The Standard Model and Beyond: ATLAS

Jonathan Butterworth University College London

Corfu Summer Institute 1/9/2013

Measurements

Discovery

Searches

Measurements

Low scales, high cross section: Inelastic cross section \& rapidity gaps

Jets at the highest scales

- Highest transverse momentum jets; at the TeV scale
- arXiv:1009.5908 (EPJC), arXiv: 1112.6297 (PRD)
- arXiv:1106.0208 (PRL)

Jets at the highest scales

- Highest transverse momentum jets; at the TeV scale
- arXiv: 1009.5908 (EPJC),arXiv: 1112.6297 (PRD)
- arXiv:1106.0208 (PRL)
- General agreement with NLO QCD calculations (after soft corrections) Significant spread in "NLO" predictions. ME/PS matching? MC tune (UE)? PDFs?


```
\(L \mathrm{dt}=37 \mathrm{pb}^{-1}\) \(\sqrt{s}=7 \mathrm{TeV}\) anti- \(\mathrm{k}_{\mathrm{t}}\) jets, \(R=0.4\)
```

-- Data with
statistical error
Systematic uncertainties

NLOJET++ (CT10, $\left.\mu=p_{T}^{\text {max }}\right) \times$
Non-pert. corr.
POWHEG

- $\quad\left(\mathrm{CT} 10, \mu=p_{T}^{\text {Borm }}\right) \otimes$ PYTHIA AUET2B

POWHEG

- $\quad\left(\right.$ CT10,$\left.\mu=p_{T}^{\text {Borf }}\right) \otimes$

PYTHIA Perugia2011
POWHEG

- $\quad\left(\mathrm{CT} 10, \mu=p_{T}^{\text {Borm }}\right) \otimes$

HERWIG AUET2
POWHEG fixed order

- (CT10, $\left.\mu=p_{T}^{\text {Borm }}\right) \times$

Non-pert. corr.

Jets as a probe of the proton

- Use 2.76 TeV CM

 data to measure cross sections.
Ratios;

- in x_{T}, many theory uncertainties
~cancel (same x, different Q^{2})

ATLAS
$\int L \mathrm{dt}=0.20 \mathrm{pb}^{-1}$ $\rho=\left[\frac{2.76 \mathrm{TeV}}{7 \mathrm{TeV}}\right]^{3} \frac{\sigma_{\text {et }}^{2.76 \mathrm{TeV}}}{\sigma_{\mathrm{jet}}^{7 \mathrm{TeV}}}$ anti- $k_{t} \mathrm{R}=0.4$

Data with

\rightarrow statistical uncertaintySystematic uncertainties NLO pQCD \otimes
\triangle non-pert. corr. (CT10, $\mu=p_{T}^{\text {max }}$)

Jets as a probe of the proton

- Use 2.76 TeV CM data to measure cross sections.

Ratios;

- in x_{T}, many theory uncertainties
~cancel (same x, different Q^{2})
- In p_{T}, jet energy scale ~cancels (dominant experimental uncertainty)

arXiv:1304.4739Systematic uncertainties NLO PQCD *

Jets as a probe of the proton

- Illustrative fit to HERA and ATLAS data
- Valence quarks heavily constrained by HERA
- High x gluon and sea quarks modified by addition of ATLAS data

Running of the strong coupling

Jet properties

- Final stage of jet structure is "soft" non-perturbative QCD.
- Formation of hadrons from gluons, 100 MeV energy scales (Λ_{QCD})
- Vast phase space between quark-gluon scatter (100's GeV, few TeV) and $\Lambda_{\text {QCD }}$
- Most of jet substructure can be analysed perturbatively
- EWSB scale ($\sim 100 \mathrm{GeV}$) lies in this region
- Jets may contain objects with EW-scale mass (W,Z,H,t,?)

Jet "grooming" and subjets

arXiv:1203.4606

Jet grooming and subjets

- k_{T} scale, N -subjettiness

arXiv:1203.4606

Vector bosons and (b) jets

arXiv:1304.7098 arxiv:1302:2929

Lepton pairs

A word on Photons

- Similar physics, complementary systematics to jet studies
- Key background for Higgs

A word on Photons

- Similar physics, complementary systematics to jet studies
- Key background for Higgs
- Diphoton + jet measurements badly needed!

AMCL

(Parenthesis)

- First measurements of minimum bias, charged particle multiplicities, underlying event all vital for this precision.
- Underlying event contribution from double-parton-interactions
- Rare "clean" events
- Probes confinement in a new way
- Significant background to some exotica (like-sign etc)

Double-parton interactions

Discovery

$A 1 / C 1$

$\begin{aligned} & \begin{array}{l} \mathbf{W}, \mathbf{Z ~ H ~} \rightarrow \mathbf{b} \overline{\mathbf{b}} \\ \text { Preliminary } \end{array} \\ & \mu=0.2_{-0.6}^{+0.7} \end{aligned}$	± 0.5 ± 0.4 <0.1		\longrightarrow	ATLAS
$\mathbf{H} \rightarrow \tau \tau \quad$ (8TeV: 13 Preliminary $\mu=0.7_{-0.6}^{+0.7}$				ATLAS-CONF-2012-160
$\begin{array}{llccc} \sqrt{s}=7 \mathrm{TeV} \int \operatorname{Ldt}=4.6-4.8 \mathrm{fb}^{-1}-0.5 & 0 & 0.5 & 1 & 1.5 \end{array}$				

Pure spin 2 excluded at $>99.9 \%$

Searches

WZ/WW resonances

Substructure in searches (boosted top, boosted W)

Substructure in searches

tagging rejection

ATLAS SUSY Searches* - 95\% CL Lower Limits
Status: EPS 2013

ATLAS Preliminary
$\int \mathcal{L} d t=(4.4-22.9) \mathrm{fb}^{-1} \quad \sqrt{s}=7,8 \mathrm{TeV}$

[^0]Large ED (ADD) : monojet $+E_{T, \text { miss }}$ Large ED (ADD) : monophoton $+E_{T, \text { miss }}$ Large ED (ADD) : diphoton \& dilepton, $m_{y y / 1}$ UED : diphoton $+E_{T, \text { miss }}$ S^{1} / Z_{2} ED : dilepton, $m_{\|}$ RS1 : dilepton, m_{1}
RS1 : WW resonance, $m_{T, \text { wN }}$ Bulk RS: ZZ resonance, $m_{\text {III }}$ RS $\mathrm{g}_{\text {Kk }} \rightarrow \mathrm{ti}(B R=0.925): \mathrm{tt} \rightarrow 1+\mathrm{jets}, \mathrm{m}_{\mathrm{u}}$ ADD BH $\left(M_{\text {TH }} / M_{\mathrm{D}}=3\right)$: SS dimuon, $N_{\text {ch.par }}$ ADD BH ($M_{T H} / M_{D}=3$) : leptons + jets, Σ ch p

Quantum black hole : dijet, $F_{(}\left(m_{3}\right)$ qqqq con contact interacactiòn : $\chi(m)$
qqII CI: ee $\& \mu \mu, m_{\|}$
uutt $\mathrm{Cl}: S S$ dilepton + jets $+\mathrm{E}_{\mathrm{T} \text {, miss }}$
Z' (SSM) : $m_{\text {eef } / \mu}$ $Z^{\prime}(S S M): m_{\text {ux }}$
Z^{\prime} (leptophobic topcolor): $\mathrm{tt} \rightarrow \mid+j$ jets, m_{u} W^{\prime} (SSM) : $m_{\text {Te, }}$ $\mathrm{W}^{\prime}\left(\rightarrow \mathrm{tq}, \mathrm{g}_{\mathrm{g}}=1\right): m_{\mathrm{ta}}$ $\mathrm{W}_{\mathrm{R}}(\rightarrow \mathrm{tb}$, LRSM $): m_{m}$
 Scalar LQ pair ($\beta=1$) : kin. vars. in eejj, ev] Scalar LQ pair $(\beta=1):$ kin. vars. in $\mu \mu j j_{j}, \mu v j \mathrm{j}$ Scalar LQ pair ($\beta=1$): kin. vars. in $\tau \tau \mathrm{j}$, $\tau \mathrm{vj}$ 4th generation: $\mathrm{b}^{\prime} \mathrm{b}^{4}$ generation: $\mathrm{tr}^{\mathrm{tt} \rightarrow \mathrm{WbWb}}$

Vector-like quark: $\mathrm{T} \rightarrow \rightarrow \mathrm{H}+\mathrm{H}+\mathrm{X}$ Vector-like quark: $\mathrm{CC}, m_{\text {ve }}$ Excited quarks: $\boldsymbol{y} \boldsymbol{-}$-et resonance, m Excited quarks : dijet resonance, $m_{\text {I }}$ Excited b quark : W-t resonance, $m_{\text {wi }}$ Excited leptons: $1-\gamma$ resonance, m
Techni-hadrons (LSTC) : dilepton, $m_{\text {eef }}^{\text {elp }}$, Techni-hadrons (LSTC) : WZ resonance (vil), m_{w}

Major. neutr. (LRSM, no mixing) : 2 -lep + jets
Heavy lepton N^{\perp} (type III seesaw) : Z-I resonance, m_{z} H_{L} (DY prod., BR($\left.\mathrm{H}^{+} \rightarrow \mathrm{ll}\right)=1$) : SS ee $(\mu \mu), m$

Color octet scalar : dijet resonance, $m_{\text {m }}$ Multi-charged particles (DY prod.) : highly ionizing tracks Magnetic monopoles (DY prod.): highly ionizing tracks

ATLAS Exotics Searches* - 95\% CL Lower Limits (Status: May 2013)

And finally... what do we actually measure?

- Difference between "efficiency corrections" or "unfolding", and "acceptance corrections".
- The first two generally mean correction for detector effects which no one but the experimentalists can do.
- The third means extrapolating into kinematic regions which have not been measured at all
- Beware of the third, especially as we go to higher energies...

Unfold

Increase acceptance

Increase acceptance

Extrapolate

But how reliably?

And finally... what do we actually measure?

- Defining a region in which acceptance is
~100\%,

ion

- ATLAS WW cross section (to e, μ), 7 TeV
- efficiency/detector corrections to obtain fiducial cross section, 0.4-0.7
- acceptance (phase space) , 0.07-0.16
- That missing 90% is stuff we don't measure
- The efficiency/detector efficiency won't change much at 13 TeV
- The acceptance may well drop further
- Garbage in, garbage out.

屰 \square $0 \rightarrow \square$

For example... Top cross section

- Current measurements extrapolate to $4 \pi, 4 \mathrm{TeV}>\mathrm{p}_{\mathrm{T}}>0$
- Often not even possible to extract the acceptance from the papers (convoluted with efficiencies and migrations)
- Means for some, non-trivially-different, regions of phase space, we are just buying the theory
- Will be even more of a problem at higher beam energies.
- (see LHC Top Working group discussions, e.g. talk by Will Bell, 19/7/2012)
"Looking and not finding is not the same as not looking! ${ }^{3}$
— Hiranya Peiris, Cosmologist

CERN

[^0]: *Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.

