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Work with:

• 2HDM Type II Yukawa

• IDM2



Preamble

• Higgs particle found! SM?

• 2HDM excluded?

• not quite

• but parameter space severely constrained

• Look for charged Higgs!



2HDM notation 1
V =

�1

2
(�†

1�1)
2 +

�2

2
(�†

2�2)
2 + �3(�

†
1�1)(�

†
2�2)

+ �4(�
†
1�2)(�

†
2�1) +

1

2

h

�5(�
†
1�2)

2 + h.c.
i

(0.1)

� 1

2

n

m2
11(�

†
1�1)+

h

m2
12(�

†
1�2)+h.c.

i

+m2
22(�

†
2�2)

o

.

1

V =
�1

2
(�†

1�1)
2 +

�2

2
(�†

2�2)
2 + �3(�

†
1�1)(�

†
2�2)

+ �4(�
†
1�2)(�

†
2�1) +

1

2

h

�5(�
†
1�2)

2 + h.c.
i

(0.1)

� 1

2

n

m2
11(�

†
1�1)+

h

m2
12(�

†
1�2)+h.c.

i

+m2
22(�

†
2�2)

o

.

�6 = 0; �7 = 0

1

No FCNC:

Allow CPV:

V =
�1

2
(�†

1�1)
2 +

�2

2
(�†

2�2)
2 + �3(�

†
1�1)(�

†
2�2)

+ �4(�
†
1�2)(�

†
2�1) +

1

2

h

�5(�
†
1�2)

2 + h.c.
i

(0.1)

� 1

2

n

m2
11(�

†
1�1)+

h

m2
12(�

†
1�2)+h.c.

i

+m2
22(�

†
2�2)

o

.

�6 = 0; �7 = 0
�5, m2

12

1

complex



2HDM notation 2

1 Formulas
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Parameters: tan �, (M1, M2), (MH± , µ2
), (↵1, ↵2, ↵3), (1.4)

where tan � = v2/v1 and µ2
= v2⌫, with ⌫ = Rem2

12/(2v1v2) and
v = 246 GeV.
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PDG convention

H1 odd: ↵2 ' ±⇡/2, ↵1,↵3 arbitrary,

H2 odd: ↵2 = 0, ↵3 = ⇡/2, ↵1 arbitrary,

H3 odd: ↵2 = ↵3 = 0, ↵1 arbitrary. (1.5)

Hjb¯b :
�ig mb

2mW

1

cos �
[Rj1 � i�5 sin �Rj3],

Hjt¯t :
�ig mt

2mW

1

sin �
[Rj2 � i�5 cos �Rj3]. (1.6)

H+b¯t :
ig

2

p
2mW

Vtb[mb(1 + �5) tan � +mt(1� �5) cot �],

H�t¯b :
ig

2

p
2mW

V ⇤
tb[mb(1� �5) tan � +mt(1 + �5) cot �]. (1.7)

HjZZ : [cos �Rj1 + sin �Rj2], for j = 1, (1.8)

HjH
±W⌥
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CP-conserving limits:
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Yukawa couplings
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Gauge couplings
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Fig. 35: SM Higgs branching ratios as a function of the Higgs-boson mass.
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has stronger coupling to WW



H2 (if, for example at 400 GeV) and H3 
must decay more slowly than SM Higgs (at same mass), 

in order for model not to be excluded by LHC data



Constraints-theory
• Positivity

- Explicit conditions

• Unitarity

- Explicit conditions

• Perturbativity

• Global minimum

- Three coupled cubic equations



Constraints-experiment
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LHC constraints

2

Adopt LHC (ATLAS & CMS) 95% CL

1

Triangle diagrams modified by couplings, also axial term

1. gg ! H1 ! ��
Triangle diagrams modified by couplings,

also admixture of axial couplings

R�� =
BR(H1 ! gg)BR(H1 ! ��)

BR(HSM ! gg)BR(HSM ! ��)
. (1.14)

0.5  R��  2.0 (1.15)

2. gg ! H2,3 ! W+W�

RZZ =
BR(Hj ! gg)BR(Hj ! ZZ)

BR(HSM ! gg)BR(HSM ! ZZ)
, (1.16)

4

1. gg ! H1 ! ��
Triangle diagrams modified by couplings,

also admixture of axial couplings

R�� =
�(H1 ! gg)BR(H1 ! ��)

�(HSM ! gg)BR(HSM ! ��)
. (1.17)

0.5  R��  2.0 (1.18)

2. gg ! H2,3 ! W+W�

RZZ =
�(Hj ! gg)BR(Hj ! ZZ)

�(HSM ! gg)BR(HSM ! ZZ)
, (1.19)
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1. gg ! H1 ! ��
Triangle diagrams modified by couplings,

also admixture of axial couplings

R�� =
�(H1 ! gg)BR(H1 ! ��)

�(HSM ! gg)BR(HSM ! ��)
. (1.17)

0.5  R��  2.0 (1.18)

2. gg ! H2,3 ! W+W�

RZZ =
�(Hj ! gg)BR(Hj ! ZZ)

�(HSM ! gg)BR(HSM ! ZZ)
, (1.19)
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LHC constraints 2012

Almost no overlap of allo
wed regions!

Allowed regions



Next:

• Combine all constraints:



Allowed regions (green) 2012
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2013 vs 2012
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1

0.5  R��  2.0 (0.1)

1.03  R��  2.33 (2�) (0.2)

0.26  R��  1.34 (2�) (0.3)

1

0.5  R��  2.0 (0.1)

1.03  R��  2.33 (2�) (0.2)

0.26  R��  1.34 (2�) (0.3)

1

• 2013: More exclusion in heavy-Higgs region

• 2012

• 2013 ATLAS

• 2013 CMS
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[all in

GeV], for tan � = 1.
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GeV], for tan � = 2.
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in terms of a pseudoscalar, but we are not able to confirm this. We find points which satisfy

all other constraints, but not the LHC constraints.

3.5 Studies in tan�–MH± space

3.5.1 The unitarity constraint

The unitarity constraint plays an important role in delimiting high values of both tan�

and MH± . This constraint requires the �’s to be small, which to some extent is achieved

by taking the “soft” mass parameter µ large. In fact, in the co-called decoupling limit,

discussed for the CP-conserving case in [99], and for the present case in the appendix, one

can respect the unitarity constraints for large masses, provided µ is tuned to these masses:

M
2

⇠ M
3

⇠ MH± ⇠ µ. (3.28)

For moderate values of tan� (3� 5), that limit also requires

� ⇠ ↵
1

, ↵
2

⇠ 0, ↵
3

arbitrary. (3.29)

For large values of tan� (>⇠ 5), this evolves into the region (↵
1

,↵
2

) ⇠ (⇡/2, 0). Furthermore,

an additional region opens up for large masses and large tan�, leading to

Decoupling 1: (↵
1

,↵
2

) ⇠ (±⇡/2, 0), (3.30a)

Decoupling 2: (↵
1

,↵
2

) ⇠ (0,±⇡/2), (3.30b)

with ↵
3

arbitrary. Two comments are here in order: (i) because of the periodicity of the

trigonometric functions, regions at ↵i ' �⇡/2 and ↵i ' +⇡/2 are connected; (ii) the SM

limit requires ↵
1

⇠ �, and is thus contained in the region “Decoupling 1”.

In view of the above discussion, in order to determine the maximally allowed ranges

of tan� and MH± , we scan over some range in µ, starting at the geometric mean

µ
0

=
p

M
2

MH± . (3.31)

3.5.2 The experimental constraints

In fig. 6 we show allowed regions in the tan�–MH± plane. Again, the larger red region is

allowed in the absence of recent LHC results, whereas the green region shows what remains

compatible with these data. We note some reduction in the range of charged Higgs masses.

Also, at high tan�, the masses M
2

and MH± tend to be close, as discussed above.

The “fractal” appearance of these plots is in part due to the finite number of points

in the scans. Some could also reflect genuine “islands” in parameter space.

In fig. 7 we show typical values of M
3

. Note that for each point in the allowed part of

this plane, some ranges of ↵’s are allowed (see the previous subsection). Each set of ↵’s

corresponds to a particular value of M
3

. The values plotted here are those first encountered

in a random scan over ↵’s. We see that as M
2

and MH± increase, also typical values of

M
3

increase.

By allowing a larger value of the perturbativity cut-o↵ ⇠ of Eq. (3.1), higher masses

of MH± would be allowed. For example, ⇠ = 1 permits masses above 600 GeV. Also the

unitarity and the electroweak parameter T constrain this high-mass region. Which of these

gives the strongest limits depends on the other parameters.
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•  

• In SM      and     loop interfere destructively

•  

• Flip sign of   -loop?

•  

• Also     term (additive)
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Charged Higgs

• Only way to exclude SM?

• Identify Benchmarks!



Requirements:

• Not excluded by theoretical arguments

• Not excluded by experimental data

• Good production cross section

• Good BR for decay to W + H1

• Moderate background



Charged Higgs Benchmarks
↵
1

/⇡ ↵
2

/⇡ ↵
3

/⇡ tan� M
2

Mmin

H± ,Mmax

H±

P
1

0.23 0.06 0.005 1 300 300,325

P
2

0.35 �0.014 0.48 1 300 300,415

P
3

0.35 �0.015 0.496 1 350 300,450

P
4

0.35 �0.056 0.43 1 400 300,455

P
5

0.33 �0.21 0.23 1 450 300,470

P
6

0.27 �0.26 0.25 1 500 300,340

P
7

0.39 �0.07 0.33 2 300 300,405

P
8

0.34 �0.03 0.11 2 400 300,315

P
9

0.47 �0.006 0.05 10 400 400,440

P
10

0.49 �0.002 0.06 10 600 600,700

Table 1: Benchmark points selected from the allowed parameter space when M
1

=

125 GeV. Masses M
2

and allowed range of MH± are in GeV. For P
1

–P
8

, µ = 200 GeV,

whereas for P
9

and P
10

, µ = M
2

.

of a charged Higgs boson produced in association with a W boson, which involve model de-

pendent couplings, it is of fundamental importance to establish some characteristic feature

of the BRs for some specific points of parameter space. In this regard, we consider four

points from table 1 and we determine the most important decay modes. We consider only

BRs > 10�4, rates below this value are not of phenomenological relevance. Then, we have

six decay modes: WH
1

, WH
2

, WH
3

, tb, ts, ⌧⌫⌧ , displayed in fig. 8 for selected benchmark

points.

When tan� = 1, the dominant decay mode is always tb, and this feature is even

reinforced when the masses of H
1

and H
2

are well separated (P
5

). However, it is important

to remark that the WHi branching fractions, when allowed by the phase space, are always

⇠ O(0.1) and not smaller than ⇠ O(0.01). In particular, if MH± > 400 GeV, then the BR

for WH
1

is ⇠ O(0.1), this assures that the suppression brought about by this decay mode

is never stronger than about an order of magnitude for a rather large range of MH± .

The result does not hold for the W±H
1

case when tan� = 2 (see lower panels of fig. 8).

In fact, it strongly depends on the choice of point in parameter space: for P
7

this decay

mode is suppressed down to ⇠ O(0.01), while for P
8

its branching franction is restored to

⇠ O(0.1) because reducing the mixing between ⌘
1

and ⌘
2

via |↵
1

/⇡| = 0.35 ! 0.3 increases

the CP-even component of theH± ! W±H
1

coupling, while increasing the mixing between

⌘
1

and ⌘
3

via |↵
2

/⇡| = 0.025 ! 0.05 increases its CP-odd component, and these two e↵ects

lead to an enhancement.

Another feature of the tan� = 2 choice is that the W±H
2

decay mode is always

dominant as compared to the tb one when the phase space allows it, due to the suppression

of the H± ! tb coupling by a factor ⇠ 2 plus a sizeable H± ! W±H
2

coupling. We

remark that in this scenario the WHi=1,2 BRs are anyway ⇠ O(0.01) or bigger1.

1The ⌧⌫⌧ decay mode, on the other hand, strongly depends on the tan� value. While it is not a primary
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Proposed channel:

pp ! W±H⌥(+X)

! W+W�H1

! jj
|{z}

W

`±⌫
|{z}

W

bb̄
|{z}

H1

HjH
±W⌥ : ⇠ (sin �Rj1 � cos �Rj2)

2 +R2
j3

H1H
±W⌥ : = sin2(� � ↵1) cos

2 ↵2 + sin2 ↵2

H1H
±W⌥ : = sin2(� � ↵1) + sin2 ↵2 cos

2(� � ↵1)

H2H
±W⌥ : ⇠ (sin �R21 � cos �R22)

2 +R2
23

= [sin(� � ↵1)s2s3 + cos(� � ↵1)c3]
2 + c22s

2
3

sin(� � ↵1) = ±1, cos(� � ↵1) = 0

s23 = sin2 ↵3

t ! bW

tt̄ ! bb̄W+W�

MH± > mt bb̄

7
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(a)

(b) (c)

Figure 9: Single charged Higgs production channels at parton level.

neutral scalar is disfavoured. Secondly, the remaining production mechanisms are always

within a range of an order of magnitude at most.

As regards the fermion-associated production mechanism of fig. 9c, we remark that it

only depends on the values of MH± and tan� (see Eq. (2.13)), and there is a considerable

reduction when moving from tan� = 1 to tan� = 2 (roughly a factor 2) due to the fact

that the dominant contribution in the coupling is ⇠ mt/ tan�, hence the ratio of VEVs acts

as a reduction factor. The cross section of the fermion-associated contribution at tan� = 1

is ⇠ 10 � 102 (102) fb when
p
s = 8 (14) TeV and it is mostly inversely proportional to

tan�.

The scope of the fermion-associated production mechanism in extracting a H± ! Wbb̄

signature (see below) has been analysed already in the literature, albeit in the MSSM, see

[111], and we will revisit it in a CP-violating type-II 2HDM in a future publication.

Instead, here, we concentrate on vector-boson-associated production. The correspond-

ing cross sections show a complicated behaviour with respect to di↵erent choices of param-

eters. We start our analysis by considering the channel with a final H±W⌥ state. From

fig. 10 we see that a choice of tan� = 1 plus a low-Higgs-masses scenario (P
1

: M
1

= 125

GeV, M
2

⇠ M
3

⇠ 300 � 400 GeV) has a cross section ⇠ 10 � 102 (102 � 103) fb whenp
s = 8 (14) TeV, and that it is dominant (competitive) with respect to the fermion-

associated production. On the other hand, we see that a low M
1

(125 GeV) plus a choice

of high M
2

(P
5

) and M
3

(� 500 GeV) favour the contribution from the parton-level chan-

nel gg ! Hi=2,3 ! H±W⌥ proceeding through the on-shell Hi=2,3, and this results in a

cross section that is always dominant and even enhanced when mW +MH± < Mi=2,3, i.e.

⇠ 102 � 103 (103 � 104) fb when
p
s = 8 (14) TeV.

These qualitative conclusions hold when tan� = 2. Despite an overall suppression of

one order of magnitude due to the increased value of tan�, from fig. 10 (P
7

) we see that
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Dominant production mechanisms
Coupling may depend on details

small
irreducible background
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Cross sections:
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Background

•  

• cross section larger by factor 103

• impose generic cuts, BG reduction by 
factor 40, signal reduction by 2-3

pp ! W±H⌥(+X)

! W+W�H1

! jj
|{z}

W

`±⌫
|{z}

W

bb̄
|{z}

H1

HjH
±W⌥ : ⇠ (sin �Rj1 � cos �Rj2)

2 +R2
j3

H1H
±W⌥ : = sin2(� � ↵1) cos

2 ↵2 + sin2 ↵2

H2H
±W⌥ : ⇠ (sin �R21 � cos �R22)

2 +R2
23

= [sin(� � ↵1)s2s3 + cos(� � ↵1)c3]
2 + c22s

2
3

sin(� � ↵1) = ±1, cos(� � ↵1) = 0

s23 = sin2 ↵3

tt̄ ! bb̄W+W�
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Generic cuts

Hence, the overall selected process for the signal is the following:

pp ! W⌥H± ! W⌥W±H
1

! W⌥W±bb̄ ! 2j + 2b+ 1`+MET. (4.6)

For each benchmark point, 2 · 104 unweighted events were produced. Regarding the

top background, 4.5 · 106 unweighted events (with generation cuts) have been simulated

in CalcHEP. For both signal and background the standard set of CTEQ6.6M [105] PDFs

with scale Q =
p
s were employed. For emulating a real LHC-prototype detector, a Gaus-

sian smearing was included to take into account the electromagnetic energy resolution of

0.15/
p
E and the hadronic energy resolution of 0.5/

p
E.

We describe now the overall strategy for the background reduction procedure. A

first set of cuts includes typical detector kinematic acceptances and standard intermediate

object reconstruction, such as W ! jj and H
1

! bb (cuts 1–3)3. Further, a t-(anti)quark

reconstruction is used as “top veto” (cut 4). Led by the consideration that a b quark pair

stemming from the Higgs boson is boosted (unlike the almost back-to-back pair from tt),

we define the last cut of the following set (cut 5):

1) Kinematics: standard detector cuts

pT` > 15 GeV, |⌘`| < 2.5,

pTj > 20 GeV, |⌘j | < 3, (4.7)

|�Rjj | > 0.5, |�R`j | > 0.5;

with ⌘ the pseudorapidity and �R =
p

(�⌘)2 + (��)2.

2) light Higgs reconstruction:

�

�M(bb)� 125 GeV
�

� < 20 GeV ; (4.8)

3) hadronic W reconstruction (Wh ! jj):

|M(jj)� 80 GeV| < 20 GeV ; (4.9)

4) top veto: if �R(b
1

,Wh) < �R(b
2

,Wh), then

M(b
1

jj) > 200 GeV , MT (b2`⌫) > 200 GeV , (4.10)

otherwise 1 $ 2;

5) same-hemisphere b quarks:

pb1

|pb1 |
· pb2

|pb2 |
> 0 . (4.11)

In table 3 we show the e�ciency of the previous set of cuts against the simulated

background for the P
1

and P
5

points of table 1, for a choice of H± masses. There is a clear
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Additional anti-top cut
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±W⌥ : ⇠ (sin �Rj1 � cos �Rj2)
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Figure 11: M(bbjj) vs. MT (bb`⌫) after cut 5 for (unweighted) point P
2

, with MH± =

375 GeV (red, bottom-left) and MH± = 525 GeV (green, top-right). In black is the

(unweighted) top background. The dashed lines show M
lim

= 450 and 600 GeV.

accumulate at ⇠ 2mt, as can be seen in fig. 11 in which we adopt an illustrative choice of

charged Higgs masses.

The presence of long tails for the signal towards regions where the top background is

heavily reduced allows us to introduce two specific (and alternative) cuts:

“squared cut”: C
squ

= max
�

M(bbjj),MT (bb`⌫)
�

> M
lim

(4.12)

“single cut”: C
sng

= MT (bb`⌫) > M
lim

. (4.13)

The single cut of eq. (4.13) is applied only on MT (bb`⌫) because the reduction of the

top background is higher than if compared to a similar cut on the M(bbjj) for the same

numerical value of M
lim

.

To determine which is the better of the two proposed strategies and what is the optimal

value for M
lim

, we studied the e↵ects of C
squ

and C
sng

for several values of M
lim

. Results

are shown in tables 4 and 5 for the points P
2

and P
4

, respectively.

Clearly, a higher value for M
lim

results in an increase of the significance, the top

background is reduced more than the signal. It is important to note that for low charged

Higgs masses, C
squ

seems to perform better than the single cut. However, this is strickly

true for MH± ' 310 GeV only: if a further selection is imposed, restricting the evaluation
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Possible cuts

Cut
tt P

2

= 310 GeV P
2

= 390 GeV

Events Events S/
p
B Events S/

p
B

M
lim

= 450 GeV
C
sng

66.6 6.6 0.8 12.2 1.5

C
squ

161.1 10.5 0.8 20.1 1.6

M
lim

= 500 GeV
C
sng

45.2 6.0 0.9 11.1 1.6

C
squ

118.8 9.7 0.9 18.4 1.7

M
lim

= 550 GeV
C
sng

30.3 5.1 0.9 9.9 1.8

C
squ

91.0 8.5 0.9 16.1 1.7

M
lim

= 600 GeV
C
sng

24.9 4.7 1.0 8.9 1.8

C
squ

63.1 7.7 1.0 14.3 1.8

Table 4: Comparison between C
squ

and C
sng

vs M
lim

for P
2

: surviving events and signifi-

cance with respect to the background.

Cut
tt P

4

= 310 GeV P
4

= 390 GeV

Events Events S/
p
B Events S/

p
B

M
lim

= 450 GeV
C
sng

66.6 14.5 1.8 29.0 3.6

C
squ

161.1 25.8 2.0 47.3 3.7

M
lim

= 500 GeV
C
sng

45.2 12.7 1.9 26.3 3.9

C
squ

118.8 22.4 2.1 43.0 3.9

M
lim

= 550 GeV
C
sng

30.3 10.8 2.0 23.4 4.2

C
squ

91.0 19.8 2.1 37.9 4.0

M
lim

= 600 GeV
C
sng

24.9 10.0 2.0 20.3 4.1

C
squ

63.1 17.7 2.2 33.1 4.2

Table 5: Comparison between C
sng

and C
squ

vs M
lim

for P
4

: surviving events and signifi-

cance with respect to the background.

of the significance to the peak-region only

peak cut: |M �MH± | < 50 GeV , (4.14)

the significance obtained by imposing C
sng

, when calculated for all the other charged Higgs

boson mass values, is always higher than the one obtained by imposing C
squ

. Here, M =

min
�

M(bbjj),MT (bb`⌫)
�

when eq. (4.12) is employed, while M = M(bbjj) when eq. (4.13)

is employed.

For the following analysis, the value M
lim

= 600 GeV has been chosen as well as the

selection C
sng

, this choice provides the best significance and a narrower peak while keeping

a su�cient number of signal events (> 10). Should the surviving signal events be less than

10, it would then be advisable to choose instead the squared cut C
squ

for the higher survival

probability of the signal events (despite the lower significance and the broader peak).

The invariant mass distributions for the points P
2

, P
3

, P
4

, P
5

, and P
7

are plotted in

– 27 –
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P2 : tan � = 1, M2 = 300 GeV, ↵i = {0.35,�0.014, 0.48}
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P6 : tan � = 1, M2 = 500 GeV, ↵i = {0.27,�0.26, 0.25}
P7 : tan � = 2, M2 = 300 GeV, ↵i = {0.39,�0.07, 0.33}
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bb̄jj`⌫

MH± = 310 GeV MH± = 390 GeV

Events S/
p
B Events S/

p
B

tt 24.9
peak 11.9 � 9.9 �
P1 3.8 0.8 � �
peak 2.6 0.8 � �
P2 4.7 1.0 8.8 1.8
peak 3.3 1.0 7.3 2.3
P3 11.3 2.3 22.0 4.4
peak 7.7 2.3 17.2 5.4
P4 10.0 2.0 20.3 4.1
peak 7.8 2.3 16.0 5.1
P5 21.1 4.2 30.2 6.1
peak 13.9 4.1 25.0 7.9
P6 14.0 2.8 � �
peak 9.4 2.8 � �
P7 3.1 0.6 7.4 1.5
peak 2.8 0.8 7.3 2.3
P8 1.2 0.2 � �
peak 1.2 0.4 � �

Table 1: Surviving events and their significance after the single cut of eq. (??)
and after the peak selection of eq. (??), for all points of table ??, except P9

and P10.
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• 2HDM II parameter space is severely 
constrained by LHC data

• Parts of 2HDM II parameter space are still 
open

• SM would be excluded by charged Higgs 
discovery

•                            channel allows detection 
in part of parameter space

2HDM Conclusions

pp ! W±H⌥(+X)

! W+W�H1

! jj
|{z}

W

`±⌫
|{z}

W

bb̄
|{z}

H1

HjH
±W⌥ : ⇠ (sin �Rj1 � cos �Rj2)

2 +R2
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±W⌥ : = sin2(� � ↵1) cos

2 ↵2 + sin2 ↵2
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±W⌥ : ⇠ (sin �R21 � cos �R22)

2 +R2
23

= [sin(� � ↵1)s2s3 + cos(� � ↵1)c3]
2 + c22s

2
3

sin(� � ↵1) = ±1, cos(� � ↵1) = 0

s23 = sin2 ↵3

t ! bW

tt̄ ! bb̄W+W�

MH± > mt bb̄
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The Extension
Scalar DM

• “Inert (Scalar) Doublet Model (IDM)”, Barbieri et al, 2006

• “CP-violating Inert Doublet Model”, Grzadkowski et al, 2009

Extend SM with additional scalar doublet, unbroken Z2 
symmetry makes lightest “odd” particle stable. No vev, no 
direct coupling to SM matter.

Extend 2HDM with additional scalar doublet, unbroken Z2 
symmetry makes lightest “odd” particle stable. No vev, no 
direct coupling to SM matter.



IDM2:  2HDM + inert doublet
Motivation: IDM + CP violation

Fields:

Potential:
Coupling:

Grzadkowski et al, 2009



Coupling:

Many parameters...

(standard)

(most general)



Many parameters! Simplify!

“Dark democracy”:

Masses of inert sector:

Important: 
These         characterize coupling of inert sector to non-
inert sector, and also mass splitting in inert sector



Higgs portal

1 Couplings

Hj → SS,AA, η+η− (1.1)

Write the amplitude as
M ≡ iav (1.2)

where the three couplings of interest are

SSHj : − 2iλLvFj, (1.3a)

AAHj : − 2iλ̃LvFj, (1.3b)

η+η−Hj : − iλavFj. (1.3c)

In the case of Hj → SS, we have a = −2iλLFj . Furthermore,

λL ≡ 1
2(λa + λb + λc) =

M2
S −m2

η

v2
, (1.4a)

λ̃L ≡ 1
2(λa + λb − λc) =

M2
A −m2

η

v2
, (1.4b)

λa =
2

v2
(M2

η± −m2
η) (1.4c)

and
Fj = cosβRj1 + sin βRj2. (1.5)

The latter quantities satisfy |Fj| ≤ 1, since R is unitary. In particular,

F1 = cos(β − α1) cosα2. (1.6)

2 Decay rates

dΓ =
1

2MH

|M|2 (2π)4δ(4)(pH − p′1 − p′2)
d3p′1

(2π)32E ′

1

d3p′2
(2π)32E ′

2

(2.1)

dΓ =
1

(2π)2
1

2MH

|a|2v2δ(MH − 2E ′

1)
d3p′1
4(E ′

1)
2

(2.2)

=
1

(2π)2
1

2M3
H

|a|2v2δ(MH − 2E ′

1)d
3p′1 (2.3)

1

• Coupling of scalars: Higgs      DM



Constraints

• positivity (rather complicated), 20% excluded

• unitarity, 60% excluded

• global minimum, 10% excluded

• additional 2HDM constraints:                      etc

• DM

EW “precision data”
determined by MicrOMEGAs



Positivity
Define:

Plus additional constraint, which in the case of 
Dark democracy               takes the form:



Getting correct DM density

• Annihilation to W+ W-, effective above 75 GeV

• Annihilation via real or virtual neutral Higgs

Main Early Universe annihilation mechanisms:

like IDM...



Annihilation in the Early Universe



Annihilation in the Early Universe

Note
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Scan over parameters

Collect results in               plane
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η+

η−

γ/Z

q

q̄

η+

η−

Hi

b

b̄

g

Hi

q

q

q

g

η+

η−

W±
q

q̄′

η±

S

1

Production and discovery at the LHC?

Can the model be experimentally tested?

Pair production and single production



η+

S

W+ ν

#+

Decay:
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Single production



Pair production

Bumps are due to resonant production via H2, H3
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For small mass splitting, get displaced vertex



η+

S

W+ ν

#+

Decay:

For hadronic W decay, get two jets (may merge to one)



Ideas for a search

MS = 70 GeV MS = 80 GeV MS = 90 GeV

M⌘± = 100 GeV 708 583 483

M⌘± = 120 GeV 463 392 333

M⌘± = 140 GeV 310 265 219

M⌘± = 160 GeV 222 187 149

Table 2. Total cross section (in fb) for the process pp ! W±SS at the LHC with a centre-of-mass
energy of

p
s = 14 TeV. The kinematic cuts given by Eq. (7.4) are applied.

o↵-shell W± and they have an invariant mass that is mostly related to the o↵-shell-ness. As

a consequence, they release most of their energy via their common longitudinal momentum,

so they are not separately observable by the detector. The only exception occurs when the

W± is allowed to be on-shell: in that case we count a very small (not significant) fraction

of final states that behave as two separate jets. In a nutshell, we are mostly dealing with

an e↵ective mono-jet plus MET signal, i.e.

pp ! j + MET. (7.6)

Despite the fact that a study of the cutting strategy concerning the LHC high-energy

scenario is surely premature at this stage, we mimic the analysis of the
p

s = 8 TeV scenario

by further requiring two selection criteria for the detection of the mono-jet signal which

are stated in [34], i.e.

MET > 120 GeV, pT
j > 120 GeV. (7.7)

Then, we plot the number of events against the pT
j in 5 GeV bins. The result is shown in

Fig. 11.

From the frames of Fig. 11 it is clear that the major role in the behaviour of the

integrated events is played by the values of M⌘± and the mass splitting between ⌘± and S.

Starting from the top-left frame, we see that a scenario with a relatively light ⌘± produces

a considerable amount of events only if the splitting is large (⇠ 350 events with M⌘± = 100

and a splitting of 30 GeV), whereas it rapidly scales down if the splitting is set to 10 GeV

or below.

Then, we must understand what happens when the mass of ⌘± and the splitting are

increased (i.e., MS is kept fixed). We have already seen that the total cross section drops

as the masses increase (see Fig. 9), but we have to remark that strong cuts on both the

transverse momentum and the missing transverse energy are applied. From a kinematic

point of view, we note that as more energy is released in the decay of the ⌘±, the jet(s)

coming from the W will be more energetic, and lead to events with more high transverse

pT
j events being produced, giving rise to the behaviour that we observe in the top-right

frame.

Thereafter, the same argument applies to the bottom-left frame, however we have to

remark that the total cross-section is dropping with the higher ⌘± mass and the two e↵ects

balance the production of high transverse pT
j jets.
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increased (i.e., MS is kept fixed). We have already seen that the total cross section drops

as the masses increase (see Fig. 9), but we have to remark that strong cuts on both the

transverse momentum and the missing transverse energy are applied. From a kinematic

point of view, we note that as more energy is released in the decay of the ⌘±, the jet(s)

coming from the W will be more energetic, and lead to events with more high transverse

pT
j events being produced, giving rise to the behaviour that we observe in the top-right
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Thereafter, the same argument applies to the bottom-left frame, however we have to

remark that the total cross-section is dropping with the higher ⌘± mass and the two e↵ects

balance the production of high transverse pT
j jets.
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The final states can be classified in two sets, depending on the W± decay mode: a

hadronic one (with W ! 2j) and a leptonic one (with W ! l + ⌫l). Due to the enormous

SM single-lepton background, only the former channel has any chance to be detected.

However, in certain kinematic circumstances, both channels are open to the possibility of

an interaction-vertex displacement, as we have already discussed in subsection 4.2, and

this would make them accessible to experimental detection. In the following subsections,

we will consider all of these features and we will perform a substantial profiling of the

signature stemming from the single ⌘± produced at the LHC.

7.1 Hadronic final state: jets plus missing energy

The study of the hadronic final states in single ⌘± production is connected with the IDM2

signature

p + p ! 2j + 2S ' 2j + MET, (7.3)

since S is a stable inert particle which can only be revealed by a detector as transverse

missing energy.

The analysis of this channel at the LHC can be related to the ATLAS mono-jet plus

missing transverse momentum searches [34]. For this, we will apply a set of standard

kinematic cuts adopted by the ATLAS experiment, i.e.,

pT
j > 20 GeV,

|⌘j | < 4.5, (7.4)

�Rjj > 0.5 (or jet merging applied);

where pT
j represents each jet’s transverse momentum, ⌘ is its pseudo-rapidity and �R =

p

(�⌘)2 + (��)2. Starting from the analysis of section 5, we establish a set of benchmarks

that involves several values of MS and M⌘± . In order to test several degrees of mass

splitting, we chose to assume three di↵erent values for MS , 70, 80 and 90 GeV, and to

combine them with four possible values for M⌘± , namely 100, 120, 140 and 160 GeV.

Therefore, we have performed an event-generation analysis by producing several n-tuples

consisting of 105 events for the process

pp ! ⌘±S ! W±SS, (7.5)

and letting the o↵-shell W± decay inclusively. Hence, we have weighted each of them by its

corresponding production cross section (we summarise the values in Table 2). From these

values we extract the information about the relatively simple behaviour of the cross section

with respect to the final state masses: it is basically determined by the phase space, when

masses increase then cross sections decrease.

After the generation is performed, we focus on the hadronic final state and apply the

cuts in Eq. (7.4). After the �R criterion is applied, we obtain the first noticeable result:

there is no surviving di-jet signal because all the di-jets are merged in an “e↵ective” mono-

jet. Apart from the M⌘± = 160 GeV case, this occurs because the two jets stem from an
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• Scalar sector could be much more exciting 
than in the SM

• Possibly signals in Direct or Indirect detection 
experiments

• Possibly interesting signals at the LHC

• In the meantime, parts of parameter space will 
be excluded

Conclusions
...if scalars are dark matter...


