The Standard Model and Beyond: ATLAS

Jonathan Butterworth University College London

Corfu Summer Institute 1/9/2013

Measurements

Discovery

Searches

Measurements

Jets at the highest scales

- Highest transverse momentum jets; at the TeV scale
 - arXiv:1009.5908 (EPJC),arXiv: 1112.6297 (PRD)
 - arXiv:1106.0208 (PRL)

Jets at the highest scales

- Highest transverse momentum jets; at the TeV scale
 - arXiv:1009.5908 (EPJC),arXiv: 1112.6297 (PRD)
 - arXiv:1106.0208 (PRL)
- General agreement with NLO QCD calculations (after soft corrections)
 Significant spread in "NLO" predictions. ME/PS matching? MC tune (UE)? PDFs?

Jets as a probe of the proton

arXiv:1304.4739

Jets as a probe of the proton

experimental

uncertainty)

arXiv:1304.4739

Jets as a probe of the proton

- Illustrative fit to HERA and ATLAS data
- Valence quarks heavily constrained by HERA
- High x gluon and sea quarks modified by addition of ATLAS data

Running of the strong coupling

Jet properties

- Final stage of jet structure is "soft" non-perturbative QCD.
 - Formation of hadrons from gluons, 100 MeV energy scales (Λ_{QCD})
- Vast phase space between quark-gluon scatter (100's GeV, few TeV) and $\Lambda_{\rm QCD}$
- Most of jet substructure can be analysed perturbatively
- EWSB scale (~100 GeV) lies in this region
 - Jets may contain objects with EW-scale mass (W,Z,H,t,?)

Jet "grooming" and subjets

arXiv:1203.4606

Jet grooming and subjets

• k_T scale, N-subjettiness

arXiv:1203.4606

Vector bosons and (b) jets

Lepton pairs

A word on Photons

- Similar physics, complementary systematics to jet studies
- Key background for Higgs

arXiv:1211.1913 arXiv:1210.5033

A word on Photons

- Similar physics, complementary systematics to jet studies
- Key background for Higgs
- Diphoton + jet measurements badly needed!

arXiv:1211.1913 arXiv:1210.5033

(Parenthesis)

- First measurements of minimum bias, charged particle multiplicities, underlying event all vital for this precision.
- Underlying event contribution from doubleparton-interactions
 - Rare "clean" events
 - Probes confinement in a new way
 - Significant background to some exotica (like-sign etc)

Data√s=7 TeV SHERPA Wlv multi jet

Ldt=36 pb

120

140

 $\Delta_{\rm jets}$ [GeV]

Wτν ttbar

single top Diboson

100

ZII

Ζττ

80

0.5

0.6

0.7

0.8

0.9

 Δ_{jets}^{n}

Double-parton interactions

Discovery

Data - Background

Pure spin 2 excluded at > 99.9%

Searches

WZ/WW resonances

arXiv:1305.0125

Substructure in searches (boosted top, boosted W)

Substructure in searches

ATLAS SUSY Searches* - 95% CL Lower Limits

.

Status: EPS 2013

ATLAS Preliminary

 $\int \mathcal{L} dt = (4.4 - 22.9) \text{ fb}^{-1} \qquad \sqrt{s} = 7, 8 \text{ TeV}$

	Model	e, μ, τ, γ	Jets	E ^{miss} T	∫£ dt[fb	⁻¹] Mass limit	Reference
Inclusive Searches	$ \begin{array}{l} MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ \widetilde{q}\widetilde{q}, \widetilde{q} \rightarrow q\widetilde{\chi}_{1}^{0} \\ \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow q\widetilde{q}\widetilde{\chi}_{1}^{0} \\ \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow q\widetilde{q}\widetilde{\chi}_{1}^{0} \\ \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow q\widetilde{q}\widetilde{\chi}_{1}^{\pm} \rightarrow qqW^{\pm}\widetilde{\chi}_{1}^{0} \\ \widetilde{g}\widetilde{g} \rightarrow qq\overline{q}\ell\ell(\ell)\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0} \\ GMSB (\widetilde{\ell} \ NLSP) \\ GMSB (\widetilde{\ell} \ NLSP) \\ GGM (bino \ NLSP) \\ GGM (higosino-bino \ NLSP) \\ GGM (higgsino-bino \ NLSP) \\ GGM (higgsino-bino \ NLSP) \\ GGM (higgsino \ NLSP) \\ GFavitio \ LSP \end{array} $	$\begin{matrix} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 0 \\ 2 \ e, \mu (SS) \\ 2 \ e, \mu \\ 1-2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu (Z) \\ 0 \end{matrix}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 2-6 jets 3-6 jets 3 jets 2-4 jets 0-2 jets 0 0 1 b 0-3 jets	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.7 4.7 20.7 4.7 20.7 4.8 4.8 4.8 5.8 10.5	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} {\sf ATLAS-CONF-2013-047}\\ {\sf ATLAS-CONF-2013-062}\\ {\sf ATLAS-CONF-2013-054}\\ {\sf ATLAS-CONF-2013-054}\\ {\sf ATLAS-CONF-2013-047}\\ {\sf ATLAS-CONF-2013-047}\\ {\sf ATLAS-CONF-2013-062}\\ {\sf ATLAS-CONF-2013-062}\\ {\sf ATLAS-CONF-2013-062}\\ {\sf ATLAS-CONF-2013-026}\\ {\sf 1209.0753}\\ {\sf ATLAS-CONF-2012-144}\\ {\sf 1211.1167}\\ {\sf ATLAS-CONF-2012-152}\\ {\sf ATLAS-CONF-2012-152}\\ {\sf ATLAS-CONF-2012-152}\\ {\sf ATLAS-CONF-2012-147}\\ \end{array}$
3 rd gen. <i>ἒ</i> med.	$\begin{array}{l} \widetilde{g} \rightarrow b \widetilde{b} \widetilde{k}_{1}^{0} \\ \widetilde{g} \rightarrow t \widetilde{t} \widetilde{k}_{1}^{0} \\ \widetilde{g} \rightarrow t \widetilde{t} \widetilde{k}_{1}^{0} \\ \widetilde{g} \rightarrow b \widetilde{t} \widetilde{k}_{1}^{+} \end{array}$	0 0 0-1 e, μ 0-1 e, μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	š 1.2 TeV m(t_0^2)<600 GeV š 1.14 TeV m(t_1^2)<200 GeV š 1.34 TeV m(t_1^2)<400 GeV š 1.34 TeV m(t_1^2)<300 GeV	ATLAS-CONF-2013-061 ATLAS-CONF-2013-054 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3 rd gen. squarks direct production	$ \begin{array}{c} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{x}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t\tilde{x}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{light}), \tilde{t}_{1} \rightarrow b\tilde{x}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{light}), \tilde{t}_{1} \rightarrow b\tilde{x}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{light}), \tilde{t}_{1} \rightarrow t\tilde{x}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{medium}), \tilde{t}_{1} \rightarrow t\tilde{x}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{medium}), \tilde{t}_{1} \rightarrow t\tilde{x}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{heavy}), \tilde{t}_{1} \rightarrow t\tilde{x}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{neatural GMSB}) \\ \tilde{t}_{2}\tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \end{array} $	$\begin{array}{c} 0\\ 2\ e,\mu\ ({\rm SS})\\ 1\mathchar`-2\ e,\mu\\ 2\ e,\mu\\ 2\ e,\mu\\ 0\\ 1\ e,\mu\\ 0\\ 0\\ 0\\ 3\ e,\mu\ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b ono-jet/c-t 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes ag Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} \mbox{ATLAS-CONF-2013-053} \\ \mbox{ATLAS-CONF-2013-057} \\ \mbox{ATLAS-CONF-2013-007} \\ \mbox{1208.4305, 1209.2102} \\ \mbox{ATLAS-CONF-2013-048} \\ \mbox{ATLAS-CONF-2013-053} \\ \mbox{ATLAS-CONF-2013-053} \\ \mbox{ATLAS-CONF-2013-053} \\ \mbox{ATLAS-CONF-2013-054} \\ \mbox{ATLAS-CONF-2013-068} \\ \mbox{ATLAS-CONF-2013-068} \\ \mbox{ATLAS-CONF-2013-068} \\ \mbox{ATLAS-CONF-2013-065} \\ \mbox{ATLAS-CONF-2013-065} \\ \mbox{ATLAS-CONF-2013-065} \\ \mbox{ATLAS-CONF-2013-065} \\ \mbox{ATLAS-CONF-2013-025} \\ $
EW direct	$ \begin{array}{c} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\nu} \nu (\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{1} \nu \tilde{\ell}_{L} \ell (\tilde{\nu} \nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell (\tilde{\nu} \nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W^{*} \tilde{\chi}_{1}^{0} Z^{*} \tilde{\chi}_{1}^{0} \end{array} $	2 e, μ 2 e, μ 2 τ 3 e, μ 3 e, μ	0 0 0 0	Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} \mbox{ATLAS-CONF-2013-049} \\ 0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^0)) & \mbox{ATLAS-CONF-2013-049} \\ 0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^0)) & \mbox{ATLAS-CONF-2013-028} \\ 0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^0)) & \mbox{ATLAS-CONF-2013-035} \\ 0, sleptons decoupled & \mbox{ATLAS-CONF-2013-035} \\ \end{array}$
Long-lived particles	$\begin{array}{l} \text{Direct}\tilde{\chi}_1^+\tilde{\chi}_1^- \operatorname{prod.}, \operatorname{long-lived}\tilde{\chi}_1^+ \\ \text{Stable, stopped}\tilde{g} \text{R-hadron} \\ \text{GMSB, stable} \tilde{\tau}, \tilde{\chi}_1^0 {\rightarrow} \tilde{\tau}(\tilde{e}, \tilde{\mu}) {+} \tau(\epsilon \\ \text{GMSB}, \tilde{\chi}_1^0 {\rightarrow} \gamma \tilde{G}, \operatorname{long-lived} \tilde{\chi}_1^0 \\ \tilde{\chi}_1^0 {\rightarrow} q q \mu (\text{RPV}) \end{array}$	Disapp. trk 0 e, μ) 1-2 μ 2 γ 1 μ	1 jet 1-5 jets 0 0 0	Yes Yes - Yes Yes	20.3 22.9 15.9 4.7 4.4	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V, $\tau(\tilde{\chi}_1^{\pm})=0.2 \text{ ns}$ ATLAS-CONF-2013-069 $\iota < \tau(\tilde{g}) < 1000 \text{ s}$ ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 oupled 1210.7451
RPV	$ \begin{array}{l} LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear RPV CMSSM \\ \widetilde{\chi}_{1}^{+}\widetilde{\chi}_{1}^{-}, \widetilde{\chi}_{1}^{+} \rightarrow W\widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow ee\widetilde{\nu}_{\mu}, e\mu \widetilde{\nu}, \\ \widetilde{\chi}_{1}^{+}\widetilde{\chi}_{1}^{-}, \widetilde{\chi}_{1}^{+} \rightarrow W\widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow \tau \tau \widetilde{\nu}_{e}, e\tau \widetilde{\nu}, \\ \widetilde{g} \rightarrow qqq \\ \widetilde{g} \rightarrow \widetilde{t}_{1} t, \widetilde{t}_{1} \rightarrow bs \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ \mu \\ \tau \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \left(\text{SS} \right) \end{array}$	0 0 7 jets 0 0 6 jets 0-3 <i>b</i>	- Yes Yes Yes - Yes	4.6 4.6 4.7 20.7 20.7 4.6 20.7	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1212.1272 5 1212.1272 nm ATLAS-CONF-2012-140 .0 ATLAS-CONF-2013-036 .) ATLAS-CONF-2013-036 .1210.4813 ATLAS-CONF-2013-0307
Other	Scalar gluon WIMP interaction (D5, Dirac χ)	0 0	4 jets mono-jet	- Yes	4.6 10.5	sgluon 100-287 GeV incl. limit from 1110.2 M* scale 704 GeV m(χ)<80 GeV, limit of	393 1210.4826 c687 GeV for D8 ATLAS-CONF-2012-147
/9/2	013 $\sqrt{s} = 7 \text{ TeV}$	√s = 8 TeV artial data	$\sqrt{s} = \frac{1}{2}$	8 TeV		10 ⁻¹ Jon Butterworth, UCL 1 Mass	scale [TeV]

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

DCL

42

		ATLAS Exotics	Searches* - 95% CL Lower Limits	(Status: May 2013)
	Large ED (ADD) : monoiet + E	(=4.7 fb ⁻¹ .7 To)/ (1210, 4491)	4.27 ToV M (S	=2)
	Large ED (ADD) : monophoton + $E_{\pi,miss}$	L=4.6 fb ⁻¹ , 7 TeV [1209.4625]	1.93 TeV M _D (δ=2)	-27
2	Large ED (ADD) : diphoton & dilepton, m	L=4.7 fb ⁻¹ , 7 TeV [1211.1150]	4.18 TeV M _s (HI	Z δ=3, NLO) ATLAS
Ś.	UED : diphoton + E	L=4.8 fb ⁻¹ , 7 TeV [1209.0753]	1.40 TeV Compact. scale R ⁻¹	Preliminary
ŝ	S ¹ /Z ₂ ED : dilepton, m ₁	L=5.0 fb ⁻¹ , 7 TeV [1209.2535]	4.71 TeV M _{KK} -	• R ⁻¹
2°	RS1 : dilepton, m	L=20 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-017]	2.47 TeV Graviton mass	$(k/M_{\rm Pl} = 0.1)$
ŝ	RS1 : WW resonance, $m_{T,NN}$	L=4.7 fb ⁻¹ , 7 TeV [1208.2880]	1.23 TeV Graviton mass (k/M _{PI} = 0	$(1,1)$ $\left[1,4-(1,20),5-1\right]$
Ē	Bulk RS : 22 resonance, m	L=7.2 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-150]	850 Gev Graviton mass (k/M _{PI} = 1.0)	$\int Ldt = (1 - 20) fb$
X	$\text{RS g} \rightarrow \text{tt} (\text{BR=0.925}) : \text{tt} \rightarrow \text{I+jets}, m_{\text{tt}}$	L=4.7 fb ⁻¹ , 7 TeV [1305.2756]	2.07 TeV g _{KK} mass	s = 7, 8 TeV
	ADD BH $(M_{TH}/M_D=3)$: SS dimuon, $N_{ch, part.}$	L=1.3 fb ⁻¹ , 7 TeV [1111.0080]	1.25 TeV M _D (0=0)	• - · · • - · - ·
	Quantum black hole : dijet F (m_{TH})	L=1.0 fb ⁻¹ , 7 TeV [1204.4646]	1.5 lev M _D (0=0)	6)
	good contact interaction : $\gamma(m)$	L = 4.7 fb , 7 feV [1210.1716]	4.11 lev M _D (0-	
6	aall CI : ee & uu. m	L=5.0 fb ⁻¹ , 7 TeV [1211.1150]		13.9 TeV A (constructive int.)
\sim	uutt CI : SS dilepton + jets + E	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-051]	3.3 TeV A (C=1)	
	Z' (SSM) : m _{eeluu}	L=20 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-017]	2.86 TeV Z' mass	
	Z' (SSM) : m _{er}	L=4.7 fb ⁻¹ , 7 TeV [1210.6604]	1.4 TeV Z' mass	
2	Z' (leptophobic topcolor) : $t\bar{t} \rightarrow l+jets, m_{i}$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-052]	1.8 TeV Z' mass	
2	W' (SSM) : m _{T,e/µ} ^u	L=4.7 fb ⁻¹ , 7 TeV [1209.4446]	2.55 TeV W' mass	
	$W' (\rightarrow tq, g_{p}=1) : m_{tq}$	L=4.7 fb ⁻¹ , 7 TeV [1209.6593]	430 GeV W' mass	
	$W'_{R} (\rightarrow tb, LRSM) : m_{tb}$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-050]	1.84 TeV W' mass	
α	Scalar LQ pair (β =1) : kin. vars. in eejj, evjj	L=1.0 fb ⁻¹ , 7 TeV [1112.4828]	660 Gev 1° gen. LQ mass	
ŭ,	Scalar LQ pair (β =1) : kin. vars. in µµjj, µvjj	L=1.0 fb ⁻¹ , 7 TeV [1203.3172]	685 Gev 2" gen. LQ mass	
	Scalar LQ pair (β=1) : kin. vars. in ττj, τνj	L=4.7 fb ⁻¹ , 7 TeV [1303.0526]	534 GeV 3" gen. LQ mass	
2 S	4" generation : $tt' \rightarrow WbWb$ 4th generation : $bb' \rightarrow SS$ dilepton + jets + F	L=4.7 fb ⁻¹ , 7 TeV [1210.5468]	656 GeV L mass	
ě ě	T,miss	L=14.3 fb , 8 TeV [ATLAS-CONF-2013-051]	720 GeV D (fildss	
9£ >	Vector-like quark : $CC.m$	L=14.5 fb , 8 feV [ATLAS-CONF-2013-018]	112 TeV VI O mass (charge -1/3 o	aupling x = y/m
	Excited quarks : y-jet resonance, m	L=2.1 fb ⁻¹ , 7 TeV [1112.3580]	2.46 TeV g* mass	ooping k _q o = ,,,,,o,
34	Excited guarks : dijet resonance, m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-148]	3.84 TeV q* mass	
ХŞ	Excited b quark : W-t resonance, m	L=4.7 fb ⁻¹ , 7 TeV [1301.1583]	870 Gev b* mass (left-handed coupling	0
	Excited leptons : I-γ resonance, m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-146]	2.2 TeV Ι* mass (Λ = m(*))
	Techni-hadrons (LSTC) : dilepton, m _{ee/uu}	L=5.0 fb ⁻¹ , 7 TeV [1209.2535]	850 GeV ρ ₁ /ω _τ mass (<i>m</i> (ρ ₁ /ω _τ) - <i>m</i> (π _τ) =	= M _w)
	Techni-hadrons (LSTC) : WZ resonance (IvII), m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-015]	920 GeV ρ_{T} mass $(m(\rho_{T}) = m(\pi_{T}) + m_{W}$	$m(a_{+}) = 1.1m(\rho_{+})$
5	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420]	1.5 TeV N mass (m(W _R) = 2 Te	eV)
_₽ H	eavy lepton N [±] (type III seesaw) : Z-I resonance, m _{zi}	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-019] ^V	N^{r} mass ($ V_{\mu} = 0.055, V_{\mu} = 0.063, V_{\tau} = 0$)	
õ	H_{L}^{-} (DY prod., BR($H_{L}^{-} \rightarrow II$)=1) : SS ee (µµ), m	L=4.7 fb ⁻¹ , 7 TeV [1210.5070]	409 Gev H ^{xx} mass (limit at 398 GeV for μμ)	
B 8 84*	Color octet scalar : dijet resonance, m	L=4.8 fb ⁻¹ , 7 TeV [1210.1718]	1.86 TeV Scalar resonance	mass
Multi-	cnarged particles (DY prod.) : highly ionizing tracks	L=4.4 fb ⁻¹ , 7 TeV [1301.5272]	490 GeV mass (q = 40)	
ма	gnetic monopoles (DY prod.) : highly ionizing tracks	L=2.0 fb , / lev [120/.6412]		
		10 ⁻¹	1	10 10
1/0	9/2013	Jon Butter	rworth UCL	Mene scale (T-)/I
*Önh	/ = selection of the available mass limits on new states or	r phenomena shown		wass scale [rev]

*Only a selection of the available mass limits on new states or phenomena shown

And finally... what do we actually measure?

- Difference between "efficiency corrections" or "unfolding", and "acceptance corrections".
 - The first two generally mean correction for detector effects which no one but the experimentalists can do.
 - The third means extrapolating into kinematic regions
 which have not been measured at all
- Beware of the third, especially as we go to higher energies...

Unfold

Increase acceptance

Increase acceptance

Jon Butterworth, UK HEP Forum

Jon Butterworth, UK HEP Forum

And finally... what do we actually measure?

Defining a region in which acceptance is ~100%,

For example... WW cross section

- ATLAS WW cross section (to e, μ), 7 TeV
 - efficiency/detector corrections to obtain fiducial cross section, 0.4-0.7
 - acceptance (phase space), 0.07-0.16
- That missing 90% is stuff we don't measure
- The efficiency/detector efficiency won't change much at 13 TeV
- The acceptance may well drop further
- Garbage in, garbage out.

For example... Top cross section

- Current measurements extrapolate to 4π , 4 TeV>p_T>0
- Often not even possible to extract the acceptance from the papers (convoluted with efficiencies and migrations)
- Means for some, non-trivially-different, regions of phase space, we are just buying the theory
- Will be even more of a problem at higher beam energies.
- (see LHC Top Working group discussions, e.g. talk by Will Bell, 19/7/2012)

"Looking and not finding is not the same as not looking!"

— Hiranya Peiris, Cosmologist

CERN

The beginning of physics above the **Electroweak** Symmetry **Breaking** scale

CERN