

q̃q̃, q̃→qχ̃
0
1 0 2-6 jets Yes 20.3 m(χ̃

0
1)=0 GeV ATLAS-CONF-2013-047740 GeVq̃

g̃ g̃ , g̃→qq̄χ̃
0
1 0 2-6 jets Yes 20.3 m(χ̃

0
1)=0 GeV ATLAS-CONF-2013-0471.3 TeVg̃

g̃ g̃ , g̃→qqχ̃
±
1→qqW ±χ̃01 1 e,µ 3-6 jets Yes 20.3 m(χ̃

0
1)<200 GeV, m(χ̃

±
)=0.5(m(χ̃

0
1 )+m(g̃ )) ATLAS-CONF-2013-0621.18 TeVg̃

g̃ g̃ , g̃→qq(""/"ν/νν)χ̃
0
1 2 e,µ 0-3 jets - 20.3 m(χ̃

0
1)=0 GeV ATLAS-CONF-2013-0891.12 TeVg̃

GMSB ("̃ NLSP) 2 e,µ 2-4 jets Yes 4.7 tanβ<15 1208.46881.24 TeVg̃

GMSB ("̃ NLSP) 1-2 τ 0-2 jets Yes 20.7 tanβ >18 ATLAS-CONF-2013-0261.4 TeVg̃

GGM (bino NLSP) 2 γ - Yes 4.8 m(χ̃
0
1)>50 GeV 1209.07531.07 TeVg̃

GGM (wino NLSP) 1 e, µ + γ - Yes 4.8 m(χ̃
0
1)>50 GeV ATLAS-CONF-2012-144619 GeVg̃

GGM (higgsino-bino NLSP) γ 1 b Yes 4.8 m(χ̃
0
1)>220 GeV 1211.1167900 GeVg̃

GGM (higgsino NLSP) 2 e, µ (Z ) 0-3 jets Yes 5.8 m(H̃)>200 GeV ATLAS-CONF-2012-152690 GeVg̃

Gravitino LSP 0 mono-jet Yes 10.5 m(g̃ )>10−4 eV ATLAS-CONF-2012-147645 GeVF1/2 scale

g̃→bb̄χ̃
0
1 0 3 b Yes 20.1 m(χ̃

0
1)<600 GeV ATLAS-CONF-2013-0611.2 TeVg̃

g̃→tt̄ χ̃
0
1 0 7-10 jets Yes 20.3 m(χ̃

0
1) <350 GeV 1308.18411.1 TeVg̃

g̃→tt̄ χ̃
0
1 0-1 e,µ 3 b Yes 20.1 m(χ̃

0
1)<400 GeV ATLAS-CONF-2013-0611.34 TeVg̃

g̃→bt̄ χ̃
+
1 0-1 e,µ 3 b Yes 20.1 m(χ̃

0
1)<300 GeV ATLAS-CONF-2013-0611.3 TeVg̃

b̃1b̃1, b̃1→bχ̃
0
1 0 2 b Yes 20.1 m(χ̃

0
1)<90 GeV 1308.2631100-620 GeVb̃1

b̃1b̃1, b̃1→tχ̃
±
1 2 e,µ (SS) 0-3 b Yes 20.7 m(χ̃

±
1 )=2 m(χ̃

0
1) ATLAS-CONF-2013-007275-430 GeVb̃1

t̃1 t̃1(light), t̃1→bχ̃
±
1 1-2 e,µ 1-2 b Yes 4.7 m(χ̃

0
1)=55 GeV 1208.4305, 1209.2102110-167 GeVt̃1

t̃1 t̃1(light), t̃1→Wbχ̃
0
1 2 e,µ 0-2 jets Yes 20.3 m(χ̃

0
1) =m(t̃1)-m(W )-50 GeV, m(t̃1)<<m(χ̃

±
1 ) ATLAS-CONF-2013-048130-220 GeVt̃1

t̃1 t̃1(medium), t̃1→tχ̃
0
1 2 e,µ 2 jets Yes 20.3 m(χ̃

0
1)=0 GeV ATLAS-CONF-2013-065225-525 GeVt̃1

t̃1 t̃1(medium), t̃1→bχ̃
±
1 0 2 b Yes 20.1 m(χ̃

0
1)<200 GeV, m(χ̃

±
1 )-m(χ̃

0
1 )=5 GeV 1308.2631150-580 GeVt̃1

t̃1 t̃1(heavy), t̃1→tχ̃
0
1 1 e,µ 1 b Yes 20.7 m(χ̃

0
1)=0 GeV ATLAS-CONF-2013-037200-610 GeVt̃1

t̃1 t̃1(heavy), t̃1→tχ̃
0
1 0 2 b Yes 20.5 m(χ̃

0
1)=0 GeV ATLAS-CONF-2013-024320-660 GeVt̃1

t̃1 t̃1, t̃1→cχ̃
0
1 0 mono-jet/c-tag Yes 20.3 m(t̃1)-m(χ̃

0
1)<85 GeV ATLAS-CONF-2013-06890-200 GeVt̃1

t̃1 t̃1(natural GMSB) 2 e, µ (Z ) 1 b Yes 20.7 m(χ̃
0
1)>150 GeV ATLAS-CONF-2013-025500 GeVt̃1

t̃2 t̃2, t̃2→t̃1 + Z 3 e, µ (Z ) 1 b Yes 20.7 m(t̃1)=m(χ̃
0
1)+180 GeV ATLAS-CONF-2013-025271-520 GeVt̃2

"̃L,R"̃L,R, "̃→"χ̃01 2 e,µ 0 Yes 20.3 m(χ̃
0
1)=0 GeV ATLAS-CONF-2013-04985-315 GeV#̃

χ̃+1 χ̃
−
1 , χ̃

+
1→"̃ν("ν̃) 2 e,µ 0 Yes 20.3 m(χ̃

0
1)=0 GeV, m("̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1 )) ATLAS-CONF-2013-049125-450 GeVχ̃±

1
χ̃+1 χ̃

−
1 , χ̃

+
1→τ̃ν(τν̃) 2 τ - Yes 20.7 m(χ̃

0
1)=0 GeV, m(τ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1)) ATLAS-CONF-2013-028180-330 GeVχ̃±

1
χ̃±1 χ̃

0
2→"̃Lν"̃L"(ν̃ν), "ν̃"̃L"(ν̃ν) 3 e,µ 0 Yes 20.7 m(χ̃

±
1 )=m(χ̃

0
2), m(χ̃

0
1)=0, m("̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1 )) ATLAS-CONF-2013-035600 GeVχ̃±

1 , χ̃
0
2

χ̃±1 χ̃
0
2→W χ̃

0
1Z χ̃

0
1 3 e,µ 0 Yes 20.7 m(χ̃

±
1 )=m(χ̃

0
2 ), m(χ̃

0
1)=0, sleptons decoupled ATLAS-CONF-2013-035315 GeVχ̃±

1 , χ̃
0
2

χ̃±1 χ̃
0
2→W χ̃

0
1h χ̃

0
1 1 e,µ 2 b Yes 20.3 m(χ̃

±
1 )=m(χ̃

0
2 ), m(χ̃

0
1)=0, sleptons decoupled ATLAS-CONF-2013-093285 GeVχ̃±

1 , χ̃
0
2

Direct χ̃
+
1 χ̃
−
1 prod., long-lived χ̃

±
1 Disapp. trk 1 jet Yes 20.3 m(χ̃

±
1 )-m(χ̃

0
1 )=160 MeV, τ(χ̃

±
1 )=0.2 ns ATLAS-CONF-2013-069270 GeVχ̃±

1

Stable, stopped g̃ R-hadron 0 1-5 jets Yes 22.9 m(χ̃
0
1)=100 GeV, 10 µs<τ(g̃)<1000 s ATLAS-CONF-2013-057832 GeVg̃

GMSB, stable τ̃, χ̃
0
1→τ̃(ẽ, µ̃)+τ(e, µ) 1-2 µ - - 15.9 10<tanβ<50 ATLAS-CONF-2013-058475 GeVχ̃0

1

GMSB, χ̃
0
1→γG̃ , long-lived χ̃

0
1 2 γ - Yes 4.7 0.4<τ(χ̃

0
1)<2 ns 1304.6310230 GeVχ̃0

1

q̃q̃, χ̃
0
1→qqµ (RPV) 1 µ, displ. vtx - - 20.3 1.5 <cτ<156 mm, BR(µ)=1, m(χ̃

0
1)=108 GeV ATLAS-CONF-2013-0921.0 TeVq̃

LFV pp→ν̃τ + X , ν̃τ→e + µ 2 e,µ - - 4.6 λ′311=0.10, λ132=0.05 1212.12721.61 TeVν̃τ
LFV pp→ν̃τ + X , ν̃τ→e(µ) + τ 1 e,µ + τ - - 4.6 λ′311=0.10, λ1(2)33=0.05 1212.12721.1 TeVν̃τ

Bilinear RPV CMSSM 1 e,µ 7 jets Yes 4.7 m(q̃)=m(g̃ ), cτLSP<1 mm ATLAS-CONF-2012-1401.2 TeVq̃, g̃
χ̃+1 χ̃

−
1 , χ̃

+
1→W χ̃

0
1, χ̃

0
1→ee ν̃µ, eµν̃e 4 e,µ - Yes 20.7 m(χ̃

0
1)>300 GeV, λ121>0 ATLAS-CONF-2013-036760 GeVχ̃±

1

χ̃+1 χ̃
−
1 , χ̃

+
1→W χ̃

0
1, χ̃

0
1→ττν̃e , eτν̃τ 3 e,µ + τ - Yes 20.7 m(χ̃

0
1)>80 GeV, λ133>0 ATLAS-CONF-2013-036350 GeVχ̃±

1

g̃→qqq 0 6-7 jets - 20.3 BR(t)=BR(b)=BR(c)=0% ATLAS-CONF-2013-091916 GeVg̃

g̃→t̃1t, t̃1→bs 2 e,µ (SS) 0-3 b Yes 20.7 ATLAS-CONF-2013-007880 GeVg̃

Scalar gluon pair, sgluon→qq̄ 0 4 jets - 4.6 incl. limit from 1110.2693 1210.4826100-287 GeVsgluon

Scalar gluon pair, sgluon→tt̄ 2 e,µ (SS) 1 b Yes 14.3 ATLAS-CONF-2013-051800 GeVsgluon

WIMP interaction (D5, Dirac χ) 0 mono-jet Yes 10.5 m(χ)<80 GeV, limit of<687 GeV for D8 ATLAS-CONF-2012-147704 GeVM* scale

Mass scale [TeV]10−1 1
√
s = 7 TeV
full data

√
s = 8 TeV

partial data

√
s = 8 TeV
full data

ATLAS SUSY Searches* - 95% CL Lower Limits
Status: SUSY 2013

ATLAS Preliminary∫
L dt = (4.6 - 22.9) fb−1

√
s = 7, 8 TeV

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.



Muon g-2: the only hint for SUSY
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SUSY Flavour



The down squark mass matrix





m2
d̃L

md(Ad − µ tanβ) (∆d
12)LL (∆d

12)LR (∆d
13)LL (∆d

13)LR

m2
d̃R

(∆d
12)RL (∆d

12)RR (∆d
13)RL (∆d

13)RR

m2
s̃L ms(As − µ tanβ) (∆d

23)LL (∆d
23)LR

m2
s̃R (∆d

23)RL (∆d
23)RR

m2
b̃L

mb(Ab − µ tanβ)

m2
b̃R




LHC direct measurement/limits  

In the diagonal down quark basis (Super CKM basis)

Matrix is diagonal corresponds to “minimal flavour violation” 
we say that SUSY is “flavour blind” 

Constrain off-diagonal elements from rare/FC processes

(δdij)LL =
(∆d

ij)LL

md̃iL
md̃jL

(δdij)RR =
(∆d

ij)RR

md̃iR
md̃jR

(δdij)LR =
(∆d

ij)LR

md̃iL
md̃jR



Mass insertion approximation
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Observable SM Prediction MSSM Flavor Content

∆mK ∼ (V ∗
csVcd)2 (δAB)12

ε ∼Im(V ∗
tsVtd)Re(V ∗

csVcd) (δAB)12

ε
′

/ε ∼Im(V ∗
tsVtd) (δAB)12

b → sγ ∼ VtbV ∗
ts (δAB)23

ACP (b → sγ) ∼ αs(mb)
Vub
Vcb

m2
c

m2
b

(δAB)23

∆mBd
∼ (V ∗

tdVtb)2 (δAB)13

∆mBs ∼ (V ∗
tsVtb)2 (δAB)23

ACP (B → ψKS) = sin 2β (δAB)13

ACP (B → φKS) = sin 2β (δAB)23

Table 4: A partial list of flavor-violating observables in the quark sector and their
relation to SM and MSSM parameters. The δs are the mass insertion parameters for
the up- and down-type squark sectors, with AB denoting LL, LR, RL, or RR.
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Observable MSSM Flavor Content

µ → eγ (δAB)12

τ → µγ (δAB)23

τ → eγ (δAB)13

Table 5: A partial list of lepton flavor-violating observables and their relation to
MSSM parameters. The δs should be understood as those arising from the slepton
sector. In each case the SM contribution is identically zero in the absence of right-
handed neutrinos due to the conservation of individual lepton numbers Le, Lµ, and
Lτ .

Typical bounds on the δ13,23 parameters from the B systems are less stringent than
the analogous bounds in the K system [205, 215]. The lone exception is b → sγ,
which generically provides significant constraints on the Lsoft parameter space.

In the leptonic sector, the off-diagonal slepton masses give rise to flavor violating
processes such as µ → eγ, τ → µγ, τ → eγ, τ → µµµ. Therefore, lepton flavor
violating (LFV) processes in principle will also give rise to signals/constraints of the
mass parameters in the lepton sector of the MSSM; see e.g. [246, 247, 205]. A brief
list of such observables is given in Table 5.

The experimental prospects for improving the limits or actually measuring LFV
processes are very promising. The 90% C.L. limits of BR(τ → µγ) < 1.1 × 10−6

[248] and BR(µ → eγ) < 1.2 × 10−11 [249] are particularly stringent in constraining
supersymmetric models. These limits will be lowered in the next 2-3 years as the
present B factories, inevitably producing tau leptons along with the b quarks, will
collect 15-20 times more data and as the new µ → eγ experiment at PSI probes the
branching ratio down to 10−14 [250, 251].

We close this subsection by pointing out that in the large tanβ regime, the above
FCNC constraints must be reevaluated for a number of reasons. One important effect
is that certain diagrams discussed in the general considerations above are tanβ-
enhanced. However, it has recently been realized that additional contributions to
FCNC mediated by Higgs bosons emerge in the large tanβ limit.

67

LFV



Why are the off-diagonal squark 
masses so small?

Maybe not small - just very heavy squarks 
(first and second family)

Some alignment mechanism as in GMSB or 
AMSB

mSUGRA ? But not well motivated...

In general SUGRA need a theory of flavour to 
understand this - involving a family symmetry



Family Symmetry

b

t

c
s

u
d
e

1st family 
(green)

2nd family 
(blue)

3rd family 
(red)

E.g. SU(3) gauged 
family symmetry            

c.f. QCD quark colours
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SU(3) Family Symmetry and Soft Masses 

Yukawas

Soft masses 
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The SUSY CP Problem
! SUSY neutron EDM

! Postulate CP conservation  (e.g.              real)     
with CP is spontaneously broken by flavon vevs

! Trilinear soft

210! "# $

3 3 23 23
0 3 232 2 ...

i j i j

ijA A a a
M M
! ! ! !% &

' ( () *
+ ,

!

A0 , a3 , a23 , real gives real soft masses times complex 
Yukawa elements ! no soft phases at leading order

u dH H-

Abel, Khalil,Lebedev;
Ross,Vives;

Why are SUSY 
phases so 

small?

Antusch, SFK, Malinsky, Ross 



NEW PHYSICS SEARCHES IN FLAVOUR PHYSICS 3

Fig. 1. – Correlation between the branching ratios of Bs → µ+µ− and Bd → µ+µ− in MFV, the
SM4 and four SUSY flavour models. The gray area is ruled out experimentally. The SM point
is marked by a star. Taken from [16].

several non-MFV models: four SUSY flavour models studied in [5] and the SM with 4

generations [12]. This highlights the power of the correlation between Bs → µ+µ− and

Bd → µ+µ− to discriminate between different NP models.

3. – CP violation in Bs mixing

In the SM, CP violation in Bs mixing is a small effect since the relevant combination

of CKM elements has an accidentally small phase,

(2) φs ≡ arg(M12) = 2βs ≡ 2 arg

�
− V ∗

tsVtb

V ∗
csVcb

�
≈ −0.04 .

Recently however, two experimental hints for a possibly large non-SM contribution to φs

have emerged. One concerns the mixing-induced CP asymmetry Sψφ extracted from the

time-dependent CP asymmetry in Bs → J/ψφ decays,

(3) A
s
CP(ψφ, t) ≡

Γ(B̄s(t) → ψφ)− Γ(Bs(t) → ψφ)

Γ(B̄s(t) → ψφ) + Γ(Bs(t) → ψφ)
≈ Sψφ sin(∆Mst) ,

where Sψφ = − sinφs. The other concerns the charge asymmetry ASL in dimuon events

at D0, which can be related to the semileptonic CP asymmetries in flavour-specific Bd

and Bs decays, a
d,s
SL , as [17]

(4) ASL ≈
�
a
d
SL + a

s
SL

�
/2 ,

with O(10%) uncertainties on the coefficients on the right-hand side of (4).

While 2009 results on Sψφ showed a discrepancy with the SM somewhere in the

ballpark of 3 standard deviations [18], 2010 updates seem to be in agreement with the

4. Rare decays 12/42

B0
s → µ+µ−

Find first evidence for B0
s → µ+µ−, at 3.5 σ significance.
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Another 1 fb−1 of data in hand ready to analyse.
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Combined LHCb, CMS result 

!"#

•  The LHCb and CMS results have been combined 

 B (Bs
0!µ+µ-)  =  (2.9 ± 0.7)"10#9  (First observation) 

 B (B0!µ+µ-)  =  (3.6+1.6
-1.4)"10#10 

 

•  Good agreement with SM predictions 
 

[LHCb-CONF-2013-012]  
[CMS-PAS-BPH-13-007] 
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φs results

Determine 68% contour with ψs and difference in lifetimes of B0
s

eigenstates:

based on [arXiv:1107.0266]

Combined results with B0
s → J/ψπ+π− [arXiv:1304.2600]:

φs = 0.01± 0.07± 0.01 rad

So far results show good agreement with SM prediction.
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Fig. 2. – Correlation between the branching ratio of Bs → µ+µ−
and the mixing-induced CP

asymmetry Sψφ in the SM4, the two-Higgs doublet model with flavour blind phases and three

SUSY flavour models. The SM point is marked by a star.

SM at the 1σ level [19, 20], although no combination has been performed yet. The D0

result on ASL deviates by 3.2σ from the SM [21], interestingly pointing in the same

direction as the possible effect in Sψφ(
2
).

If these hints turn out to be genuine signals of NP in Bs mixing, it would have far-

fetching consequences, in particular for theories with MFV. If a theory satisfying MFV

does not have any source of CP violation beyond the CKM phase, a sizable Bs mixing

phase cannot be generated. Even if the MFV theory has flavour-blind phases, this is

nontrivial. While a two-Higgs doublet model with MFV and flavour-blind phases can

generate a sizable φs [23, 24], this possibility is precluded in the MSSM by the impact

of constraints like B → Xsγ and Bs → µ+µ−
[5]. A confirmation of φs deviating

significantly from the value in (2) would thus immediately rule out many well-motivated

theories, including the MFV MSSM.

Another interesting tool to discriminate between NP models is the correlation between

Sψφ and the branching ratio of Bs → µ+µ−
. In many models, sizable deviations from

the SM prediction for φs are tied to the presence of scalar currents, which can also affect
Bs → µ+µ−

. This is the case e.g. for the two-Higgs doublet model with MFV and flavour-

blind phases (2HDMMFV) or for the SUSY flavour model of Agashe and Carone (AC,

[25]). As shown in fig. 2, sizable Sψφ implies a sizable enhancement of BR(Bs → µ+µ−
)

in these models, while the converse is obviously not true. In the SM4, on the other hand,

even the converse statement is true: If Bs → µ+µ−
is found with a rate significantly

enhanced with respect to the SM, this model unambiguously predicts a sizable deviation

also in Sψφ. In yet other models, like in the SU(5) model of [26], both observables can

be enhanced independently of each other, but a simultaneous enhancement is unlikely.

(
2
) After this talk was given, preliminary data on Bs → J/ψφ from the LHCb experiment were

presented [22] also showing a preference for an effect in the same direction, although still with

a small significance.

= − sinφs
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CP mixing angle φs

Find decay common to both B0
s and B̄0

s decays: e.g. B0
s → J/ψφ.

s
B0

s

h+h−

s

J/ψ
c

b
W+

c

s

s
B0

s

h+h−

s

J/ψc

b u, c, t
c

W+

s

1

Weak phase difference between B0
s mixing and B0

s decay, φs , is
predicted to be very small in the SM.

φs = −2arg(VtsV
∗
tb/VcV

∗
cb) = 0.036± 0.002rad, [arXiv : 1106.4041].
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Higgs in MSSM

Potential         V= |F|2 +(D)2 +Vsoft

RGEs from which the perturbativity bounds on λ were obtained.

2 The MSSM

The superpotential of the MSSM is given, in terms of (hatted) superfields, by

W = µĤuĤd + htQ̂3Ĥut̂
c
R − hbQ̂3Ĥdb̂

c
R − hτ L̂3Ĥdτ̂

c
R , (2.3)

in which only the third generation fermions have been included (with possible neutrino Yukawa
couplings have been set to zero), and Q̂3, L̂3 stand for superfields associated with the (t, b) and
(τ, ντ ) SU(2) doublets.

The soft SUSY breaking terms consist of the scalar mass terms for the Higgs and sfermion
scalar fields which, in terms of the fields corresponding to the complex scalar components of the
superfields, are given by

− Lmass = m2
Hu

|Hu|2 +m2
Hd

|Hd|2

+ m2
Q̃3

|Q̃2
3|+m2

t̃R
|t̃2R|+m2

b̃R
|b̃2R|+m2

L̃3
|L̃2

3|+m2
τ̃R |τ̃

2
R| , (2.4)

and the trilinear interactions between the sfermion and Higgs fields,

− Ltril = BµHuHd + htAtQ̃3Hut̃
c
R − hbAbQ̃3Hdb̃

c
R − hτAτ L̃3Hdτ̃

c
R + h.c. . (2.5)

The tree-level MSSM Higgs potential is given by

V0 = m2
1|Hd|2+m2

2|Hu|2−m2
3(HdHu+h.c.)+

g22
8

(
H+

d σaHd +H+
u σaHu

)2
+

g′2

8

(
|Hd|2 − |Hu|2

)2

(2.6)
where g′ =

√
3/5g1, g2 and g1 are the low energy (GUT normalised) SU(2)W and U(1)Y gauge

couplings, m2
1 = m2

Hd
+ µ2, m2

2 = m2
Hu

+ µ2 and m2
3 = −Bµ.

In the MSSM, at the 1-loop level, stops contribute to the Higgs boson mass and three
more parameters become important, the stop soft masses, mQ̃3

and mt̃R
, and the stop mixing

parameter
Xt = At − µ cot β. (2.7)

The dominant one-loop contribution to the Higgs boson mass depends on the geometric mean
of the stop masses, m2

t̃
= mQ̃3

mt̃R
, and is given by,

∆m2
h ≈

3

(4π)2
m4

t

v2

[

ln
m2

t̃

m2
t
+

X2
t

m2
t̃

(

1−
X2

t

12m2
t̃

)]

. (2.8)

The Higgs mass is sensitive to the degree of stop mixing through the second term in the brackets,
and is maximized for |Xt| = Xmax

t =
√
6mt̃, which was referred to as “maximal mixing” above.

The fine-tuning in the MSSM can be simply understood by examining the leading one–loop
correction to the Higgs potential,

∆V =
3

32π2

[

m4
t̃1

(

ln
m2

t̃1

Q2
−

3

2

)

+m4
t̃2

(

ln
m2

t̃2

Q2
−

3

2

)

− 2m4
t

(
ln

m2
t

Q2
−

3

2

)]

, (2.9)
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8 The mass spectrum of the MSSM

8.1 Electroweak symmetry breaking and the Higgs bosons

In the MSSM, the description of electroweak symmetry breaking is slightly complicated by the fact
that there are two complex Higgs doublets Hu = (H+

u , H0
u) and Hd = (H0

d , H
−
d ) rather than just one

in the ordinary Standard Model. The classical scalar potential for the Higgs scalar fields in the MSSM
is given by

V = (|µ|2 +m2
Hu

)(|H0
u|2 + |H+

u |2) + (|µ|2 +m2
Hd

)(|H0
d |2 + |H−

d |2)
+ [b (H+

u H−
d −H0

uH
0
d) + c.c.]

+
1

8
(g2 + g′2)(|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−
d |2)2 + 1

2
g2|H+

u H0∗
d +H0

uH
−∗
d |2. (8.1.1)

The terms proportional to |µ|2 come from F -terms [see eq. (6.1.5)]. The terms proportional to g2 and g′2

are the D-term contributions, obtained from the general formula eq. (3.4.12) after some rearranging.
Finally, the terms proportional to m2

Hu
, m2

Hd
and b are just a rewriting of the last three terms of

eq. (6.3.1). The full scalar potential of the theory also includes many terms involving the squark and
slepton fields that we can ignore here, since they do not get VEVs because they have large positive
squared masses.

We now have to demand that the minimum of this potential should break electroweak symmetry
down to electromagnetism SU(2)L × U(1)Y → U(1)EM, in accord with experiment. We can use the
freedom to make gauge transformations to simplify this analysis. First, the freedom to make SU(2)L
gauge transformations allows us to rotate away a possible VEV for one of the weak isospin components
of one of the scalar fields, so without loss of generality we can take H+

u = 0 at the minimum of the
potential. Then one can check that a minimum of the potential satisfying ∂V/∂H+

u = 0 must also
have H−

d = 0. This is good, because it means that at the minimum of the potential electromagnetism
is necessarily unbroken, since the charged components of the Higgs scalars cannot get VEVs. After
setting H+

u = H−
d = 0, we are left to consider the scalar potential

V = (|µ|2 +m2
Hu

)|H0
u|2 + (|µ|2 +m2

Hd
)|H0

d |2 − (bH0
uH

0
d + c.c.)

+
1

8
(g2 + g′2)(|H0

u|2 − |H0
d |2)2. (8.1.2)

The only term in this potential that depends on the phases of the fields is the b-term. Therefore, a
redefinition of the phase of Hu or Hd can absorb any phase in b, so we can take b to be real and positive.
Then it is clear that a minimum of the potential V requires that H0

uH
0
d is also real and positive, so 〈H0

u〉
and 〈H0

d 〉 must have opposite phases. We can therefore use a U(1)Y gauge transformation to make them
both be real and positive without loss of generality, since Hu and Hd have opposite weak hypercharges
(±1/2). It follows that CP cannot be spontaneously broken by the Higgs scalar potential, since the
VEVs and b can be simultaneously chosen real, as a convention. This means that the Higgs scalar mass
eigenstates can be assigned well-defined eigenvalues of CP, at least at tree-level. (CP-violating phases
in other couplings can induce loop-suppressed CP violation in the Higgs sector, but do not change the
fact that b, 〈H0

u〉, and 〈Hd〉 can always be chosen real and positive.)
In order for the MSSM scalar potential to be viable, we must first make sure that the potential is

bounded from below for arbitrarily large values of the scalar fields, so that V will really have a minimum.
(Recall from the discussion in sections 3.2 and 3.4 that scalar potentials in purely supersymmetric
theories are automatically non-negative and so clearly bounded from below. But, now that we have
introduced supersymmetry breaking, we must be careful.) The scalar quartic interactions in V will
stabilize the potential for almost all arbitrarily large values of H0

u and H0
d . However, for the special

directions in field space |H0
u| = |H0

d |, the quartic contributions to V [the second line in eq. (8.1.2)] are
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MSSM Higgs decoupling limit
Tree-level neutral MSSM Higgs masses

The CP-even Higgs bosons h and H are eigenstates of the squared-mass matrix

M2
0 =

(
m2

A sin2 β +m2
Z cos2 β −(m2

A +m2
Z) sinβ cos β

−(m2
A +m2

Z) sinβ cosβ m2
A cos2 β +m2

Z sin2 β

)

.

The eigenvalues of M2
0 are the squared-masses of the two CP-even Higgs

scalars

m2
H,h = 1

2

(
m2

A +m2
Z ±

√
(m2

A +m2
Z)

2 − 4m2
Zm

2
A cos2 2β

)
,

and α is the angle that diagonalizes the CP-even Higgs squared-mass matrix.

It follows that

mh ≤ mZ| cos 2β| ≤ mZ .

If this tree-level mass inequality were more generally satisfied, then the MSSM

would be ruled out today!
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Concerning the neutral Higgs couplings, their tree-level values in the MSSM nor-
malized to SM couplings and for arbitrary MA, are given in table 1.

φ gφtt gφbb gφV V

SM H 1 1 1

MSSM ho cos α/ sin β − sin α/ cos β sin(β − α)

Ho sin α/ sinβ cos α/ cosβ cos(β − α)

Ao 1/ tanβ tan β 0

Table 1: Higgs couplings in the MSSM normalized to SM couplings

Notice that by expanding in inverse powers of MA, we get:
cos α
sin β

" 1 + O(M2
Z/M2

A) , − sinα
cos β

" 1 + O(M2
Z/M2

A)

sin(β − α) " 1 + O(M4
Z/M4

A).

Therefore, the h0 tree-level couplings in the decoupling limit, MA # MZ , tend to
their SM values, as expected.

Beyond tree level, it has been shown [9] that, in this same decoupling limit, the
Higgs masses keep a similar pattern as at tree level, that is, very heavy H0, H± and
A0 bosons, and a light h0 boson. The particular values of their masses depend of
course on the MSSM parameters, but for MA # MZ ,

MHo " MH± " MA # MZ ,

Mho ≤ 130 − 135 GeV .

In this work we will go beyond tree level and study the decoupling behaviour of
heavy SUSY particles and heavy Higgses, at one-loop level, in Higgs bosons and top
quark decays.

3 Decoupling limit in the SUSY-QCD sector

The sbottom and stop mass matrices, in the MSSM, are given respectively by:

M̂2
b̃

=

(

M2
Q̃

+ m2
b − M2

Z(1
2 + Qbs2

W
) cos 2β mb(Ab − µ tanβ)

mb(Ab − µ tanβ) M2
D̃ + m2

b + M2
ZQbs2

W cos 2β

)

and

M̂2
t̃ =

(

M2
Q̃

+ m2
t + M2

Z(1
2 − Qts2

W
) cos 2β mt(At − µ cotβ)

mt(At − µ cotβ) M2
Ũ + m2

t + M2
ZQts2

W cos 2β

)
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Beyond tree level, it has been shown [9] that, in this same decoupling limit, the
Higgs masses keep a similar pattern as at tree level, that is, very heavy H0, H± and
A0 bosons, and a light h0 boson. The particular values of their masses depend of
course on the MSSM parameters, but for MA # MZ ,

MHo " MH± " MA # MZ ,

Mho ≤ 130 − 135 GeV .

In this work we will go beyond tree level and study the decoupling behaviour of
heavy SUSY particles and heavy Higgses, at one-loop level, in Higgs bosons and top
quark decays.

3 Decoupling limit in the SUSY-QCD sector

The sbottom and stop mass matrices, in the MSSM, are given respectively by:

M̂2
b̃

=

(

M2
Q̃

+ m2
b − M2

Z(1
2 + Qbs2

W
) cos 2β mb(Ab − µ tanβ)

mb(Ab − µ tanβ) M2
D̃ + m2

b + M2
ZQbs2

W cos 2β

)

and

M̂2
t̃ =

(

M2
Q̃

+ m2
t + M2

Z(1
2 − Qts2

W
) cos 2β mt(At − µ cotβ)

mt(At − µ cotβ) M2
Ũ + m2

t + M2
ZQts2

W cos 2β

)

3

zero in the asymptotic large SUSY mass limit.
Our purpose here is to determine the decoupling behaviour in the previous limiting

situations of several observables, including radiative corrections at one-loop, with the
hope that for some of them either the decoupling does not occur totally or, in case
it occurs, it proceeds slowly such that there may remain significant signals of new
physics beyond SM, even for a heavy SUSY spectra.

In this paper we focus on the partial widths of h0 → bb, H+ → tb and t → W+b
decays, with special emphasis on the first one, whose corresponding branching ratio
will be crucial for the experimental Higgs boson searches at the upcoming Tevatron
Run 2 [4,5]. We study the MSSM radiative corrections to these observables at the
one-loop level and to leading order in αs, and we analyze in detail their behavior in the
previously mentioned decoupling limits. These corrections are due to the SUSY-QCD
(SQCD) sector and arise from gluinos and third generation-squark exchange. Because
of the dependence on the strong coupling constant, these are expected to be the most
significant one-loop MSSM contributions over much of the MSSM parameter space.
We will show that in the limit of large MA (in this limit one also has MH0 , MH± "
MZ) and large sbottom and gluino masses (Mb̃i

, Mg̃ " MZ), the SM expression for
the h0 → bb one-loop partial width is recovered [6]. That is, the SQCD corrections to
the Γ(h0 → bb) partial width decouple in the limit of large SUSY masses and large
MA. In particular, we examine the case of large tan β, for which the SQCD corrections
are enhanced. This enhancement can delay the onset of decoupling and give rise to a
significant one-loop correction, even for moderate to large values of the SUSY masses.
This decoupling, however, does not occur, if either MSUSY (characterizing a common
mass scale for gluino and sbottom masses) or MA are kept fixed while the other is
taken large. A similar non-decoupling phenomenon of the SQCD corrections to one-
loop when MA is fixed and the sbottom, stop and gluinos masses are considered large
is found in the H+ → tb decay [7]. The SQCD corrections to one-loop in the t → W+b
decay, however, do decouple and this decoupling proceeds fast. We present here just
a summary of the main results and refer the reader to refs. [6,7] for more details.

2 Decoupling limit in the Higgs sector

The decoupling limit in the Higgs sector of the MSSM was first studied in ref. [1].
In short, it is defined by considering the CP-odd Higgs mass much larger than the
electroweak scale, MA " MZ , and leads to a particular spectrum in the Higgs sector
with very heavy H0, H± and A0 bosons, and a light h0 boson. For a review of the
MSSM Higgs sector, see ref. [8].

At tree level, if MA " MZ , the Higgs masses are,

MHo # MH± # MA " MZ , Mho # MZ |cos2β| .
That is, at tree-level there exists a CP-even Higgs, h0, lighter than the Z boson.
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1 Introduction

The ATLAS and CMS Collaborations have recently presented the first indication for a Higgs
boson with a mass in the region ∼ 124− 126 GeV [1,2]. An excess of events is observed by the
ATLAS experiment for a Higgs boson mass hypothesis close to 126 GeV with a maximum local
statistical significance of 3.6σ above the expected SM background and by the CMS experiment
at 124 GeV with 2.6σ maximum local significance. If the ATLAS and CMS signals are combined
the statistical significance increases, but is still less than the 5σ required to claim a discovery.
Interestingly, the ATLAS signal in the γγ decay channel by itself has a local significance of
2.8σ whereas a SM-like Higgs boson would only have a significance of half this value, leading to
speculation that the observed Higgs boson is arising from beyond SM physics. In general, these
results have generated much excitement in the community, and already there are a number of
papers discussing the implications of such a Higgs boson [3–7].

In the Minimal Supersymmetric Standard Model (MSSM) the lightest Higgs boson is lighter
than about 130-135 GeV, depending on top squark parameters (see e.g. [8] and references
therein). A 125 GeV SM-like Higgs boson is consistent with the MSSM in the decoupling
limit. In the limit of decoupling the light Higgs mass is given by

m2
h ≈ M2

Z cos2 2β +∆m2
h , (1.1)

where ∆m2
h is dominated by loops of heavy top quarks and top squarks and tan β is the ratio

of the vacuum expectation values (VEVs) of the two Higgs doublets introduced in the MSSM
Higgs sector. At large tan β, we require ∆mh ≈ 85 GeV which means that a very substantial
loop contribution, nearly as large as the tree-level mass, is needed to raise the Higgs boson mass
to 125 GeV. The rather complicated parameter dependence has been studied in [4] where it was
shown that, with “maximal stop mixing”, the lightest stop mass must be mt̃1

>∼ 500 GeV (with
the second stop mass considerably larger) in the MSSM in order to achieve a 125 GeV Higgs
boson. However one of the motivations for SUSY is to solve the hierarchy or fine-tuning problem
of the SM [9]. It is well known that such large stop masses typically require a tuning at least of
order 1% in the MSSM, depending on the parameter choice and the definition of fine-tuning [10].

In the light of such fine-tuning considerations, it has been known for some time, even after
the LEP limit on the Higgs boson mass of 114 GeV, that the fine-tuning of the MSSM could
be ameliorated in the Next-to-Minimal Supersymmetric Standard Model (NMSSM) [11]. With
a 125 GeV Higgs boson, this conclusion is greatly strengthened and the NMSSM appears to
be a much more natural alternative. In the NMSSM, the spectrum of the MSSM is extended
by one singlet superfield [12–14] (for reviews see [15, 16]). In the NMSSM the supersymmetric
Higgs mass parameter µ is promoted to a gauge-singlet superfield, S, with a coupling to the
Higgs doublets, λSHuHd, that is perturbative up to unified scales. In the pure NMSSM values
of λ ∼ 0.7 do not spoil the validity of perturbation theory up to the GUT scale only providing
tan β ! 4, however the presence of additional extra matter [17] allows smaller values of tan β to
be achieved. The maximum mass of the lightest Higgs boson is

m2
h ≈ M2

Z cos2 2β + λ2v2 sin2 2β +∆m2
h (1.2)

where here we use v = 174 GeV. For λv > MZ , the tree-level contributions to mh are maximized
for moderate values of tan β rather than by large values of tan β as in the MSSM. For example,
taking λ = 0.7 and tan β = 2, these tree-level contributions raise the Higgs boson mass to about
112 GeV, and ∆mh ! 55GeV is required. This is to be compared to the MSSM requirement

1

RGEs from which the perturbativity bounds on λ were obtained.

2 The MSSM

The superpotential of the MSSM is given, in terms of (hatted) superfields, by

W = µĤuĤd + htQ̂3Ĥut̂
c
R − hbQ̂3Ĥdb̂

c
R − hτ L̂3Ĥdτ̂

c
R , (2.3)

in which only the third generation fermions have been included (with possible neutrino Yukawa
couplings have been set to zero), and Q̂3, L̂3 stand for superfields associated with the (t, b) and
(τ, ντ ) SU(2) doublets.

The soft SUSY breaking terms consist of the scalar mass terms for the Higgs and sfermion
scalar fields which, in terms of the fields corresponding to the complex scalar components of the
superfields, are given by

− Lmass = m2
Hu

|Hu|2 +m2
Hd

|Hd|2

+ m2
Q̃3

|Q̃2
3|+m2

t̃R
|t̃2R|+m2

b̃R
|b̃2R|+m2

L̃3
|L̃2

3|+m2
τ̃R |τ̃

2
R| , (2.4)

and the trilinear interactions between the sfermion and Higgs fields,

− Ltril = BµHuHd + htAtQ̃3Hut̃
c
R − hbAbQ̃3Hdb̃

c
R − hτAτ L̃3Hdτ̃

c
R + h.c. . (2.5)

The tree-level MSSM Higgs potential is given by

V0 = m2
1|Hd|2+m2

2|Hu|2−m2
3(HdHu+h.c.)+

g22
8

(
H+

d σaHd +H+
u σaHu

)2
+

g′2

8

(
|Hd|2 − |Hu|2

)2

(2.6)
where g′ =

√
3/5g1, g2 and g1 are the low energy (GUT normalised) SU(2)W and U(1)Y gauge

couplings, m2
1 = m2

Hd
+ µ2, m2

2 = m2
Hu

+ µ2 and m2
3 = −Bµ.

In the MSSM, at the 1-loop level, stops contribute to the Higgs boson mass and three
more parameters become important, the stop soft masses, mQ̃3

and mt̃R
, and the stop mixing

parameter
Xt = At − µ cot β. (2.7)

The dominant one-loop contribution to the Higgs boson mass depends on the geometric mean
of the stop masses, m2

t̃
= mQ̃3

mt̃R
, and is given by,

∆m2
h ≈

3

(4π)2
m4

t

v2

[

ln
m2

t̃

m2
t
+

X2
t

m2
t̃

(

1−
X2

t

12m2
t̃

)]

. (2.8)

The Higgs mass is sensitive to the degree of stop mixing through the second term in the brackets,
and is maximized for |Xt| = Xmax

t =
√
6mt̃, which was referred to as “maximal mixing” above.

The fine-tuning in the MSSM can be simply understood by examining the leading one–loop
correction to the Higgs potential,

∆V =
3

32π2

[

m4
t̃1

(

ln
m2

t̃1

Q2
−

3

2

)

+m4
t̃2

(

ln
m2

t̃2

Q2
−

3

2

)

− 2m4
t

(
ln

m2
t

Q2
−

3

2

)]

, (2.9)
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The mu problem(s) of MSSM

are more subtle in two Higgs doublet models, in which the condition m2
Hu

< 0 is
neither necessary nor sufficient (although it helps).

Nevertheless, a celebrated features of the MSSM is that the up-type Higgs soft
mass-squared parameter does get driven negative via renormalization group running
due to the large top quark Yukawa coupling [11, 12, 13, 14, 15]. This can be seen
upon an inspection of the renormalization group equations for the relevant soft pa-
rameters. For this purpose, it suffices to retain only the third family contributions
in the approximation of Eq. (C.117), as presented in Eq. (C.118)–Eq. (C.129) of Ap-
pendix C.6. Retaining only the top quark Yukawa coupling, one can see that the m2

Hu

parameter is driven down by the large top Yukawa terms as one runs down from the
high scale to the low scale. In the large tanβ regime in which the bottom and tau
Yukawas are also large, there is a similar effect for m2

Hd
, as will be discussed later.

Other masses such as the stop mass-squared parameters also are driven down by the
Yukawa terms; however, they also receive large positive contributions from gluino
loops, so they don’t usually run negative, although they can. Therefore, the Higgs
soft mass-squared parameters can be driven to negative values near the electroweak
scale due to perturbative logarithmic running.∗

4.2 The µ problem

Electroweak symmetry breaking can thus take place in a natural way in the MSSM
via a radiative mechanism by which the soft mass-squared parameter of the up-type
Higgs doublet (and also that of the down-type Higgs when tanβ is large) approaches
or becomes zero, provided that µ and b are nonzero and take values roughly of the
same order as mZ . To see this correlation let us demonstrate it explicitly for the µ
parameter. Rewriting the minimization conditions yields the following expression:

µ2 =
m2

Hd
− m2

Hu
tan2 β

tan2 β − 1
−

1

2
m2

Z . (4.10)

This correlation leads to a puzzle. Just as we are ignorant of the origin and dynamical
mechanism of supersymmetry breaking, we do not know why the supersymmetric
mass parameter µ should be of the order of the electroweak scale, and of the same
order as the supersymmetry breaking parameters (or else there would be a chargino
lighter than the W boson, which has been excluded experimentally). Given that µ is
a superpotential parameter one might expect µ ∼ O(MX), where MX is a high scale,
e.g. the unification or GUT scale. If this were true, the hierarchy problem is clearly
restored. This puzzle, known as the µ problem, was first pointed out in [144].

Operationally, one can trade the unknown input values of µ and b for mZ and
tan β; however, this does not constrain the phase or sign of the µ parameter relative
to the other soft supersymmetry-breaking terms. In practice, this is the standard

∗Note however that electroweak symmetry breaking is possible even if m2
Hu

is positive as long as
b is large enough.
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g22
8

(
H+

d σaHd +H+
u σaHu

)2
+

g′2

8

(
|Hd|2 − |Hu|2

)2

(2.6)
where g′ =

√
3/5g1, g2 and g1 are the low energy (GUT normalised) SU(2)W and U(1)Y gauge

couplings, m2
1 = m2

Hd
+ µ2, m2

2 = m2
Hu

+ µ2 and m2
3 = −Bµ.

In the MSSM, at the 1-loop level, stops contribute to the Higgs boson mass and three
more parameters become important, the stop soft masses, mQ̃3

and mt̃R
, and the stop mixing

parameter
Xt = At − µ cot β. (2.7)

The dominant one-loop contribution to the Higgs boson mass depends on the geometric mean
of the stop masses, m2

t̃
= mQ̃3

mt̃R
, and is given by,

∆m2
h ≈

3

(4π)2
m4

t

v2

[

ln
m2

t̃

m2
t
+

X2
t

m2
t̃

(

1−
X2

t

12m2
t̃

)]

. (2.8)

The Higgs mass is sensitive to the degree of stop mixing through the second term in the brackets,
and is maximized for |Xt| = Xmax

t =
√
6mt̃, which was referred to as “maximal mixing” above.

The fine-tuning in the MSSM can be simply understood by examining the leading one–loop
correction to the Higgs potential,

∆V =
3

32π2

[

m4
t̃1

(

ln
m2

t̃1

Q2
−

3

2

)

+m4
t̃2

(

ln
m2

t̃2

Q2
−

3

2

)

− 2m4
t

(
ln

m2
t

Q2
−

3

2

)]

, (2.9)
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In Eq. (2.12) θt is the mixing angle in the stop sector given by

sin 2θt =
2mtXt

(m2
t̃2
−m2

t̃1
)
, (2.13)

whereas

f(m) = m2

(
ln

m2

Q2
− 1

)
.

Here we set the renormalisation scale Q = mt. From Eq. (2.11) one can see that in order to
avoid tuning,

∆ <∼
1

2
M2

Z . (2.14)

This shows that both stop masses must be light to avoid tuning. For example, defining ∆II =
2 · ∆/M2

Z the absence of any tuning requires ∆II <∼ 1. This in turn requires the heavier stop
mass to be below about 500 GeV as illustrated in Fig.1. This constraint on the heavier stop
mass has not been emphasised in the literature, where often the focus of attention is on the
lightest stop mass.

It has been noted that large or maximal stop mixing is associated with large fine-tuning.
This also follows from Fig.1 and Eq. (2.12). Indeed, Fig.1 demonstrates that the contribution of
one–loop corrections to Eq. (2.11) increases when the mixing angle in the stop sector becomes
larger. In fact when θt is close to π/4 the last term in Eq. (2.12) gives the dominant contribution
to ∆ enhancing the overall contribution of loop corrections in the minimization condition (2.11)
which determines the mass of the Z–boson.

Eq. (2.11) also indicates that in order to avoid tuning one has to ensure that the parameter
µ has a reasonably small value. To avoid tuning entirely one should expect µ to be less than
MZ . However, so small values of the parameter µ are ruled out by chargino searches at LEP.
Therefore in our analysis we allow the effective µeff parameter to be as large as 200GeV that
does not result in enormous fine-tuning.

3 The NMSSM

In this paper, we only consider the NMSSM with a scale invariant superpotential. Alternative
models known as the minimal non-minimal supersymmetric SM (MNSSM), new minimally-
extended supersymmetric SM or nearly-minimal supersymmetric SM (nMSSM) or with addi-
tional U(1)′ gauge symmetries have been considered elsewhere [38], as has the case of explicit
CP violation [39].

The NMSSM superpotential is given, in terms of (hatted) superfields, by

W = λŜĤuĤd +
κ

3
Ŝ3 + htQ̂3Ĥut̂

c
R − hbQ̂3Ĥdb̂

c
R − hτ L̂3Ĥdτ̂

c
R , (3.15)

in which only the third generation fermions have been included. The first two terms substitute
the µĤuĤd term in the MSSM superpotential, while the three last terms are the usual gener-
alization of the Yukawa interactions. The soft SUSY breaking terms consist of the scalar mass
terms for the Higgs and sfermion scalar fields which, in terms of the fields corresponding to the
complex scalar components of the superfields, are given by,

− Lmass = m2
Hu

|Hu|2 +m2
Hd

|Hd|2 +m2
S |S|2

+ m2
Q̃3

|Q̃2
3|+m2

t̃R
|t̃2R|+m2

b̃R
|b̃2R|+m2

L̃3
|L̃2

3|+m2
τ̃R |τ̃

2
R| . (3.16)
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1 Introduction

The ATLAS and CMS Collaborations have recently presented the first indication for a Higgs
boson with a mass in the region ∼ 124− 126 GeV [1,2]. An excess of events is observed by the
ATLAS experiment for a Higgs boson mass hypothesis close to 126 GeV with a maximum local
statistical significance of 3.6σ above the expected SM background and by the CMS experiment
at 124 GeV with 2.6σ maximum local significance. If the ATLAS and CMS signals are combined
the statistical significance increases, but is still less than the 5σ required to claim a discovery.
Interestingly, the ATLAS signal in the γγ decay channel by itself has a local significance of
2.8σ whereas a SM-like Higgs boson would only have a significance of half this value, leading to
speculation that the observed Higgs boson is arising from beyond SM physics. In general, these
results have generated much excitement in the community, and already there are a number of
papers discussing the implications of such a Higgs boson [3–7].

In the Minimal Supersymmetric Standard Model (MSSM) the lightest Higgs boson is lighter
than about 130-135 GeV, depending on top squark parameters (see e.g. [8] and references
therein). A 125 GeV SM-like Higgs boson is consistent with the MSSM in the decoupling
limit. In the limit of decoupling the light Higgs mass is given by

m2
h ≈ M2

Z cos2 2β +∆m2
h , (1.1)

where ∆m2
h is dominated by loops of heavy top quarks and top squarks and tan β is the ratio

of the vacuum expectation values (VEVs) of the two Higgs doublets introduced in the MSSM
Higgs sector. At large tan β, we require ∆mh ≈ 85 GeV which means that a very substantial
loop contribution, nearly as large as the tree-level mass, is needed to raise the Higgs boson mass
to 125 GeV. The rather complicated parameter dependence has been studied in [4] where it was
shown that, with “maximal stop mixing”, the lightest stop mass must be mt̃1

>∼ 500 GeV (with
the second stop mass considerably larger) in the MSSM in order to achieve a 125 GeV Higgs
boson. However one of the motivations for SUSY is to solve the hierarchy or fine-tuning problem
of the SM [9]. It is well known that such large stop masses typically require a tuning at least of
order 1% in the MSSM, depending on the parameter choice and the definition of fine-tuning [10].

In the light of such fine-tuning considerations, it has been known for some time, even after
the LEP limit on the Higgs boson mass of 114 GeV, that the fine-tuning of the MSSM could
be ameliorated in the Next-to-Minimal Supersymmetric Standard Model (NMSSM) [11]. With
a 125 GeV Higgs boson, this conclusion is greatly strengthened and the NMSSM appears to
be a much more natural alternative. In the NMSSM, the spectrum of the MSSM is extended
by one singlet superfield [12–14] (for reviews see [15, 16]). In the NMSSM the supersymmetric
Higgs mass parameter µ is promoted to a gauge-singlet superfield, S, with a coupling to the
Higgs doublets, λSHuHd, that is perturbative up to unified scales. In the pure NMSSM values
of λ ∼ 0.7 do not spoil the validity of perturbation theory up to the GUT scale only providing
tan β ! 4, however the presence of additional extra matter [17] allows smaller values of tan β to
be achieved. The maximum mass of the lightest Higgs boson is

m2
h ≈ M2

Z cos2 2β + λ2v2 sin2 2β +∆m2
h (1.2)

where here we use v = 174 GeV. For λv > MZ , the tree-level contributions to mh are maximized
for moderate values of tan β rather than by large values of tan β as in the MSSM. For example,
taking λ = 0.7 and tan β = 2, these tree-level contributions raise the Higgs boson mass to about
112 GeV, and ∆mh ! 55GeV is required. This is to be compared to the MSSM requirement

1
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Want     as large as possible but avoiding Landau poleλ
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λ2v2 sin2
2β contribution of equation 2 to the two-loop Suspect/FeynHiggs MSSM result, with

degenerate stop soft masses and no stop mixing. The top contribution δt is sufficient to raise

the Higgs mass to 125 GeV for λ = 0.7 for a top squark mass of 500 GeV; but as λ is decreased

to 0.6 a larger value of the top squark mass is needed.

In the “λ-SUSY” theory [15], λ is increased so that the interaction becomes non-perturbative

below unified scales; but λ should not exceed about 2, otherwise the non-perturbative physics

occurs below 10 TeV and is likely to destroy the successful understanding of precision electroweak

data in the perturbative theory. The non-perturbativity of λ notwithstanding, gauge coupling

unification can be preserved in certain UV completions of λ-SUSY, such as the Fat Higgs [16].

The λ-SUSY theory is highly motivated by an improvement in fine-tuning over the MSSM by

roughly a factor of 2λ2/g2 ∼ 4λ2
, where g is the SU(2) gauge coupling. Equivalently, for the

MSSM and λ-SUSY to have comparable levels of fine-tuning, the superpartner spectrum can be

heavier in λ-SUSY by about a factor 2λ. The origin of this improvement, a large value of λ in

the potential, is correlated with the mass of the Higgs, which is naively raised from gv/
√
2 to

λv. However, this now appears to be excluded by current limits [17], with λ > 1 giving a Higgs

boson much heavier than 125 GeV (for other theories that raise the Higgs mass above that of

the MSSM see [18, 19, 20]).

Most studies of λ-SUSY [15, 21] have decoupled the CP even singlet scalar s by making its

soft mass parameter, m2
S, large. This was often done purely for simplicity to avoid the compli-

3
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no mixing

In Eq. (2.12) θt is the mixing angle in the stop sector given by

sin 2θt =
2mtXt

(m2
t̃2
−m2

t̃1
)
, (2.13)

whereas

f(m) = m2

(
ln

m2

Q2
− 1

)
.

Here we set the renormalisation scale Q = mt. From Eq. (2.11) one can see that in order to
avoid tuning,

∆ <∼
1

2
M2

Z . (2.14)

This shows that both stop masses must be light to avoid tuning. For example, defining ∆II =
2 · ∆/M2

Z the absence of any tuning requires ∆II <∼ 1. This in turn requires the heavier stop
mass to be below about 500 GeV as illustrated in Fig.1. This constraint on the heavier stop
mass has not been emphasised in the literature, where often the focus of attention is on the
lightest stop mass.

It has been noted that large or maximal stop mixing is associated with large fine-tuning.
This also follows from Fig.1 and Eq. (2.12). Indeed, Fig.1 demonstrates that the contribution of
one–loop corrections to Eq. (2.11) increases when the mixing angle in the stop sector becomes
larger. In fact when θt is close to π/4 the last term in Eq. (2.12) gives the dominant contribution
to ∆ enhancing the overall contribution of loop corrections in the minimization condition (2.11)
which determines the mass of the Z–boson.

Eq. (2.11) also indicates that in order to avoid tuning one has to ensure that the parameter
µ has a reasonably small value. To avoid tuning entirely one should expect µ to be less than
MZ . However, so small values of the parameter µ are ruled out by chargino searches at LEP.
Therefore in our analysis we allow the effective µeff parameter to be as large as 200GeV that
does not result in enormous fine-tuning.

3 The NMSSM

In this paper, we only consider the NMSSM with a scale invariant superpotential. Alternative
models known as the minimal non-minimal supersymmetric SM (MNSSM), new minimally-
extended supersymmetric SM or nearly-minimal supersymmetric SM (nMSSM) or with addi-
tional U(1)′ gauge symmetries have been considered elsewhere [38], as has the case of explicit
CP violation [39].

The NMSSM superpotential is given, in terms of (hatted) superfields, by

W = λŜĤuĤd +
κ

3
Ŝ3 + htQ̂3Ĥut̂

c
R − hbQ̂3Ĥdb̂

c
R − hτ L̂3Ĥdτ̂

c
R , (3.15)

in which only the third generation fermions have been included. The first two terms substitute
the µĤuĤd term in the MSSM superpotential, while the three last terms are the usual gener-
alization of the Yukawa interactions. The soft SUSY breaking terms consist of the scalar mass
terms for the Higgs and sfermion scalar fields which, in terms of the fields corresponding to the
complex scalar components of the superfields, are given by,

− Lmass = m2
Hu

|Hu|2 +m2
Hd

|Hd|2 +m2
S |S|2

+ m2
Q̃3

|Q̃2
3|+m2

t̃R
|t̃2R|+m2
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|b̃2R|+m2
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1 Introduction

The ATLAS and CMS Collaborations have recently presented the first indication for a Higgs
boson with a mass in the region ∼ 124− 126 GeV [1,2]. An excess of events is observed by the
ATLAS experiment for a Higgs boson mass hypothesis close to 126 GeV with a maximum local
statistical significance of 3.6σ above the expected SM background and by the CMS experiment
at 124 GeV with 2.6σ maximum local significance. If the ATLAS and CMS signals are combined
the statistical significance increases, but is still less than the 5σ required to claim a discovery.
Interestingly, the ATLAS signal in the γγ decay channel by itself has a local significance of
2.8σ whereas a SM-like Higgs boson would only have a significance of half this value, leading to
speculation that the observed Higgs boson is arising from beyond SM physics. In general, these
results have generated much excitement in the community, and already there are a number of
papers discussing the implications of such a Higgs boson [3–7].

In the Minimal Supersymmetric Standard Model (MSSM) the lightest Higgs boson is lighter
than about 130-135 GeV, depending on top squark parameters (see e.g. [8] and references
therein). A 125 GeV SM-like Higgs boson is consistent with the MSSM in the decoupling
limit. In the limit of decoupling the light Higgs mass is given by

m2
h ≈ M2

Z cos2 2β +∆m2
h , (1.1)

where ∆m2
h is dominated by loops of heavy top quarks and top squarks and tan β is the ratio

of the vacuum expectation values (VEVs) of the two Higgs doublets introduced in the MSSM
Higgs sector. At large tan β, we require ∆mh ≈ 85 GeV which means that a very substantial
loop contribution, nearly as large as the tree-level mass, is needed to raise the Higgs boson mass
to 125 GeV. The rather complicated parameter dependence has been studied in [4] where it was
shown that, with “maximal stop mixing”, the lightest stop mass must be mt̃1

>∼ 500 GeV (with
the second stop mass considerably larger) in the MSSM in order to achieve a 125 GeV Higgs
boson. However one of the motivations for SUSY is to solve the hierarchy or fine-tuning problem
of the SM [9]. It is well known that such large stop masses typically require a tuning at least of
order 1% in the MSSM, depending on the parameter choice and the definition of fine-tuning [10].

In the light of such fine-tuning considerations, it has been known for some time, even after
the LEP limit on the Higgs boson mass of 114 GeV, that the fine-tuning of the MSSM could
be ameliorated in the Next-to-Minimal Supersymmetric Standard Model (NMSSM) [11]. With
a 125 GeV Higgs boson, this conclusion is greatly strengthened and the NMSSM appears to
be a much more natural alternative. In the NMSSM, the spectrum of the MSSM is extended
by one singlet superfield [12–14] (for reviews see [15, 16]). In the NMSSM the supersymmetric
Higgs mass parameter µ is promoted to a gauge-singlet superfield, S, with a coupling to the
Higgs doublets, λSHuHd, that is perturbative up to unified scales. In the pure NMSSM values
of λ ∼ 0.7 do not spoil the validity of perturbation theory up to the GUT scale only providing
tan β ! 4, however the presence of additional extra matter [17] allows smaller values of tan β to
be achieved. The maximum mass of the lightest Higgs boson is

m2
h ≈ M2

Z cos2 2β + λ2v2 sin2 2β +∆m2
h (1.2)

where here we use v = 174 GeV. For λv > MZ , the tree-level contributions to mh are maximized
for moderate values of tan β rather than by large values of tan β as in the MSSM. For example,
taking λ = 0.7 and tan β = 2, these tree-level contributions raise the Higgs boson mass to about
112 GeV, and ∆mh ! 55GeV is required. This is to be compared to the MSSM requirement
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Goldstone mode, and the two non-zero charged eigenvalues are equal). Thus the tree-level

neutral CP-even (scalar) mass squared symmetric matrix, in the basis {H1, H2, N}, is

M2 =





2λ1ν2
1 2(λ3 + λ4)ν1ν2 2λ5xν1

2(λ3 + λ4)ν1ν2 2λ2ν2
2 2λ6xν2

2λ5xν1 2λ6xν2 4λ8x2 − m5x





+





tan β[m4x − λ7x2] −[m4x − λ7x2] −ν2

x
[m4x − 2λ7x2]

−[m4x − λ7x2] cot β[m4x − λ7x2] −ν1

x [m4x − 2λ7x2]
−ν2

x [m4x − 2λ7x2] −ν1

x [m4x − 2λ7x2] ν1ν2

x2 [m4x]



 (2.11)

Similarly the tree-level neutral CP-odd (pseudoscalar) mass-squared symmetric matrix, in

the basis {H1, H2, N}, is

M̃2 =





tanβ[m4x − λ7x2] [m4x − λ7x2] ν2

x [m4x + 2λ7x2]
[m4x − λ7x2] cot β[m4x − λ7x2] ν1

x [m4x + 2λ7x2]
ν2

x [m4x + 2λ7x2] ν1

x [m4x + 2λ7x2] 3m5x + ν1ν2

x2 [m4x − 4λ7x2]



 . (2.12)

Finally the tree-level charged mass-squared matrix, in the basis {H1, H2}, is

M2
c =

(

tan β 1
1 cot β

)

(m4x − λ7x
2 − λ4ν1ν2). (2.13)

In the limit λ, k → 0, x → ∞ with λx and kx held fixed, the N components do not

mix with the H1, H2 components in the mass matrices in (2.11)and (2.12). This is just the

MSSM limit of the NMSSM.

3 Renormalisation Group Analysis

Now let us consider which values may be taken by the dimensionless couplings λ, k and

ht. Above some scale at which supersymmetry becomes a good symmetry, and defining

t = log µ, where µ is the renormalisation scale, the RG equations for these couplings [25]

are given by

8π2 ∂λ

∂t
=(2λ2 + k2 +

3

2
h2

t −
3

2
g2
2 −

1

2
g2
1)λ

8π2 ∂k

∂t
=(3λ2 + 3k2)k

8π2 ∂ht

∂t
=(

1

2
λ2 + 3h2

t −
8

3
g2
3 −

3

2
g2
2 −

13

18
g2
1)ht

(3.1)

where g3 is the QCD coupling. Following the analysis of reference [26], they may be written

in the suggestive form

8π2 ∂

∂t

(λ2

h2
t

)

=(3λ2 + 2k2 − 3h2
t +

16

3
g2
3 +

4

9
g2
1)

(λ2

h2
t

)

8π2 ∂

∂t

(k2

h2
t

)

=(5λ2 + 6k2 − 6h2
t +

16

3
g2
3 +

3

2
g2
2 +

13

9
g2
1)

(k2

h2
t

)

(3.2)
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In the E6SSM two–loop corrections to αi(µ) are large
and could spoil gauge coupling unification.
However it was argued that within the E6SSM gauge
coupling unification can be achieved for any value of
α3(MZ) which is in agreement with current data [S.F.King,
S.Moretti, RN, Phys.Lett.B 650 (2007) 57].

Two–loop RG flow of αi(µ) in the E6SSM and MSSM
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NMSSM Higgs Mixing 
Spectrum has an extra complex singlet S giving an 

extra CP even H plus extra CP odd A compared to MSSM

4 NMSSM Higgs boson production and decay

In order to decide whether the SM-like Higgs boson reproduces the rates as measured by the

experiments we need to know the NMSSM Higgs boson production cross sections and branching

ratios. In the following we will discuss in detail the dominant production process through gluon

fusion and its modification with respect to the SM. We furthermore investigate the NMSSM

Higgs branching ratio into photons, as the LHC experiments see a slight excess here with respect

to the SM. With the at present available data, this has to be taken with due caution, however,

as it could still turn out to be a statistical fluctuation. If it persists, however, it is a hint towards

new physics, and shall be taken into account in our analysis. We start with some preliminary

remarks and set up our notation.

At the LHC, for small values of tan β, the production processes for a single neutral NMSSM

Higgs boson are given by

Gluon fusion: gg → Hi and gg → Aj i = 1, 2, 3, j = 1, 2

Gauge boson fusion: qq → qq + W
∗
W

∗
/Z

∗
Z
∗ → qqHi i = 1, 2, 3

Higgs-strahlung: qq̄ → Z
∗
/W

∗ → Hi + Z/W i = 1, 2, 3

Associated production with tt̄: gg/qq̄ → tt̄Hi and gg/qq̄ → tt̄Aj i = 1, 2, 3, j = 1, 2 ,

(4.10)

where gluon fusion is the most important process followed by gauge boson fusion. Higgs-

strahlung and associated production with a top quark pair
3

only play a minor role and are

more important for the determination of Higgs boson couplings.

The NMSSM production processes and decay channels deviate from the corresponding SM

Higgs processes due to modified Higgs couplings and additional SUSY particles which run in

the loop mediated processes. The couplings of the CP-even Higgs states Hi depend on their

decompositions into the weak eigenstates Hd, Hu and S,

H1 = S1,d Hd + S1,u Hu + S1,s S ,

H2 = S2,d Hd + S2,u Hu + S2,s S , (4.11)

H3 = S3,d Hd + S3,u Hu + S3,s S .

The coefficients Si,u, Si,d hence quantifiy the amount of up- and down-likeness, respectively, while

Si,s is a measure for the singlet-component of a Higgs mass eigenstate. Mixings between the

SU(2)-doublet and singlet sectors are always proportional to λ, and can be sizeable for λ >∼ 0.3,

leading to significant effects on the Higgs couplings and hence phenomenlogy [?].

The inclusive production cross-section σincl is composed of gluon fusion, vector boson fusion,

Higgs-strahlung and associated production with tt̄,

σincl(H) = σ(gg → H) + σ(Hqq) + σ(WH) + σ(ZH) + σ(tt̄H) ≈ σ(gg → H) , (4.12)

with H = Hi, H
SM

, respectively. It is dominated by the gluon fusion cross section. For later

convenience in the discussion of our results we normalize the relevant quantities of the NMSSM

Higgs bosons to the corresponding SM counterparts. Thus we define the ratio Rσincl of the

NMSSM inclusive cross section compared to the SM one,

Rσincl(Hi) ≡
σincl(Hi)

σincl(H
SM )

≈ Rσgg(Hi) , (4.13)

3For small tan β values associated production with a bottom quark pair is negligibly small.
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H1 or H2 have reduced couplings due to the singlet component

Appendix A. Mixing matrices and tree level Higgs cou-
plings

The Feynman rules of the NMSSM have been described first in [50] (including the quartic
couplings not given here), and subsequently in [52].

A.1 Mixing matrices

First we define the mixing matrices which diagonalize the Higgs, neutralino and chargino
mass matrices (after the addition of radiative corrections).

The CP-even 3× 3 mass matrix M2
S (2.22) in the basis Hweak

i = (HdR, HuR, SR) (in the
SLHA2 conventions [49]) is diagonalized by an orthogonal 3 × 3 matrix Sij rotating the
basis Hweak

i ,
Hmass

i = SijH
weak
j , (A.1)

such that the mass eigenstates Hmass
i are ordered in increasing mass.

The CP-odd 2 × 2 mass matrix M2
P (2.24) in the basis (A = cosβHuI + sin βHdI , SI)

was obtained after the rotation by the angle β (2.25), which allowed to omit the Nambu-
Goldstone boson. It can be diagonalized by an orthogonal 2 × 2 matrix P ′

ij such that the
physical CP-odd states Amass

i (ordered in mass) are

Amass
1 = P ′

11A+ P ′
12SI ,

Amass
2 = P ′

21A+ P ′
22SI .

(A.2)

In terms of the weak eigenstates Aweak
i = (HdI , HuI , SI), the mass eigenstates (Amass

1 , Amass
2 )

are given by
Amass

i = PijA
weak
j , (A.3)

where
Pi1 = sin βP ′

i1 , Pi2 = cos βP ′
i1 , Pi3 = P ′

i2 . (A.4)

The inverse relation reads explicitly (omitting the Nambu-Goldstone boson)

HdI = P11A
mass
1 + P21A

mass
2 ,

HuI = P12A
mass
1 + P22A

mass
2 ,

SI = P13A
mass
1 + P23A

mass
2 . (A.5)

Omitting again the Goldstone boson, the charged weak eigenstates H±
u,d contain a com-

ponent of the physical charged Higgs boson H± given by

H±
u = cos βH± , H±

d = sin βH± . (A.6)

The (symmetric) 5× 5 neutralino mass matrix M0 (2.32) in the basis
ψ0 = (−iλ1,−iλ3

2,ψ
0
d,ψ

0
u,ψS) is diagonalized by an orthogonal real matrix Nij , such that
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Figure 2: Generic diagrams contributing to the decay Hi → γγ.

with the colour factor Ncf = 1(3) for leptons (quarks) and ef denoting the electric charge of the

loop particle. The form factors are given by

AHi
f,χ̃±(τ) = 2τ [1 + (1− τ)f(τ)] (4.48)

AHi

H±,f̃
(τ) = −τ [1− τf(τ)] (4.49)

AHi
W
(τ) = − [2 + 3τ + 3τ(2− τ)f(τ)] , (4.50)

where τ = 4M2
X
/M2

Hi
with MX being the mass of the particle X in the loop. For large loop

particle masses MX the form factors approach constant values,

AHi
f,χ̃±(τ) → 4

3 for M2
Hi

� 4M2
f,χ̃±

AHi

H±, �f
(τ) → 1

3 for M2
Hi

� 4M2
H±, �f

AHi
W
(τ) → −7 for M2

Hi
� 4M2

W
.

(4.51)

The Higgs couplings to fermions, W bosons, charged Higgs bosons and charginos, appearing in

the decay width into two photons, are given by

gHi
f

=

�
Si,u/ sinβ for f = up-type fermion

Si,d/ cosβ for f = down-type fermion
(4.52)

gHi
W

= Si,d cosβ + Si,u sinβ (4.53)

gHi
χ̃± ≡ gHi

χ̃±
k χ̃∓

k

=
2MW

Mχ̃±
k

[qkkSi,d + skkSi,u + rkkSi,s] (4.54)

gHi
H± =

M2
W

M2
H±

�
cos(2θW )

2 cos2 θW

�
cos

3β Si,d + sin
3β Si,u

�

+
1

2
cosβ sinβ

�
(3 + tan

2θW )− 4λ2/g2
��

sinβ Si,d + cosβ Si,u

�

+
1√

2gMW

�
2λµeff + sin 2β(Aλλ+ 2κµeff)

�
Si,s

�
. (4.55)

The matrix elements qkl, skl, rkl (k, l = 1, 2) in terms of the matrix elements of the matrices U, V
diagonalising the chargino mass matrix [75] read

qkl =
1√
2
Ul2Vk1 , skl =

1√
2
Ul1Vk2 , rkl =

λv

2
√
2MW

Ul2Vk2 . (4.56)
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4.1 Higgs boson production through gluon fusion

The cross section for NMSSM Higgs production via gluon fusion is mediated by quark Q and
squark Q̃ triangle loops, cf. Fig. 1. The latter become particularly important for squark masses
below about 400 GeV [4,5,9,71]. At leading order (LO) in the narrow-width approximation the
hadronic cross section for scalar Higgs bosons Hi (i = 1, 2, 3) can be cast into the form [71–73]

σLO(pp → Hi) = σHi
0 τHi

dLgg

dτHi

(4.32)

σHi
0 =

GFα2
s(µR)

288
√
2π

������

�

Q

g
Hi
Q A

Hi
Q (τQ) +

�

Q̃

g
Hi

Q̃
A

Hi

Q̃
(τQ̃)

������

2

, (4.33)

with the gluon luminosity Lgg, the Fermi constant GF , τHi = M
2
Hi
/s, where s denotes the

squared hadronic c.m. energy and τX = 4M2
X/M

2
Hi

(X = Q, Q̃). The strong coupling constant

αs is taken at the scale µR chosen equal to the mass of Hi. The form factors AHi

Q/Q̃
are given by

A
Hi
Q (τ) =

3

2
τ [1 + (1− τ)f(τ)] (4.34)

A
Hi

Q̃
(τ) = −3

4
τ [1− τf(τ)] (4.35)

and the function f(τ) reads

f(τ) =






arcsin2
1√
τ

τ ≥ 1

−1

4

�
log

1 +
√
1− τ

1−
√
1− τ

− iπ

�2
τ < 1 .

(4.36)

For large values of the loop particle masses the form factors become constant,

A
Hi
Q (τ) → 1 for M2

Hi
� 4m2

Q (4.37)

A
Hi

Q̃
(τ) → 1

4
for M2

Hi
� 4m2

Q̃
. (4.38)

For small values of tanβ the most important contributions come from the top and stop loops. In
order to study the effect of the stop loops and their interplay with the top quark loop, the Higgs
couplings to the top and stop quarks, gHi

Q , g
Hi

Q̃
, have to be investigated. Due to the diagonal

gluon coupling to stops, in the loop only the Higgs couplings to two equal stops can appear.

Q

g

g

Hi Q̃

g

g

Hi Hi

g

g

Q̃

Figure 1: Generic diagrams contributing gluon fusion production of Hi.
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Definitions

where gluon fusion is the most important process followed by gauge boson fusion. Higgs-

strahlung and associated production with a top quark pair
5
only play a minor role and are

more important for the determination of Higgs boson couplings.

The NMSSM production processes and decay channels deviate from the corresponding SM

Higgs H
SM

processes due to modified Higgs couplings and additional SUSY particles running in

the loop mediated processes. The couplings of the CP-even Higgs states Hi (and also those of

the CP-odd states) depend on their decompositions into the weak eigenstates Hd, Hu and S,

H1 = S1,d Hd + S1,u Hu + S1,s S ,

H2 = S2,d Hd + S2,u Hu + S2,s S , (4.21)

H3 = S3,d Hd + S3,u Hu + S3,s S .

The coefficients Si,u, Si,d hence quantify the amount of up- and down-likeness, respectively, while

Si,s is a measure for the singlet-component of a Higgs mass eigenstate. Mixings between the

SU(2)-doublet and singlet sectors are proportional to λ, and can be sizeable for λ >∼ 0.3, leading

to significant effects on the NMSSM Higgs couplings and hence phenomenology [15,16,18,19].

The inclusive production cross section σincl for a CP-even Higgs boson is composed of gluon

fusion, vector boson fusion, Higgs-strahlung and associated production with tt̄,

σincl(H) = σ(gg → H) + σ(Hqq) + σ(WH) + σ(ZH) + σ(tt̄H) ≈ σ(gg → H) , (4.22)

with H = Hi, H
SM

, respectively. It is dominated by the gluon fusion cross section. For later

convenience in the discussion of our results we normalise the relevant quantities of the NMSSM

Higgs bosons to the corresponding SM counterparts. Thus we define the ratio Rσincl of the

NMSSM inclusive cross section compared to the SM one,

Rσincl(Hi) ≡
σincl(Hi)

σincl(HSM)
≈ Rσgg(Hi) , (4.23)

where we have used Rσgg(Hi) defined as the ratio of the NMSSM gluon fusion production cross

section to the SM one,

Rσgg(Hi) ≡
σ(gg → Hi)

σ(gg → HSM)
. (4.24)

If not stated otherwise, in these and the following ratios the mass of the NMSSM Higgs boson

Hi and the one of the SM Higgs H
SM

are taken to be the same and they are subject to the

constraint M
HSM = MHi ≡ mh = 124− 127 GeV.

The ratio RΓtot for the total width compared to the SM Higgs total width is given by

RΓtot(Hi) ≡
Γtot(Hi)

Γtot(H
SM)

. (4.25)

While in the SM the largest decay width of a Higgs boson of about 126 GeV is the one into bb,

the most important search channels are given by the γγ, the massive gauge boson and the ττ
final states. We define the ratios of the NMSSM Higgs decay partial widths relative to the SM

as (X = γ,W,Z, b, τ)

RΓXX (Hi) ≡
Γ(Hi → XX)

Γ(HSM → XX)
. (4.26)

5For small tanβ values associated production with a bottom quark pair is negligibly small.
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Decay
The ratios of branching ratios are given by

R
BR

XX(Hi) ≡
BR(Hi → XX)

BR(HSM → XX)
=

RΓXX (Hi)

RΓtot(Hi)
. (4.27)

The experimentally observed rate in a given channelX is given by the reduced cross section RXX

which is obtained from multiplying the Higgs production ratio relative to the SM, Rσincl(Hi),

with the Higgs branching ratio for the channel of interest relative to the SM. For example, for

the two photon final state we have

Rγγ(Hi) ≡ Rσincl(Hi)R
BR

γγ (Hi). (4.28)

The corresponding reduced cross sections in the other decay channels V V (V = W,Z), bb, ττ
may be similarly expressed, namely:

RV V (Hi) ≡ Rσincl(Hi)R
BR

V V (Hi), Rbb(Hi) ≡ Rσ(V H)(Hi)R
BR

bb
(Hi),

Rττ (Hi) ≡ Rσincl(Hi)R
BR

ττ (Hi). (4.29)

In the bb final state we restrict ourselves to associated production of the Higgs boson with a

W or Z boson, as we will compare our results later with values given for this channel by the

experiments.

It is important to note that there can be NMSSM spectra where two neutral Higgs bosons lie

close in mass. Due to the limited experimental resolution these cannot be separated from each

other and both contribute to the signal. The program NMSSMTools takes this into account by

super-imposing the signal from the nearby Higgs boson with a Gaussian weighting. The width

of the Gaussian smearing is adapted to the respective experimental resolution in the different
final states, where clearly the γγ and ZZ final states have the best resolution, while the mass

resolution in the ττ and bb final states is less good, and in the WW final state the mass cannot

be reconstructed. Hence, the ratios for the rates, RXX , depending on the scenario and related

NMSSM spectrum under consideration, can be superpositions of rates of different Higgs bosons.
In favour of an unambiguous notation and to make contact with the signal strengths µ = σ/σSM
reported by the LHC experiments, we denote by µXX the reduced cross sections (4.28), (4.29),

which are built up by the superposition of the rates from the 126 GeV h boson and another

Higgs boson Φ = Hi, Aj , which is close by in mass,

µXX(h) ≡ Rσ(h)R
BR

XX(h) +

�

Φ �= h

|MΦ−Mh| ≤ δ

Rσ(Φ)R
BR

XX(Φ)F (Mh,MΦ, dXX) . (4.30)

Here σ = σ(V H) in case X = b and σ = σincl otherwise. By δ we denote the mass resolution

in the respective XX final state and by F (Mh,Mφ, dXX) the Gaussian weighting function as

implemented in NMSSMTools. The experimental resolution of the different channels is taken into

account by the parameter dXX , which influences the width of the weighting function. We impose

the restriction Eq. (3.17) on the thus calculated γγ rate, which in fact is the one observed in

experiment. Hence, in summary the conditions we impose on our parameter points are:

Conditions on the parameter scan:

At least one CP-even Higgs boson h with: 124 GeV <∼ Mh
<∼ 127 GeV

The reduced cross section for γγ must fulfill: µγγ(h) >∼ 0.8 with

124 GeV <∼Mh = M
HSM <∼ 127 GeV

(4.31)
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where we have used Rσgg(Hi) defined as the ratio of the NMSSM gluon fusion production cross

section to the gluon fusion production cross section for a SM Higgs boson H
SM

,

Rσgg(Hi) ≡
σ(gg → Hi)

σ(gg → HSM )
. (4.14)

In these and the following ratios the mass of the NMSSM Higgs boson Hi and the one of the SM

Higgs H
SM

are taken to be the same and they are subject to the constraint MHSM = MHi =

124− 127 GeV.

The ratio RΓtot for the total width compared to the SM Higgs total width is given by

RΓtot(Hi) ≡
Γtot(Hi)

Γtot(H
SM )

. (4.15)

While in the SM the largest decay width of a Higgs boson of about 125 GeV is the one into bb̄,

the most important search channels are given by the γγ, the massive gauge boson and the τ+τ−

final states. We define the ratios of the NMSSM Higgs decay partial widths relative to the SM

as (X = γ,W
±
, Z, b, τ±)

RΓXX (Hi) ≡
Γ(Hi → XX)

Γ(HSM → XX)
. (4.16)

The ratios of branching ratios are given by

R
BR

XX(Hi) ≡
BR(Hi → XX)

BR(HSM → XX)
=

RΓXX (Hi)

RΓtot(Hi)
. (4.17)

The experimentally observed rate in a given channel X is given by the reduced cross section

RXX which is obtained from multiplying the Higgs production ratio relative to the SM Rσincl(Hi)

times the Higgs branching ratio for the channel of interest relative to the SM, for example, for

the two photon final state:

Rγγ(Hi) ≡ Rσincl(Hi)R
BR

γγ (Hi). (4.18)
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the mass resolution in the ττ final state is much worse, and in the WW final state the mass
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The ratios of branching ratios are given by

R
BR

XX(Hi) ≡
BR(Hi → XX)

BR(HSM → XX)
=

RΓXX (Hi)

RΓtot(Hi)
. (4.27)

The experimentally observed rate in a given channelX is given by the reduced cross section RXX

which is obtained from multiplying the Higgs production ratio relative to the SM, Rσincl(Hi),

with the Higgs branching ratio for the channel of interest relative to the SM. For example, for

the two photon final state we have

Rγγ(Hi) ≡ Rσincl(Hi)R
BR

γγ (Hi). (4.28)

The corresponding reduced cross sections in the other decay channels V V (V = W,Z), bb, ττ
may be similarly expressed, namely:

RV V (Hi) ≡ Rσincl(Hi)R
BR

V V (Hi), Rbb(Hi) ≡ Rσ(V H)(Hi)R
BR

bb
(Hi),

Rττ (Hi) ≡ Rσincl(Hi)R
BR

ττ (Hi). (4.29)

In the bb final state we restrict ourselves to associated production of the Higgs boson with a

W or Z boson, as we will compare our results later with values given for this channel by the

experiments.

It is important to note that there can be NMSSM spectra where two neutral Higgs bosons lie

close in mass. Due to the limited experimental resolution these cannot be separated from each

other and both contribute to the signal. The program NMSSMTools takes this into account by

super-imposing the signal from the nearby Higgs boson with a Gaussian weighting. The width

of the Gaussian smearing is adapted to the respective experimental resolution in the different
final states, where clearly the γγ and ZZ final states have the best resolution, while the mass

resolution in the ττ and bb final states is less good, and in the WW final state the mass cannot

be reconstructed. Hence, the ratios for the rates, RXX , depending on the scenario and related

NMSSM spectrum under consideration, can be superpositions of rates of different Higgs bosons.

In favour of an unambiguous notation and to make contact with the signal strengths µ = σ/σSM
reported by the LHC experiments, we denote by µXX the reduced cross sections (4.28), (4.29),

which are built up by the superposition of the rates from the 126 GeV h boson and another

Higgs boson Φ = Hi, Aj , which is close by in mass,

µXX(h) ≡ Rσ(h)R
BR

XX(h) +

�

Φ �= h

|MΦ−Mh| ≤ δ

Rσ(Φ)R
BR

XX(Φ)F (Mh,MΦ, dXX) . (4.30)

Here σ = σ(V H) in case X = b and σ = σincl otherwise. By δ we denote the mass resolution

in the respective XX final state and by F (Mh,Mφ, dXX) the Gaussian weighting function as

implemented in NMSSMTools. The experimental resolution of the different channels is taken into

account by the parameter dXX , which influences the width of the weighting function. We impose

the restriction Eq. (3.17) on the thus calculated γγ rate, which in fact is the one observed in

experiment. Hence, in summary the conditions we impose on our parameter points are:

Conditions on the parameter scan:

At least one CP-even Higgs boson h with: 124 GeV <∼ Mh
<∼ 127 GeV

The reduced cross section for γγ must fulfill: µγγ(h) >∼ 0.8 with

124 GeV <∼Mh = M
HSM <∼ 127 GeV

(4.31)
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• To keep the Higgs mass corrections (governed by the corrections from the (s)top sector)
and hence the amount of fine-tuning as low as possible, the tree-level mass of the lightest
Higgs boson is maximized by fixing tanβ to small values chosen as

tanβ = 2, 4 . (3.8)

• Also the effective µeff parameter is kept as low as possible in order to avoid fine-tuning. It
is varied in the range

100 GeV ≤ µeff ≤ 200 GeV . (3.9)

Although we did not further consider the constraint coming from the anomalous magnetic
moment of the muon, we decided to take positive values of µeff as, similarly to the MSSM
µ parameter, positive values are favoured when this constraint is included, see e.g. [11].

• We shall be interested exclusively in large values of λ in order to increase the tree-level
mass of the CP-even Higgs boson associated with the 126 GeV Higgs boson resonance.
At the same time we pay attention that it remains small enough to ensure the validity
of perturbation theory up to large scales, chosen to be the GUT scale here. This also
constrains possible values of κ. Based on the results from the two-loop renormalisation
group running down to 1 TeV with and without the possibility of exotic extra matter [19]
we hence perform our scan in the ranges

0.55 ≤ λ ≤ 0.8 and 10−4 ≤ κ ≤ 0.4 . (3.10)

• The soft SUSY breaking trilinear couplings Aλ and Aκ are varied in the ranges

−500 GeV ≤ Aκ ≤ 0 GeV and 200 GeV ≤ Aλ ≤ 800 GeV . (3.11)

• For fine-tuning reasons we keep the soft SUSY breaking masses of the stop sector rather
low and vary them simultaneously as

500 GeV ≤ MQ̃3
= Mt̃R

≤ 800 GeV . (3.12)

For AU (U ≡ u, c, t)2 we choose two representative values corresponding to low and large
mixing,

AU = 0 GeV and 1 TeV . (3.13)

Our lightest stop mass is hence about 400 GeV and in accordance with the LHC constraints
[57].3

• In order to comply with the present LHC search bounds [60], we conservatively set the soft
SUSY breaking masses of the squark sector of the first two generations equal to 2.5 TeV
and, for simplicity, also those of the slepton sector apart from the soft SUSY breaking stau
masses. The latter are chosen equal to 300 GeV. This way we still allow for rather light stau

2In NMSSMTools there is no distinction between Au, Ac, At.
3In scenarios with a very small mass difference between the lightest stop t̃1 and the lightest neutralino χ̃0

1

assumed to be the lightest SUSY particle, stop masses down to about 100-130 GeV are still allowed for mχ̃0
1
≥

90 GeV [58,59].
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masses but are conservative enough to fulfill the latest LHC results [61]. It should be noted,

however, that our results almost do not change by choosing different values in the stau

sector
4
as the influence of the slepton sector on the Higgs mass corrections is negligible.

And contrary to the MSSM, light stau masses here do not lead to an enhancement of

the partial width into photons [6], as we have chosen small values of tanβ and µeff . We

furthermore set the trilinear couplings of the down and lepton sector equal to 1 TeV and

the right-handed soft SUSY breaking sbottom mass equal to 2.5 TeV. This results in

light sbottom masses of about 500 GeV <∼ mb̃1
<∼ 800 GeV. Hence we have (D ≡ d, s, b,

E ≡ e, µ, τ)

MũR = Mc̃R = MD̃R
= MQ̃1,2

= MẽR = Mµ̃R = ML̃1,2
= 2.5 TeV,

Mτ̃R = ML̃3
= 300 GeV , AD = AE = 1 TeV . (3.14)

• The gluino soft SUSY breaking mass parameter has been set to

M3 = 1 TeV . (3.15)

The remaining two soft SUSY breaking gaugino parameters have been chosen M1 =

150 GeV and M2 = 300 GeV.

It should be noted that in NMSSMTools the NMSSM-specific input parameters λ,κ, Aλ and Aκ

according to the SLHA format are understood as running DR parameters taken at the SUSY

scale M̃ = 1 TeV, while tanβ is taken at the mass of the Z boson, MZ .

We remark, that at the cost of a more time consuming scan we could have enlarged our

parameter ranges of Aκ, Aλ and κ. As will be evident from our numerical analysis later, the

limitation of the scan to this restricted parameter area nevertheless leads to a substantial amount

of parameter points which are compatible with the applied constraints due to experimental

results and fine-tuning arguments. Note also, that choosing large positive values for Aκ for

negative κ leads to non self-consistent solutions. Concerning Aλ, it is related to the charged

Higgs boson mass, which is below the experimental limit if Aλ is chosen too small. A posteriori

it also turned out that the chosen upper bound of Aλ was largely sufficient to capture the

maximum of allowed parameter points which can be achieved for the chosen Aκ range.

The parameter scan is further restricted by demanding the NMSSM Higgs spectrum to fulfill

the following conditions:

• We demand one of the scalar Higgs bosons, which we will denote from here on by h, to
have its mass in the range

scalar Higgs boson h: 124GeV ≤ mh ≤ 127GeV , (3.16)
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• In order to explore the possibility of an enhanced branching ratio into photons, we fur-

thermore demand that the γγ rate around the invariant mass value 126 GeV fulfills:

rate for the γγ final state normalised to the SM value >∼ 0.8 . (3.17)
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sector
4
as the influence of the slepton sector on the Higgs mass corrections is negligible.
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E ≡ e, µ, τ)

MũR = Mc̃R = MD̃R
= MQ̃1,2

= MẽR = Mµ̃R = ML̃1,2
= 2.5 TeV,

Mτ̃R = ML̃3
= 300 GeV , AD = AE = 1 TeV . (3.14)

• The gluino soft SUSY breaking mass parameter has been set to

M3 = 1 TeV . (3.15)

The remaining two soft SUSY breaking gaugino parameters have been chosen M1 =

150 GeV and M2 = 300 GeV.
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• We do not put any restrictions on the rates in the massive gauge boson and fermion final
states.

• For the other Higgs bosons, i.e. the pseudoscalar Higgs bosons and the scalar Higgs bosons
outside the mass range around 126 GeV, we check if they have not been excluded by the
LEP, Tevatron and LHC searches. Otherwise the whole parameter point is rejected. We
have taken into account the newest exclusion limits in the various final states reported by
the experiments [62–70], which we have implemented in NMSSMTools.

Our choice of parameters results in rather low top squark, charged Higgs boson and chargino
masses, still compatible, however, with present LHC SUSY search results. For tanβ = 2 we
have

m
t̃1

= 400− 820 GeV , m
t̃2
= 530− 890 GeV , (3.18)

MH± = 200− 500 GeV , Mχ̃±
1
= 105− 165 GeV , Mχ̃±

2
= 345− 360 GeV , (3.19)

and similar values for tanβ = 4. The stop mass values are small enough so that the fine-tuning
is expected to be rather low.

We finally remark that we did not restrict our parameter points taking into account the relic
density. We checked, however, that there is a substantial amount of parameter points which lead
to relic densities due to a neutralino DM candidate, which are smaller than the WMAP value. To
achieve the correct amount of relic density another candidate than the neutralino would have to
be thought of. Furthermore, we convinced ourselves that e.g. by slightly changing the values of
the gaugino mass parametersM1, M2 the correct amount of relic density could be achieved, while
the Higgs mass spectrum remains practically unchanged, so that we did not further consider
this constraint. For discussions taking into account DM constraints, see e.g. [21–24,37].

4 NMSSM Higgs boson production and decay

In order to decide whether the 126 GeV NMSSM Higgs boson reproduces the rates as measured
by the experiments, its production cross sections and branching ratios have to be investigated.
In the following the dominant production process through gluon fusion and its modification with
respect to the SM will be discussed in detail. We furthermore investigate the NMSSM Higgs
branching ratio into photons, as the LHC experiments see a slight excess here with respect to
the SM. With the presently available data, this has to be taken with due caution, however, as
it could still turn out to be a statistical fluctuation. If it persists, however, it is a hint towards
New Physics and shall be taken into account in our analysis. We start with some preliminary
remarks and set up our notation.

At the LHC, for small values of tanβ, the production processes for a single neutral CP-even
NMSSM Higgs boson Hi (i = 1, 2, 3) or a CP-odd Higgs state Aj (j = 1, 2) are given by

Gluon fusion: gg → Hi and gg → Aj

Gauge boson fusion: qq → qq +W
∗
W

∗
/Z

∗
Z

∗ → qqHi

Higgs-strahlung: qq̄ → Z
∗
/W

∗ → Hi + Z/W

Associated production with tt̄: gg/qq̄ → tt̄Hi and gg/qq̄ → tt̄Aj

(4.20)
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• To keep the Higgs mass corrections (governed by the corrections from the (s)top sector)
and hence the amount of fine-tuning as low as possible, the tree-level mass of the lightest
Higgs boson is maximized by fixing tanβ to small values chosen as

tanβ = 2, 4 . (3.8)

• Also the effective µeff parameter is kept as low as possible in order to avoid fine-tuning. It
is varied in the range

100 GeV ≤ µeff ≤ 200 GeV . (3.9)

Although we did not further consider the constraint coming from the anomalous magnetic
moment of the muon, we decided to take positive values of µeff as, similarly to the MSSM
µ parameter, positive values are favoured when this constraint is included, see e.g. [11].

• We shall be interested exclusively in large values of λ in order to increase the tree-level
mass of the CP-even Higgs boson associated with the 126 GeV Higgs boson resonance.
At the same time we pay attention that it remains small enough to ensure the validity
of perturbation theory up to large scales, chosen to be the GUT scale here. This also
constrains possible values of κ. Based on the results from the two-loop renormalisation
group running down to 1 TeV with and without the possibility of exotic extra matter [19]
we hence perform our scan in the ranges

0.55 ≤ λ ≤ 0.8 and 10−4 ≤ κ ≤ 0.4 . (3.10)

• The soft SUSY breaking trilinear couplings Aλ and Aκ are varied in the ranges

−500 GeV ≤ Aκ ≤ 0 GeV and 200 GeV ≤ Aλ ≤ 800 GeV . (3.11)

• For fine-tuning reasons we keep the soft SUSY breaking masses of the stop sector rather
low and vary them simultaneously as

500 GeV ≤ MQ̃3
= Mt̃R

≤ 800 GeV . (3.12)

For AU (U ≡ u, c, t)2 we choose two representative values corresponding to low and large
mixing,

AU = 0 GeV and 1 TeV . (3.13)

Our lightest stop mass is hence about 400 GeV and in accordance with the LHC constraints
[57].3

• In order to comply with the present LHC search bounds [60], we conservatively set the soft
SUSY breaking masses of the squark sector of the first two generations equal to 2.5 TeV
and, for simplicity, also those of the slepton sector apart from the soft SUSY breaking stau
masses. The latter are chosen equal to 300 GeV. This way we still allow for rather light stau

2In NMSSMTools there is no distinction between Au, Ac, At.
3In scenarios with a very small mass difference between the lightest stop t̃1 and the lightest neutralino χ̃0

1

assumed to be the lightest SUSY particle, stop masses down to about 100-130 GeV are still allowed for mχ̃0
1
≥

90 GeV [58,59].
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Figure 3: The distribution of allowed parameter points in the κ-λ plane for h = H1 (left) and h = H2 (right) for
At = 0 GeV (upper) and At = 1 TeV (lower). The red (blue) contour lines show the two-loop upper bounds for
λ and κ at 1 TeV in the NMSSM without (with) extra matter above 1 TeV. The colour code denotes the number
of points.

singlets, are set by κµeff/λ these states tend to be lighter than the 126 GeV Higgs boson. As

both the H1 and H2 mass values increase with rising κ, for H1 we need for the same reasons

large κ values of κ ≈ 0.4, while too large values of κ lead to too large H2 masses so that here

values κ ≈ 0.07–0.09 are preferred. With increasing values of At the stop mass corrections to

the tree-level masses become more important so that a 126 GeV Higgs mass can be attained

more easily and therefore more parameter points pass the constraints. For the same reason the

maximum of points is given for smaller values of λ now, decreasing from λ ≈ 0.73 (0.72) at small

stop mixing to λ ≈ 0.68 (0.66) for h = H1 (H2) at large mixing.

In the plots we also show the upper bounds on λ and κ imposed by perturbativity derived

from the two-loop renormalisation group running from the GUT scale down to 1 TeV. These

limits can be somewhat relaxed when allowing for extra exotic matter with mass around 1 TeV.

They show that an H1 Higgs boson with mass around 126 GeV can only be achieved for large

mixing with At = 1 TeV. For lower values of At even with the inclusion of extra matter, this

is not possible. The heavier Higgs boson H2 on the other hand can have a 126 GeV mass

value with and without exotic matter. We finally note that in case At = 0 GeV, for h = H1

the trilinear couplings Aκ, Aλ cluster around (Aκ, Aλ) = (0 GeV, 310 GeV) and for h = H2
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Figure 4: Mass spectrum of A1 and H2 for h = H1 (left) and of A1 and H1 for h = H2 (right) with At = 0 GeV
(upper) and 1 TeV (lower). The colour code denotes the number of points.

around (Aκ, Aλ) = (−140 GeV, 310 GeV). In case At = 1 TeV, we have for h = H1 the
maximum of points around (Aκ, Aλ) = (0 GeV, 340 GeV) and for h = H2 around (Aκ, Aλ) =
(−140 GeV, 340 GeV).

Figure 4 shows the mass distributions of the lighter neutral Higgs bosons for H1 and H2

being h, respectively. For h = H1 there exist parameter regions where H2 and/or A1 are very
close in mass. Depending on the respective experimental resolution in the investigated final state
their signal can superimpose the h rate. This superposition has been taken into account in the
reduced cross sections discussed later. The maximum of parameter points clusters around mass
values MH2,A1 ≈ (175, 170) GeV. Also for H2 with mass ∼ 126 GeV the H1 and/or A1 state can
be close in mass and contribute to the signal. Their masses can be also much smaller, however,
so that H2 decays into these final states become possible, leading to distinct signatures [76]. The
maximum parameter points are found for MH1,A1 ≈ (85, 110) GeV. The masses of the heavier
Higgs bosons H3 and A2 lie between about 300 and 500 GeV.

We remind the reader that in all plots we have already taken into account the latest exclusion
limits from LEP, Tevatron and LHC which apply to the non-h Higgs bosons. In particular for
scenarios with h = H1 this leads to a substantial reduction of allowed parameter points.

As for tanβ = 4, it turns out that for small mixing no parameter combination fulfills the
conditions (4.31) for the lightest NMSSM Higgs boson H1. Only for large mixing a few hundred
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Figure 6: Branching ratio into γγ relative to the SM against the inclusive production cross section relative to the
SM for h = H1(left) and h = H2(right) for At = 0 GeV (upper) and At = 1 TeV (lower). For green/red points
the perturbation theory is valid up to the GUT scale. Cyan/pink points require extra matter above 1 TeV and
yellow points violate the two-loop upper bounds on λ,κ both with and without extra matter. Points above the
black line lead to an enhanced Rγγ .

to ∼ 1.5 compared to the SM. This happens where decays of H2 into other lighter Higgs bosons

H1 or A1 and/or neutralino final states are kinematically allowed [76]. The relevant decays are

H2 → χ̃0
1χ̃

0
1, H2 → H1H1 and H2 → A1A1, with the latter being rarely realised.

The corresponding plots to Fig. 5 for tanβ = 4 show a similar behaviour with altogether less

parameter points, however, and a maximum photonic branching ratio enhancement of Rγγ ≈ 5

for both h = H2 andH1 (with only the large mixing case surviving here). And for the total width

the maximum value is RΓtot ≈ 1.35 due to H2 decays into light Higgs bosons or neutralinos.

With Fig. 6 we discuss the interplay of production and decay on the photon rate. We show the

branching ratio into γγ relative to the SM plotted against the inclusive cross section normalised

to the SM for either h = H1 or h = H2. As the inclusive production is dominated by gluon fusion,

we can restrict our discussion to this production process. The figures show that for vanishing

At gluon fusion can indeed be enhanced compared to the SM due to stop loop contributions,

as has been discussed in Section 4.1. With rising mixing the stop loop contribution interferes

destructively, and for At = 1 TeV the gluon fusion process is suppressed compared to the SM.

Also the branching ratio into photons shows the expected opposite behaviour. For large values

of At, where constructively interfering stop loops enhance the partial width, we can observe
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Figure 8: Reduced cross section into γγ versus the reduced cross section into ZZ for At = 0 GeV (upper) and

At = 1 TeV (lower ) with h = H1 (left) and h = H2 (right). Cyan/pink points indicate the signals where at least

two Higgs bosons with similar masses overlap and the combined reduced cross section deviates by more than 10%

from the reduced cross section of the individual Higgs boson. Bars: Experimentally measured values with error

bars (full/ATLAS, dashed/CMS).

that here the enhanced rate in the photon final state is due to the increased branching ratio into

photons because of suppressed H2 couplings to b quarks in this case. Due to sum rules the H1

coupling to b quarks is then substantial. The combination of the effects of Higgs couplings to

SM particles and experimental exclusion limits then implies the observed pattern in the plots.

Concerning H1, it mainly decays into b-quark pairs with a branching ratio of 0.8–0.9, followed

by decays into τ pairs and a branching ratio of roughly 0.1. The Higgs-to-Higgs or Higgs-to-

neutralino decays hence lead to interesting final state signatures with e.g. 4b, 2b 2τ , 4τ or even

multi-µ final states in the former case, from the secondary Higgs decays. In the latter case the

final state lightest neutralino entails large missing energy. Such events could act as smoking gun

signatures for extended Higgs sectors beyond the minimal SUSY version.

5.3 Compatibility with the LHC Higgs search results

In this subsection we investigate the compatibility of the results for the reduced cross sections

µXX with the experimental best fit values of the signal strengths in the various final states.

Figures 8–11 show the reduced cross section in the γγ final state compared to the one in ZZ,

WW , bb and ττ , respectively, for h = H1 and H2 with At = 0 GeV and At = 1 TeV. The

bars represent the newest results for the best fit values of the signal strengths µ = σ/σSM
in the different final states, reported by the ATLAS [1, 64–66] and the CMS Collaboration

[2, 67–70], together with their corresponding errors. The values and errors are listed in Table 1
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Figure 9: Reduced cross section into γγ versus the reduced cross section into WW for At = 0 GeV (upper) and

At = 1 TeV (lower) with h = H1 (left) and h = H2 (right). Cyan/pink points indicate the signals where at least

two Higgs bosons with similar masses overlap and the combined reduced cross section deviates by more than 10%

from the reduced cross section of the individual Higgs boson. Bars: Experimentally measured values with error

bars (full/ATLAS, dashed/CMS).

in Appendix A. First of all the plots demonstrate that both H1 and H2 can have a mass around

126 GeV and be compatible with the experiment, for small and for large mixing in the stop

sector. Moreover an enhancement in the photon rate by up to a factor ∼ 2.4 is possible. The

allowed parameter regions are somewhat more extended for At = 0 GeV, which is an interplay

between the production cross section and decay into photon pairs leading to more important

reduced rates for the small mixing case. The regions in cyan (pink) indicate where additional

Higgs bosons close in mass join h = H1 (h = H2) to build up the signal and lead to reduced

cross sections that differ by more than 10% from the one of h alone. Depending on the value

of At and the final state these regions are more or less extended: The experimental resolution

in the various final states is not the same, which has been taken into account by applying a

different width in the Gaussian smearing of the non h Higgs cross sections, that are added to

the h final state. Therefore the parameter regions with several Higgs bosons contributing to

the final state are for WW final states, where the Higgs mass cannot be reconstructed, different
from the ones for ZZ. The same holds for the fermionic final states. Here the resolution in

the ττ final states is less good than the one in bb, leading to the ’nose’ in the plots for h = H1

Fig. 11 (left) against the ττ final state.
9

Another reason for the difference in the extensions

of the parameter regions is that due to the different Higgs-gauge and Higgs-fermion coupling

9
The difference in the bb and ττ branching ratios due to QCD corrections is small enough not to play a

significant role here; nor do the negligible ∆b corrections.
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Figure 10: Reduced cross section into γγ versus the reduced cross section into bb for At = 0 GeV (upper) and

At = 1 TeV (lower) with h = H1 (left) and h = H2 (right). Cyan/pink points indicate the signals where at least

two Higgs bosons with similar masses overlap and the combined reduced cross section deviates by more than 10%

from the reduced cross section of the individual Higgs boson. Bars: Experimentally measured values with error

bars (full/ATLAS, dashed/CMS).

structures, for a lot of parameter points the non-h Higgs state contributions to the gauge boson

final states can not be important enough to induce a change in the rate by more than 10%. This

is because the Higgs-gauge couplings for small values of tanβ are dominated by the up-type

Higgs component. In order to achieve a large enough production for the h Higgs boson through

gluon fusion its up-type component must be near the SM value, inducing a very small up-type

component for the other CP-even Higgs bosons due to coupling sum rules, so that they hardly

decay into massive gauge bosons. The down-type component of the Higgs bosons, however,

has not been restricted and therefore both the h Higgs boson and the other one(s) with mass

close by can have equally important couplings to down-type quarks depending on the amount

of singlet-doublet mixing.

A substantial amount of scenarios compatible with an excess in the photon final state is hence

only due to a superposition of Higgs rates stemming from nearly degenerate Higgs bosons. The

experimental distinction of such scenarios from single Higgs rates, as has been discussed e.g. in
Ref. [39], would be a clear signal of beyond the SM Higgs physics.

The plots show the strong correlation between the γγ and the massive gauge boson final

states: In case the increase in the photonic final state is due to an enhanced photon branching

ratio caused by a suppression in the decay width into bb, this affects the branching ratio into
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Figure 11: Reduced cross section into γγ versus the reduced cross section into ττ for At = 0 GeV (upper) and

At = 1 TeV (lower) with h = H1 (left) and h = H2 (right). Cyan/pink points indicate the signals where at least

two Higgs bosons with similar masses overlap and the combined reduced cross section deviates by more than 10%

from the reduced cross section of the individual Higgs boson. Bars: Experimentally measured values with error

bars (full/ATLAS, dashed/CMS).

gauge bosons as well and leads also here to larger rates. Should the gauge boson reduced cross

sections turn out to be exactly SM-like, a strongly enhanced rate into the γγ final state would

be difficult to comply with. Nevertheless, even in this case enhanced photonic rates up to ∼1.6–

1.8 are still possible. At the present status of experimental errors and experimental resolution

everything is still compatible. There is a little bit more tension with the CMS results, as CMS

finds suppressed rates into ZZ,WW contrary to ATLAS reporting enhanced rates. With more

data accumulated by the experiments and reduced errors on the µXX values future will show

which of these scenarios will survive and which will be excluded. The correlation between the

photon and the fermion final states on the other hand is much less pronounced. While in the

gauge boson final states the branching ratios are simultaneously affected by a change in the bb
decay mode, the down-type fermion final states are less sensitive to such a change. In the bb
final state the µ value reported by ATLAS lies below the allowed regions, the one of CMS above,

both still compatible within the large errors with the results of the parameter scan so that at

present no conclusive statement can be made. In the ττ final state the reported µ value is below

one and hence the Higgs-ττ coupling suppressed. The ATLAS and CMS values are on the left

border of the allowed parameter range and compatible within errors, which also in this channel

are still too large to make firm statements.
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0
1

Figure 7: Reduced cross sections into γγ againstMH1 (left) andMχ̃0
1
(right) for h = H2, tanβ = 2 and At = 1 TeV.

The colour code denotes the size of the branching ratio BR(H2 → H1H1) (left) and BR(H2 → χ̃0
1χ̃

0
1) (right).

slightly larger branching ratios than for At = 0 GeV. It should be kept in mind though that the
behaviour of the branching ratio is an interplay of the partial width into photons and the total
width. Once again for tanβ = 4 the corresponding plots to Fig. 6 show a similar behaviour with
altogether less parameters points.

Above the black line the reduced cross section Rγγ = R
BR
γγ Rσincl

≥ 1.8 As can be inferred
from the plots, in the NMSSM both H1 and H2 are compatible with a 126 GeV Higgs boson and
an enhanced rate into photon final states. For h = H2 there are substantially more (red) points,
which are compatible with the constraints that come from the requirement of the validity of
the perturbation theory up to the GUT scale, than for h = H1 (green points). In particular for
vanishing At extra matter is required, behaviour which can be traced back to the need of the
H1 tree-level mass being as large as possible, cf. the discussion in the previous subsection. We
note that there are scenarios where both the branching ratio and the inclusive production are
very small due to h being very singlet-like. These scenarios passed the constraint (4.31) as in
this case the photon reduced cross section µγγ , which can be a superposition of contributions
from various Higgs bosons being close in mass, is dominated by the contribution from another
light Higgs boson with a mass of ∼ 126 GeV, which is not singlet-like in this case.

As already mentioned above the heavier CP-even Higgs boson H2 can decay into a pair of
lighter Higgs bosons or neutralinos in certain parameter regions. This is shown in Fig. 7, where
for tanβ = 2 and At = 1 TeV the reduced cross section in the γγ final state in case of h = H2,
µγγ(H2), is plotted against the mass of the lightest scalar Higgs boson H1 and the mass of the
lightest neutralino χ̃0

1, respectively. The colour code denotes the size of the respective branching
ratio, which is zero above the kinematic thresholds. These rainbow plots show that in case of
enhanced photonic rates such non-standard Higgs decays always remain below about 10–20%.
The reduced cross section µγγ is suppressed in case of sizeable branching ratios above ∼ 0.25
with a maximum of BR

max
H2

(H1H1) ≈ 0.36 and BR
max
H2

(χ̃0
1χ̃

0
1) ≈ 0.43. They are small enough

not to be excluded by the present experimental bounds. As can be read off Fig. 7 (left), the
largest enhancements in the photon final state occur for almost degenerate H1 and H2 masses,
which corresponds to neutralino masses around 73 GeV, see Fig. 7 (right). We explicitly verified

8
Note that we discuss here the reduced cross section for h only. Later we will look at reduced cross sections

µXX in the final state X, built up by the 126 GeV Higgs boson and possibly nearby Higgs resonances. This is

what actually is observed in the experiment.
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Focus on models which provide a dynamical origin of µ term:

                       SHuHd   where singlet <S> » µ » TeV

Danger from weak scale axion due to global U(1) symmetry 

 Need to avoid axion somehow  

  In NMSSM we add S3 to break U(1) to Z3 – but this results 

in cosmological domain walls (μS2 
,
 μ2S reintroduces µ problem)

  In E6SSM we gauge the U(1) symmetry to eat the axion 

resulting in a massive Z’ gauge boson - anomalies are cancelled 
by three complete 27’s of E6 at the TeV scale with U(1) 2 E6

More general SUSY models



King, Moretti, Nevzorov
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Mstring

TeV    U(1)N broken, Z’ and exotics get mass, µ term generated  

MW SU(2)L£ U(1)Y broken

RH neutrinos 
neutral under:

SU(3)×SU(2)×U(1)Y£U(1)N

remaining matter content of 3 families of 
27’s of E6 survives down to the TeV scale 
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Matter Content of 27’s of E6 Matter Content

D. Miller 3SUSY 2011

All the SM matter fields are contained in one 27-plet of E6 per generation.
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The Constrained E6SSM 
Athron, King, Miller, Moretti, NevzorovFigure 3: Squark and gluino mass contours (left panel) and Higgs mass contours (right panel) in the

(m0,M1/2) plane of the cE6SSM with tanβ = 10, λ12 = 0.1, s = 10 TeV, corresponding to MZ� = 3.778

TeV. Scans are produced with a universal κ coupling varied over {0, 3} and λ3 over {−3, 0} so that

µeff ≤ 0.

In Fig. 4 we see that if we increase the singlet VEV further to s = 20 TeV then we are

no longer restricted by the lower limits on the Higgs mass, with only a few points having

a Higgs mass of 122 GeV, but now there is a substantial region ruled out by the upper

limit mh ≥ 127.5 set by CMS.

Figs. 5 and 6 demonstrate that even with very heavy s values, such that the Z �
is well

beyond reach of the LHC, not only is there still a small region of parameter space where

the gluino is observable, but additionally a Higgs mass measurement would yield useful

information about the parameter space well above what can actually be constrained from

direct searches. This illustrates the significance of the Higgs to providing constraints and

measurement of cE6SSM parameters.

Notice also that while in much of the parameter space new physics states are out of

reach, reducing the λ1,2 coupling such that the inert Higgsinos are observable would not

perturb the RG evolution much, so these plots remain a very good approximation. Thus

they reveal an interesting potential scenario where only the inert Higgsinos and the SM-

like Higgs are discovered, but an accurate Higgs mass measurement would give a great

deal of information on the parameter space.

Finally we comment on the tan β dependence of these results. The form of the squark

and gluino contours is not substantially modified by changing tan β so we do not reproduce

these plots here. However the allowed region of parameter space is dramatically changed,

as are the Higgs masses. This is illustrated in Fig. 7 where we plot the allowed region of

the parameters space for s = 10 TeV and tan β = 3 (left) and tan β = 30 (right). Here
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Fine-tuning in the cE6SSM 
Athron, Binjonaid, King
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accurate determination in the Higgs mass for selecting the most appropriate value of s.
Fine tuning starts from 200, although a very small region, and quickly increases to 500

such that a significant portion of the parameter has ∆max � 500. The benchmark point

has ∆BM = 330 for mh ≈ 125 GeV. The dominance of the MZ� term in Eq. 16 for fine

tuning can be seen in the right panel of Fig. 10, as usual dependent on the particular

point in the m0 −m1/2 plane.

Figure 11: ∆max (left) and mh (right) in the m0 −m1/2 plane for tanβ = 10 and s = 10 TeV

corresponding to MZ� = 3.8 TeV. The benchmark point corresponds to m0 = 2975,m1/2 = 1005
GeV.

Figure 12: The left panel highlights the parameter responsible for the largest amount of fine

tuning, ∆max, in the m0 −m1/2 plane for tanβ = 10 and s = 10 TeV corresponding to MZ� =
3.8 TeV. On the right a coarse scan shows which terms Eq. 16 give the largest contribution,

with regions where the largest contribution comes from term 2, which is proportional to m2
d −

m2
u tan

2 β, are shown in yellow and while regions where the dominant contribution is from term

3, proportional to M2
Z� are shown in blue.

Finally, for s = 10 TeV, corresponding to MZ� = 3.4 TeV, in the left panel of Fig. 11

the fine tuning starts from 300, and the parameter space is severely restricted in terms
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1 Introduction

The LHC detectors has accumulated about 5.8 fb
−1 of data at 8 TeV with

no sign of supersymmetry (SUSY). The absence of SUSY at the LHC has

raised some concern over the naturalness of some SUSY models since it is

well-known that as the experimental limits on the masses of sparticles rise,

which is the case [1, 2], the separation between the SUSY scale and the Weak

scale becomes larger, thereby resulting in more tree-level fine tuning due to

the correlation between the Higgs mass parameters and both the stop masses

and the mass of the Z boson. This fact, together with the newly observed

Standard-Model-like H boson at mh = 125 − 126 GeV [3, 4] seems to place

the constrained versions of SUSY models in tension with naturalness for they

will require a rather large amount of fine tuning; O(> 500). The CMSSM,

for instance, was shown to possess fine tuning in the range of 500 − 1000 if

it is to contain a 125 GeV Higgs mass [5, 6]. 4

On the other hand, the non-minimal supersymmetric extension of the

Standard Model (SM) based on the E6 group, the E6SSM [7, 8] can accom-

modate a larger tree-level Higgs mass than that of both the MSSM and the

NMSSM due to the presence of additional terms,

m
2
h ≈ M

2
Z cos2 2β� �� �
MSSM

+
λ2

2
v
2 sin2 2β

� �� �
NMSSM

+
M

2
Z

4
(1 +

1

4
cos 2β)2

� �� �
E6SSM

+∆m
2
h, (1)

where, tan β is the ratio between the two Higgs doublets’ vacuum expectation

4
However, according to the references, this can be lowered if one increases mt and

decreases α3

1



LHC phenomenology of E6SSM
SUSY - typical spectrum has heavier 
squarks and lighter gluinos, with gluinos 
having longer decay chains than MSSM, 
due to extra neutralinos and charginos, 
giving less missing energy and more soft 
leptons and jets

Higgs - Richer Higgs spectrum than 
MSSM or NMSSM (incl. inert Higgs)

Exotics - Z’, D-leptoquarks/diquarks 



Neutralinos in E6SSM
3 Higgs families = 1 MSSM family Hu Hd + 2 inert families Hu1 Hd1 Hu2 Hd2  

3 families of Singlets = 1 NMSSM singlet S  + 2 inert singlets S1 S2  

The full neutralino mass matrix

appear in the neutralino or chargino mass matrices. Additionally, they only appear in

Feynman rules that involve the inert Higgs scalars and we assume that these are given soft

SUSY breaking masses that are heavy enough such that these particles do not contribute

to any processes relevant for the current study.

As a final note, one could perhaps argue that these couplings should be arranged

to help ensure that only the third generation singlet scalar radiatively acquires a VEV.

However, as the contributions to the running of the singlet scalar square masses could

be coming mostly from the heavy exotic quarks, there is little reason to impose any

constraints from such considerations on the λijk couplings.

4 The Neutralino and Chargino Mass Matrices

In the MSSM there are four neutralino interaction states, the neutral wino, the bino and

the two Higgsinos. In the USSM, two extra states are added, the singlino and the bino′.

In the conventional USSM basis

χ̃0
int = ( B̃ W̃ 3 H̃0

d H̃0
u S̃ B̃′ )T (7)

and neglecting bino-bino′ mixing (as justified in Ref. [9]) the USSM neutralino mass matrix

is then

Mn
USSM =

























M1 0 −mZsW cβ mZsW sβ 0 0

0 M2 mZcW cβ −mZcW sβ 0 0

−mZsW cβ mZcW cβ 0 −µ −µssβ g′1vcβQN
d

mZsW sβ −mZcW sβ −µ 0 −µscβ g′1vsβQN
u

0 0 −µssβ −µscβ 0 g′1sQ
N
s

0 0 g′1vcβQN
d g′1vsβQN

u g′1sQ
N
s M ′

1

























, (8)

where M1, M2 and M ′
1 are the soft gaugino masses, µs = λv/

√
2, 〈Hd〉 = v cos β/

√
2 and

〈Hu〉 = v sin β/
√

2. In the E6SSM this is extended. We take the full basis of neutralino

interaction states to be

χ̃0
int = ( B̃ W̃ 3 H̃0

d H̃0
u S̃ B̃′ H̃0

d2 H̃0
u2 S̃2 H̃0

d1 H̃0
u1 S̃1 )T. (9)

The first four states are the MSSM interaction states, the S̃ and B̃′ are the extra states

added in the USSM and the final six states are the extra inert doublet Higgsinos and

Higgs singlinos that come with the full E6SSM model. Under the assumption that only

the third generation Higgs doublets and singlet acquire VEVs the full Majorana mass

matrix is then

Mn
E6SSM =









Mn
USSM B2 B1

BT
2 A22 A21

BT
1 AT

21 A11









, (10)

where the sub-matrices involving the inert interaction states are given by

Aαβ = −
1√
2









0 λαβs fuβαv sin β

λβαs 0 fdβαv cos β

fuαβv sin β fdαβv cos β 0









, (11)

and the ZH
2 breaking sub-matrices by

Bα = −
1√
2

























0 0 0

0 0 0

0 xdαs zαv sin β

xuαs 0 zαv cos β

xuαv sin β xdαv cos β 0

0 0 0

























. (12)

Similarly we take our basis of chargino interaction states to be

χ̃±
int =

(

χ̃+
int

χ̃−
int

)

,

where

χ̃+
int =













W̃+

H̃+
u

H̃+
u2

H̃+
u1













and χ̃−
int =













W̃−

H̃−
d

H̃−
d2

H̃−
d1













. (13)

The corresponding mass matrix is then

M c
E6SSM =

(

CT

C

)

,

where

C =













M2

√
2mW sin β 0 0

√
2mW cos β µ 1√

2
xd2s

1√
2
xd1s

0 1√
2
xu2s

1√
2
λ22s

1√
2
λ21s

0 1√
2
xu1s

1√
2
λ12s

1√
2
λ11s













. (14)

It is clear that a generic feature of the E6SSM is that the LSP is usually (naturally)

composed mainly of inert singlino and ends up being typically very light. One can see this

12x12 
matrix!!
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Longer decay chains
3

MSSM E6SSM

tanβ 10 1.77

λ - 0.55

s - 5418

[G
e
V
]

µ 1578 (2107)

A -2900 -2200

MA 302.5 2736

M1 150 150

M2 285 300

M1� - 151

mg̃ 700 700

P (l = 1) 0.231 < 10
−9

P (l = 2) 0.769 < 10
−4

P (l = 3) 0 0.287

P (l = 4) 0 0.782

P (l = 5) 0 0.005

Ωh2
0.00628 0.00114

σSI 0.04× 10
−8

15.3× 10
−8

[p
b
]

MSSM E6SSM

χ̃0
M1 148.7 148.6

χ̃0
M2 302.2 294.8

χ̃0
M3 1582 1459

χ̃0
M4 1584 1468

χ̃±
M1 302.2 298.7

χ̃±
M2 1584 1440

χ̃0
U1 - 1254

χ̃0
U2 - 1420

χ̃0
E1 - 62.7

χ̃0
E2 - 62,8

χ̃0
E3 - 119.9

χ̃0
E4 - 121.1

χ̃0
E5 - 183.1

χ̃0
E6 - 184.4

χ̃±
E1 - 109.8

χ̃±
E2 - 117.8

h 124.4 125.4

[G
e
V
]

TABLE II. Properties of the benchmarks. To the left: in-

put parameters, including the soft gaugino masses M1, M2,

M1� and the physical gluino mass mg̃, probabilities, P (l), of

certain guino decay chain lengths, l, and relic density and

spin independent direct detection cross-section of the LSP. To

the right: masses of neutralinos (absolute values), charginos

and the lightest Higgs. In the notation for neutralino and

chargino states the subscript M denotes a MSSM-like state,

U a USSM-like state and E an E6SSM-like state. This distinc-

tion is reasonable since these sectors are very weakly coupled.

The following number orders the states by mass. The squark

and slepton mass scale is set to 2 TeV. Additional Yukawa

couplings for the E6SSM benchmark is given in Tab. III.

λ22 −5× 10
−4

λ21 4.2× 10
−2

λ12 4.5× 10
−2

λ11 1× 10
−3

fd22 1× 10
−3

fd21 6.844× 10
−1

fd12 6.5× 10
−1

fd11 1× 10
−3

fu22 1× 10
−3

fu21 6.7× 10
−1

fu12 6.4× 10
−1

fu11 1× 10
−3

TABLE III. Non-zero Yukawa couplings in the E6SSM bench-

mark. The couplings λijk come from the terms λijkSiHdjHuk

in the superpotential. Here λ333 = λ, λ3αβ = λαβ , λα3β =

fdαβ , λαβ3 = fuαβ , λ33α = xdα, λ3α3 = xuα, and λα33 = zα.

The x and z couplings are all 1× 10
−3

and λ = 5.5× 10
−1

.

plying 2790 produced pairs of gluinos. Another impor-

tant feature of the long decay chains of the E6SSM is the

increase in lepton as well as jet multiplicity, as shown in

Fig. 5. This feature allows us to rely on multi-lepton re-

quirements for background reduction rather than cuts on

missing energy. There is a significant loss of statistics by

using this strategy, however, it turns out to be the most

favourable channel of discovery and a channel in which

instead the E6SSM is largely dominant compared to the

MSSM. In Fig. 6 the missing transverse momentum and

the effective mass are plotted for our benchmarks and SM

backgrounds after requiring three leptons (µ or e) with

pT > 10 GeV, |η| < 2.5 and ∆R(lepton, jet) > 0.5 and

where the leading lepton has pT > 20 GeV. We have also

applied a Gaussian smearing of lepton and jet energies to

MSSM:

!

"#

"$%&'
("$)&*

"$)&'

+%

,

"! "$)&'

-.)/0

-*1/0

-*2/0

3
-45/0
(-6/0

!7

E6SSM:

!

"#

"$%&'
("$)&*

"$)&' "$)+*

,%

-

((( .

"!

//.(.

"$)+'"$)&'

01'23

0*423

0*'23

!5

FIG. 3. Feynman diagrams for the leading gluino decay chains

for each benchmark. The branching ratios for produced par-

ticles are denoted in brackets.

take into account the detector energy resolution typical

for the ATLAS and CMS detectors. The dominant back-

ground is coming from ZWj and tt̄V , other important

contributions come from ZW and tt̄. Our background

predictions agree well with backgrounds used in multi-

lepton searches by CMS [21] and ATLAS [22]. By choos-

ing a signal region defined by the cut Meff > 900 GeV,

S = 36 signal events and B = 5 background events are

expected. Using the definition of statistical significance,

S12 = 2(
√
S +B−

√
B), valid for small statistics [23, 24],

a 8.3σ excess is predicted. Even for 15fb−1 integrated lu-

minosity the signal is discoverable with a 5.9σ excess.
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FIG. 4. Missing transverse momentum and the effective mass

before cuts.
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FIG. 5. Lepton multiplicity and jet multiplicity, requiring

pT > 10 GeV, |η| < 2.5 and ∆R(lepton, jet) > 0.5 for leptons

and pT > 20 GeV and |η| < 4.5 for jets.

Bino can decay into inert neutralinos

Belyaev, Hall, 
King, Svantesson 



17

the effective mass distribution is not significantly different between the models. This happens because the effect from
the suppressed missing momentum in the case of the E6SSM is partially canceled by the effect of the increase of visible
momentum, due to the longer gluino cascade decay. There is a slight overall increase of the effective mass due to the

fact that visible momenta are added up as magnitudes while the missing momentum is a vectorial sum. The reduced

amount of missing transverse momentum in the E6SSM makes it less discoverable, compared to the MSSM, in typical

SUSY searches which focus on all-hadronic events with large missing momentum.

Another important feature of the long decay chains of the E6SSM is the increase in lepton as well as jet multiplicity,

as shown in Fig. 7, again for the benchmarks MSSM and E6SSM-I. This feature allows us to rely on multi-lepton

requirements for background reduction rather than cuts on missing energy. There is a significant loss of statistics by

using this strategy, however it turns out to be a very important channel for discovery of gluinos with long decay chains

and indeed a channel in which the E6SSM is largely dominant compared to the MSSM. This makes the multi-lepton

channels essential for distinguishing the models.
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FIG. 6. Missing transverse momentum (left) and the effective mass (right) before cuts for the MSSM and E6SSM-I benchmark
with mg̃ = 800 GeV at

√
s = 7 TeV. The E6SSM predicts significantly less missing transverse momentum and slightly larger

effective mass compared to the MSSM. The longer gluino decay chains of the E6SSM, with a lighter LSP in the end, provide
less missing and more visible transverse momentum. The effective mass does not distinguish the features of these models since
it is a sum of visible and missing transverse momenta.

C. Searches at
√
s = 7 TeV LHC

There has not been any indications of SUSY from the LHC during its run at
√
s = 7 TeV. We have investigated

different SUSY search channels at this energy to understand the status of our benchmarks and what limits can be put

on the E6SSM and which channels we expect to be the most favourable for discovery and distinguishing the models.

We compare our signals with published backgrounds used by CMS and ATLAS at this energy. We have scaled all the

channels to an integrated luminosity of 10 fb
−1

for comparison, which is approximately the amount of 7 TeV data

acquired by the two experiments. Benchmarks with an 800 GeV gluino mass are considered here.

1. 0 leptons

The long gluino cascade decays with less missing momentum would be less visible in the main SUSY searches

based on jets and missing energy (see e.g. [2] and [37]) which provide the best statistics and strongest exclusions for

MSSM. In these searches the E6SSM parameter space is less constrained as compared to the MSSM and the acquired

Less missing pT
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FIG. 7. Lepton multiplicity (left) and jet multiplicity (right), requiring pT > 10 GeV, |η| < 2.5, and ∆R(lepton, jet) > 0.5
for leptons and pT > 20 GeV and |η| < 4.5 for jets. The benchmarks considered are the MSSM and E6SSM-I as presented in

Tab. III with mg̃ = 800 GeV. The LHC setup is used with
√
s = 7 TeV and normalised to 10 fb

−1
of integrated luminosity. Due

to the longer gluino decay chains of the E6SSM it predicts many more visible particles in collider experiments, both leptons

and jets. This suggests that searches for E6SSM gluinos should be more favourable in multi-lepton and multi-jet searches.

exclusions do not hold for this model. The main reason for this is the hard cuts on missing energy and its ratio to
the effective mass since the distributions for these variables are significantly different for MSSM versus E6SSM as we
demonstrate here.

The effective mass distribution for our benchmarks for an 800 GeV gluino mass is plotted on the top of the
backgrounds from ATLAS and CMS in Figs. 8(a) and 8(b) after all cuts have been applied except for the final
selection cut on the effective mass itself. The signal from E6SSM is suppressed as compared to the MSSM and, more
importantly, both benchmarks are well below the background, illustrating the difficulty of discovering SUSY at the 7
TeV LHC in the case where the gluino mass is around 800 GeV, assuming the squarks to be much heavier.

Even though the 0-lepton signature with a jet multiplicity of about four is not favoured for E6SSM hunting, the 0-
lepton signature for this model could be still interesting for the cases of larger jet-multiplicity. For multi-jet channels,
analyses beyond the parton level are essential. We discuss this in detail for the case of

√
s = 8 TeV in section IVD1

where we perform one example of a beyond-the-parton level analysis. Apart from this, we restrict ourselves here by
the parton level analysis and in particular we shall focus on the tri-lepton signature.

2. 1–2 leptons

The selection of events with leptons provides easy triggering and efficient background suppression at the cost of
worse statistics. To exemplify this we compare the signal distributions for the benchmarks versus the backgrounds
for two ATLAS searches, a single lepton search in Fig. 8(c) and a two same-sign lepton search in Fig. 8(d). One can
see that the signal-to-background ratio is better in these leptonic searches compared to the all-hadronic searches. In
the effective mass distribution of the 1 muon channel from ATLAS’s 1 lepton plus 4 jets search shown in Fig. 8(c) one
can see that the signal level is not extremely far below the background level in the high effective mass region. The
E6SSM signal is still suppressed as compared to the MSSM in this one lepton search, however, considering the pmiss

T
distribution for the two same-sign lepton search by ATLAS in Fig. 8(d), one sees how the E6SSM signal overtakes the
MSSM benchmark’s by requiring one more lepton. This is due to the fact that two same-sign leptons in the final state
become more likely in the E6SSM than in the MSSM, simply because it predicts more leptons in general. Even though
the E6SSM signal has got stronger than the MSSM signal in this 2SS channel compared to the one lepton channel,
the signal-to-background ratio now looks worse. This is because the choice of using the missing momentum instead

Belyaev, Hall, 
King, Svantesson 



Maybe inert singlinos decoupled
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off-diagonal blocks are suppressed under the approximate ZH
2 and are therefore expected

to be small, implying that there should not be much mixing between the MSSM and inert
states.

We define the term “neutralino” not to include the massless inert singlinos which have
no Yukawa couplings involving them and are decoupled. The neutralino mass matrix MN

in the interaction basis

Ñint =
(

B̃ W̃ 3 H̃0
d3 H̃0

u3 S̃3 B̃′ H̃0
dα H̃0

uβ

)T
(14)

is then equal to





























M1 0 −1
2
g′vd

1
2
g′vu

0 M2
1
2
gvd −1

2
gvu

−1
2
g′vd

1
2
gvd 0 −µ −λ333vu√

2
Qdg′1vd 0 −λ33βs√

2
1
2
g′vu −1

2
gvu −µ 0 −λ333vd√

2
Qug′1vu −λ3α3s√

2
0

−λ333vu√
2

−λ333vd√
2

0 QSg′1s −λ3α3vu√
2

−λ33βvd√
2

Qdg′1vd Qug′1vu QSg′1s M ′
1

0 −λ3α3s√
2

−λ3α3vu√
2

0 −λ3αβs√
2

−λ33βs√
2

0 −λ33βvd√
2

−λ3αβs√
2

0





























, (15)

where once again α, β ∈ {1, 2}, indexing the inert generations. Qd = − 3√
40
, Qu = − 2√

40

and QS = 5√
40

are the U(1)N charges of down-type Higgs doublets, up-type Higgs doublets

and SM-singlets respectively and g′1 is the GUT normalised U(1)N gauge coupling. M1,
M2 and M ′

1 are soft gaugino masses. Typically g′1 ≈ g1 all the way down to the low
energy scale. If the soft gaugino masses are unified at the GUT scale (universal M1/2)
then we also have M ′

1 ≈ M1 ≈ M2/2. The matrix as written neglects the small kinetic
term mixing between B̃ and B̃′. The elements left empty in this matrix and similar ones
are implicitly taken to be zero.

The Yukawa couplings in the off-diagonal blocks are suppressed under the approximate
ZH

2 . Given the smallness of these couplings, the inert neutralinos in the bottom-right block
are pseudo-Dirac states with an approximately decoupled mass matrix

−
s√
2









λ322 λ321

λ312 λ311

λ322 λ312

λ321 λ311









in the basis
(

H̃0
d2 H̃0

d1 H̃0
u2 H̃0

u1

)

.

They are approximately degenerate with the two inert chargino Dirac states.
The top-left block contains the states of the MSSM supplemented by the third gener-

ation singlino and the bino′. This is known as the USSM sector [28]. In the case where
M1 ≈ M ′

1 is small the lightest neutralino mass state will be mostly bino. The bino′ will
mix with the third generation singlino giving two mixed states with masses around QSg′1s.
As M1 ≈ M ′

1 increases the bino mass will increase relative to both the third generation
Higgsino mass µ and the inert Higgsino masses given approximately by the bi-unitary
diagonalisation of − 1√

2
λ3αβs. At the same time the state mostly containing the third

generation singlino will have a decreasing mass as M ′
1 increases relative to QSg′1s.
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off-diagonal blocks are suppressed under the approximate ZH
2 and are therefore expected

to be small, implying that there should not be much mixing between the MSSM and inert
states.

We define the term “neutralino” not to include the massless inert singlinos which have
no Yukawa couplings involving them and are decoupled. The neutralino mass matrix MN

in the interaction basis

Ñint =
(

B̃ W̃ 3 H̃0
d3 H̃0

u3 S̃3 B̃′ H̃0
dα H̃0

uβ
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(14)
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




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
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where once again α, β ∈ {1, 2}, indexing the inert generations. Qd = − 3√
40
, Qu = − 2√

40

and QS = 5√
40

are the U(1)N charges of down-type Higgs doublets, up-type Higgs doublets

and SM-singlets respectively and g′1 is the GUT normalised U(1)N gauge coupling. M1,
M2 and M ′

1 are soft gaugino masses. Typically g′1 ≈ g1 all the way down to the low
energy scale. If the soft gaugino masses are unified at the GUT scale (universal M1/2)
then we also have M ′

1 ≈ M1 ≈ M2/2. The matrix as written neglects the small kinetic
term mixing between B̃ and B̃′. The elements left empty in this matrix and similar ones
are implicitly taken to be zero.

The Yukawa couplings in the off-diagonal blocks are suppressed under the approximate
ZH

2 . Given the smallness of these couplings, the inert neutralinos in the bottom-right block
are pseudo-Dirac states with an approximately decoupled mass matrix

−
s√
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
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λ312 λ311
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u2 H̃0
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They are approximately degenerate with the two inert chargino Dirac states.
The top-left block contains the states of the MSSM supplemented by the third gener-

ation singlino and the bino′. This is known as the USSM sector [28]. In the case where
M1 ≈ M ′

1 is small the lightest neutralino mass state will be mostly bino. The bino′ will
mix with the third generation singlino giving two mixed states with masses around QSg′1s.
As M1 ≈ M ′

1 increases the bino mass will increase relative to both the third generation
Higgsino mass µ and the inert Higgsino masses given approximately by the bi-unitary
diagonalisation of − 1√

2
λ3αβs. At the same time the state mostly containing the third

generation singlino will have a decreasing mass as M ′
1 increases relative to QSg′1s.
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➪  Bino dark matter 
correct relic abundance  

U(1)N gauge coupling g′1 is set by requiring it to be equal to the other gauge couplings at
the GUT scale.

For consistent points in the E6SSM the lightest non-inert (USSM sector) supersym-
metric particle is typically bino dominated. For the cEZSSM we find the same thing. The
masses of the inert Higgsino states depend on s and on the the Yukawa couplings λ3αβ

and the in the cEZSSM the lightest neutralino can be either the bino dominated state or
a pseudo-Dirac inert Higgsino dominated state. In the latter case we find that the DMC
pseudo-Dirac inert Higgsino states co-annihilate with full-weak-strength interactions and
lead to a too small dark matter relic density. In the former case the bino DMC normally
annihilates too weakly and yields a too large dark matter relic density. If, however, there
are inert Higgsino states close by in mass, they contribute significantly to 〈σv〉 allowing
for the observed amount of dark matter. This relies on condition 2 being satisfied i.e. the
binos being up-scattered into inert Higgsinos with a large enough rate.

Such points with consistent dark matter relic density can be found and three are
presented in Section 6. Condition 1 is satisfied since the inert SM-singlet scalars are so
much heavier than the DMC and the Z ′-boson mass is so large compared to the regular
Z-boson mass. Annihilation and scattering processes involving inert SM-singlets and
singlinos must contain a virtual Z ′-boson.

To test condition 2 let us compare the rate for binos up-scattering into inert Higgsinos
with the inert Higgsino co-annihilation rate. We shall label the mostly bino state Ñ1 and
the lightest pseudo-Dirac inert Higgsino states Ñ2 and Ñ3. The dominant up-scattering
diagrams are of the following form:

X

Ñ1 Ñ2, Ñ3

Z

We define RZij couplings such that the Z-Ñi-Ñj coupling is equal to RZij times the Z-ν-ν
coupling. We have

RZij =
∑

D=3,7,9

ND
i ND

j −
∑

U=4,8,10

NU
i N

U
j , (21)

where Na
i is the neutralino mixing matrix element corresponding to mass eigenstate i and

interaction state a. D and U index the down- and up-type Higgsino interaction states
respectively. For the pseudo-Dirac inert Higgsino states we have

m3 ≈ −m2 and RZ23 ≈ 1, (22)

allowing for full-weak-strength co-annihilations of the following form:

10

light inert 
Higgsinos

Bino

massless         ➪ dark radiation

1 Introduction

The recently announced first cosmological Planck results [1] herald a new era in cosmology
in which the standard ΛCDM model can be tested to high precision. For example, Planck
results [1] combined with WMAP polarisation and other CMB data measure the excess
of radiation at recombination to be, in units of neutrino species,

N
Planck
eff = 3.36± 0.34 , (1)

assuming a standard value of the primordial helium abundance. This result supports the
standard ΛCDM model while not excluding the possibility of an extra radiation compo-
nent, so-called Dark Radiation (DR), beyond the standard one. Indeed, when the Planck
data are combined with the Hubble constant H0 measurement from astrophysical data
sets, in particular from the Hubble Space Telescope (HST), the best-fit value increases to

N
Planck
eff = 3.62± 0.25 , (2)

which amounts to a 2.3 σ signal for DR. This shows that scenarios beyond the traditional
(one fully thermalised) sterile neutrino hypothesis, in which a fractional “effective neutrino
species” can emerge, are not excluded by Planck results and may even be mildly favoured
by some data sets.1

In this paper, motivated by the above considerations, we shall propose a scenario
for obtaining a fractional “effective neutrino species” from a thermally produced particle
which decays into a much lighter stable relic plus a non-thermal active neutrino com-
ponent. On the other hand, by increasing the stable-to-unstable particle mass ratio to
O(0.1), the stable relic no longer acts as Dark Radiation but instead becomes a candidate
for Warm Dark Matter (WDM). Thus our scenario is flexible enough to account for either
DR or WDM (but not both at the same time). Interestingly, in both cases it is possible
to address the lithium problem. However, before discussing details of our scenario, it
is worth recalling some general constraints on new physics beyond the standard ΛCDM
model. Although well known, they are worth recalling at this point since they provide
important constraints on our scenario.

Big Bang Nucleosynthesis (BBN) is the most traditional cosmological probe of new
physics [6]. Non-standard BBN effects have been extensively studied within scenarios pro-
ducing modifications of the neutrino content compared to the Standard Model (SM) [7]

1For a recent discussion (in the light of Planck) on models able to yield fractional “effective neutrino
species”, see [2]. Notice that also in active-sterile neutrino oscillations, beyond a full sterile neutrino
thermalisation, fractional “effective neutrino species” can be obtained [3] and in this case the Planck
data impose stringent constraints on the mixing parameters that seem to indicate a strong tension with
the short-baseline hints [4]. A traditional solution, though difficult to justify, is to assume large initial
lepton asymmetries suppressing the mixing [5].

1

c.f.Neff ≈ 3.2

S̃1,2

  low DD cross-section 
σSI ∼ few × 10−11pb
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diquark cases before considering the direct search limits
in the next section. Some aspects of the production of
exotic SU(3)-charged states have been considered else-
where [55, 56, 57, 58, 59, 60, 61], at varying levels of
sophistication and approximation.

As our goal is to be as complete as possible, we
will consider the following ten 2 → 2 production pro-
cesses: q q̄ → D1/2D1/2, g g → D1/2D1/2, q q̄ → D0D0,

g g → D0D0 and q g → D0 + f (and c.c.), with five
each for the leptoquark and diquark cases. In addition,
the couplings of WDQ in (2.4) allow for the possibility
of resonant production of exotic diquark scalars through
quark or anti-quark annihilation. Where unavailable in
the literature (or where available expressions were in-
complete) we have computed the relevant parton-level
production cross-sections to leading order and checked
them against the results of CompHEP [62]. These expres-
sions have been collected in Appendix B. The numeri-
cal evaluation of these cross-sections – as well as all col-
lider analysis performed in this work – was carried out
with the PYTHIA 6.327 computer package [63]. While
the publicly-available version of PYTHIA does contain a
scalar leptoquark, it does not have its superpartner, nor
the diquark cases we wish to study. In addition, the
scalar leptoquark contained in PYTHIA does not interact
with the fields of the MSSM and can only decay into a
quark and a charged lepton. Therefore some substantial
modification to the off-the-shelf PYTHIA package was re-
quired. We wish to briefly describe these modifications
here in this section before proceeding. Further details of
the analysis tools will be given in Section V.

Adding the desired new particles and interactions re-
quired the modification of three existing subroutines and
the addition of three new routines. Six new particles (two
scalars and a fermion for the leptoquark and the diquark)
were added to empty positions in the relevant common
blocks, specifically the PYDAT2, PYDAT3 and PYDAT4 com-
mon blocks. Masses and mixings of the new states were
computed using the formulae of (2.8) via a new routine
which parallels that of PYTHRG for standard MSSM sca-
lars. A call to this new routine was inserted into the
pre-existing PYMSIN SUSY initialization subroutine. De-
cay rates for the exotics into Standard Model and MSSM
states are computed and the necessary decay tables popu-
lated with a new subroutine which is called from PYINIT.
We will discuss the specific decay products considered in
Section V below.

The eleven new production processes were inserted into
empty positions in the relevant common blocks, namely
PYINT2, PYINT4 and PYINT6. The parton-level cross-
sections were computed in a new subroutine called from
the PYSIGH master routine. The most significant modi-
fication of a pre-existing routine involved PYSCAT, which
sets up the hard scattering process and documents the
color flow through the interaction. For the leptoquark
interaction, standard PYTHIA color flow algorithms suf-
fice, but not so for the diquark interactions of (2.4).
These vertices involve three triplets or three anti-triplets
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FIG. 5: Production cross section for pairs of leptoquarks
at the LHC. Pair production of exotic fermions (g g, q q̄ → D Dc)
is given by the solid (red) contours, while that of scalars is given
by the dotted (black) contours. The region of coupling λ <∼ 0.2
suggested by the indirect constraints considered in Section III is
indicated by the light shading.

of SU(3) – an interaction not present in the Standard
Model. Such cases were not part of the original menu
of color flow options in PYTHIA, so new ones were de-
signed and inserted into the ICOL array for both diquark
pair production and resonant production of scalar di-
quarks. The essence of these modifications was to gener-
ate place-holding “junctions” to serve as sinks or sources
of color/anti-color. This modification is in the spirit of
those used to study R-parity or baryon-number violating
processes in the MSSM [64].

The above modifications allow us to simulate the
eleven hard-scattering processes at LHC energies. For
the sake of simplicity we will always take λ6 = λ7 and
λ9 = λ10 in performing simulation-based calculations.
We will refer to this common coupling as λ, understand-
ing that a different λ value is implied for the leptoquark
and the diquark. Resonant production of scalar diquarks
was studied in detail elsewhere [65, 66]; we postpone dis-
cussion of this case to Section V. The production cross-
sections for leptoquarks are given in Figures 5 and 6,
while those for the diquark case are given in Figures 7
and 8. Pair production cross-sections of exotic quarks
and squarks are given in Figures 5 and 7 as a function
of the mass of the exotic particle (denoted collectively as
MD) and the Yukawa coupling λ. Exotic scalar produc-
tion in association with a Standard Model fermion via the
process q g → D0 f is shown in Figures 6 and 8. In all
figures we have shaded the region of small Yukawa cou-
pling λ ≤ 0.2. In Section III we will see that this may be
taken as a very crude estimate of the allowed values of a
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FIG. 6: Production cross section for scalar leptoquarks
in association with fermions at the LHC. Contours give the
production cross section for the process q g → D0 f . The region of
coupling λ <∼ 0.2 suggested by the indirect constraints considered
in Section III is indicated by the light shading.
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FIG. 7: Production cross section for pairs of diquarks at
the LHC. Same as Figure 5 but for diquarks.

typical Yukawa coupling in this class of models. As these
bounds are sensitive to many model-dependent phenom-
ena we have chosen to display the cross-sections over a
wide range of Yukawa parameters.

Pair production of exotic fermions via the process
q q̄ → D1/2 D1/2 can proceed through t-channel exchange
of scalar quarks and/or scalar leptons. It is therefore nec-
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FIG. 8: Production cross section for scalar diquarks in
association with fermions at the LHC. Same as Figure 6 but
for diquarks.

essary to specify the masses of the superpartners of the
Standard Model fields in order to unambiguously com-
pute the production rate at the LHC. For the analysis
presented here we will choose the well-studied bench-
mark model SPS 1A from the “Snowmass Points and
Slopes” collection [67], in which the relevant masses are
md̃1

" mũ1
= 535 GeV and mẽ1

= 146 GeV. The full
set of superpartner masses for this benchmark point will
be discussed in Section V below.

The rate for production of exotic fermions is roughly
an order of magnitude larger than that for identical-mass
scalars, as one typically expects [3]. The five cases in Ta-
ble II were specifically chosen to give at least one exotic
state in the 300-400 GeV range, ensuring a reasonable
production rate at the LHC. In fact, the total production
rate of exotics in Cases A-C in Table II is roughly equiv-
alent to the total production rate of “standard” MSSM
superpartners for the SPS 1A benchmark model. This
implies that it should be possible to place meaningful lim-
its on exotic masses and couplings from direct searches
at existing colliders. We therefore turn our attention to
direct and indirect experimental constraints on these pa-
rameters.

III. CURRENT EXPERIMENTAL BOUNDS

A. Direct Search Constraints

The exotic quarks D and Dc are charged under SU(3)
and (as we demonstrated in the previous section) can
thus be produced in large numbers through QCD pro-

Leptoquark Diquark

D-particles are coloured and may be pair produced at LHC                   

D-particles may be Leptoquarks D→LQ or  Diquarks D→QQ                          

Kang, Langacker, Nelson

√
s = 14 TeV

√
s = 14 TeV



D-fermion decays

Exotic D-fermion decays
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Decays of the exotic D-fermions are facilitated by the Z2
H violating operators (that we set to 

be small earlier), e.g.

Assuming Ds couple predominantly to the 3rd generation:

Diquarks decay to              so would give 
an enhancement to

If the Z2
H violating coupling is very small, D quarks may 

hadronize before they decay leading to spectacular signatures.
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If the Z2
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Z’ 
physics

11/25/10 13 

Spin-1 Z’  
Z’ coupling to SM fermions f 

In our analysis we assume:  

1.  Family universal couplings u=c=t, d=s=b, e=µ=!, "e="µ="!#

2.  Right-handed neutrinos, SUSY partners and exotics all have masses > MZ’  

3.  No mass mixing between Z-Z’ 

Assuming SU(2)L is respected, the phenomenology of the Z’ is described by five 
charges associated with Q,uR,dR,L,eR (Q,L= quark, lepton left-handed doublets) 

However we prefer to use the eight couplings appearing in the Feynman rule: 
gV,A

f  (f=u,d,e,") with the three constraints gV
u," + gA

u," = gV
d,e + gA

d,e and gV
"=gA

"#

The gauge coupling constant g’ and the Z’ mass MZ’ are additional parameters 

Z’ f 

f 
Feynman rule 

11/25/10 13 Steve King, IPPP 
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Drell-Yan production cross-section 

Narrow width approximation 

Simple structure 

Model dependent  

Model independent 

Carena, Daleo, 
Dobrescu, Tait 

depend on g’ and gV,A
f  

depend on s and MZ’ 

p 

p Z’ 

f 

f 

11/25/10 Steve King, IPPP 



Little Z’ models
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Figure 2: Cross section for lepton (e, µ) pair-production via Z �
at LHC at

√
s = 8 TeV

in the g�1 – MZ� plane for Little Z �
models with charges corresponding to the E6SSM.

The horizontal, dashed line indicates the standard GUT predicted g�1 value. Exclusion

limits from direct searches are plotted with dash-dotted lines in magenta, black and

blue for D∅, CMS and ATLAS respectively. Indirect constraint on the mass-coupling

ratio from electro-weak precision tests are plotted with red crosses and coincides with

the contour for the singlet VEV s ≈ 4 TeV.

We have shown that reducing the value of the extra gauge coupling relaxes these lim-

its, leading to the possibility of low mass Z �
resonances, for example down to about 200

GeV, thereby reducing fine-tuning due to the Z �
mass down to acceptable levels. Such

a reduced extra gauge coupling does not affect conventional gauge coupling unification

of the strong, weak and electromagnetic gauge couplings and in fact is well motivated

in certain classes of F-theory models. We emphasise the main experimental prediction

of such Little Z �
models which is the appearance of a low mass weakly coupled Z �

which

may yet appear in future LHC searches. Although the source of tree level fine-tuning

due to the Z �
mass is reduced in Little Z �

models, it does so at the expense of increasing

9

Mass limit 
may be 

weakened 
by reducing 

the gauge 
coupling 
(F-theory 

motivation)

Belyaev, King, 
Svantesson 



Conclusion



Gauge hierarchy problem solved by TeV scale SUSY

But Natural SUSY is under threat from LHC       
(if not excluded) so we are faced with a Little 
Hierarchy Problem: some degree of tuning is 
apparently required

How much? It is very model and measure dependent

Remember that SUSY is not just MSSM!

Where we stand with SUSY



If we use naturalness as a guiding principle then 
we are led to SUSY models without a mu term but 
with a singlet (S)

These models (prototype NMSSM) solve both mu 
problems: forbid explicit mu term and allow 
effective mu term to be smaller due to lighter stop 
masses (since Higgs mass is larger at tree-level) 

However eventually stops around TeV scale must be 
discovered otherwise NMSSM type models also 
become unnatural..but is 1% tuning that bad?
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If you have a problem, postulate a new particle: 

QM and Special Relativity:   Antimatter 
Nuclear spectra:    Neutron 

  Neutrino 
Nucleon-nucleon interactions:  Pion 
Absence of lepton number violation:  Second neutrino 
Flavour SU(3):    - 

Flavour SU(3):    Quarks 
FCNC:     Charm 
CP violation:    Third generation 
Strong dynamics:    Gluons 
Weak interactions:    W±, Z0 

Renormalizability:    H (48 years) 

Naturalness:   Supersymmetry? (40 years) 

Ellis
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