Phenomenology of WIMPy baryogenesis models

based on NB, François-Xavier Josse-Michaux and Lorenzo Ubaldi

To appear soon...

Nicolás BERNAL

Bethe Center for Theoretical Physics and Physikalisches Institut
Universität Bonn

Corfu Summer Institute, September 21st, 2012

Evidences for Dark Matter

Several observations indicate existence of non-luminous Dark Matter (missing force) at very different scales!

- * Galactic rotation curves
- * Clusters of galaxies
- * CMB anisotropies

DM is there! What is DM?

WIMPs

- * Weakly interacting
- * Neutral (electric charge & color)
- * Stable or at least long-lived
- * Massive enough

* Observations: The lack of antimatter

Matter and antimatter annihilate when they meet.
Cannot have much antimatter 'nearby' (clusters of galaxies)

* Observations: The lack of antimatter

Matter and antimatter annihilate when they meet.
Cannot have much antimatter 'nearby' (clusters of galaxies)

Cosmic rays: ~ 0.01% antiprotons (secondaries), no heavy antinuclei!

AMS-02 taking data!

* Observations: The lack of antimatter

Matter and antimatter annihilate when they meet.

Cannot have much antimatter 'nearby' (clusters of galaxies)

Cosmic rays: ~ 0.01% antiprotons (secondaries), no heavy antinuclei!

AMS-02 taking data!

In a baryon-symmetric Universe, nucleons and antinucleons in equilibrium down to T ~ 22 MeV (t ~ 1s) 'Annihilation catastrophe'

Difficult to separate matter & antimatter on cluster lenght scales.

* Observations: The lack of antimatter

Matter and antimatter annihilate when they meet.

Cannot have much antimatter 'nearby' (clusters of galaxies)

Cosmic rays: ~ 0.01% antiprotons (secondaries), no heavy antinuclei!

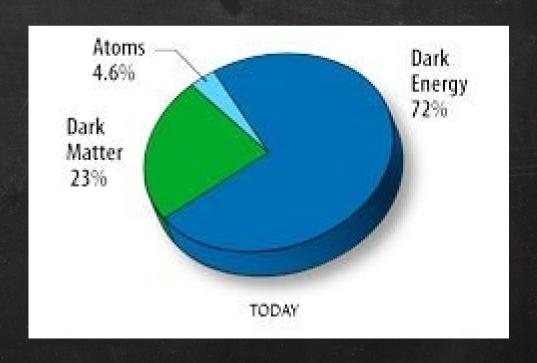
AMS-02 taking data!

In a baryon-symmetric Universe, nucleons and antinucleons in equilibrium down to T ~ 22 MeV (t ~ 1s) 'Annihilation catastrophe'

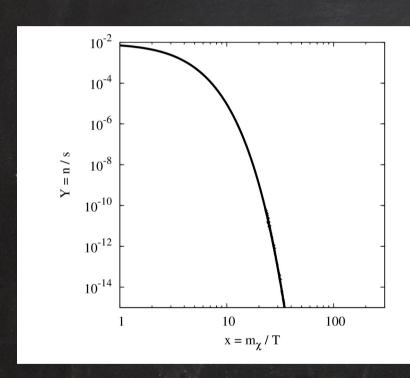
Difficult to separate matter & antimatter on cluster lenght scales.

The most reasonable conclusion: The Universe at early times possessed a (very tiny) asymmetry between baryons and antibaryons

Motivations


* Dark Matter (DM) relic abundance

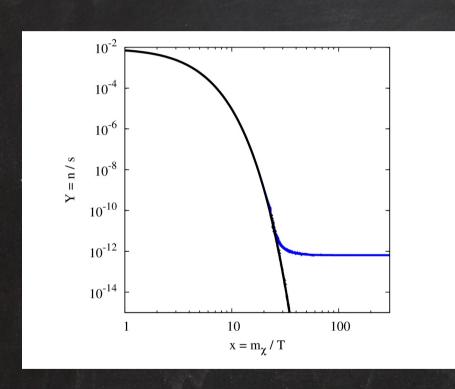
Thermal relic density of a particle with weak scale mass and couplings $\Omega_{DM}h^2 = 0.1123 \pm 0.0035$


* Baryonic Mater abundance

Baryonic matter abundance is determined by a matter-antimatter asymmetry $\Omega_{\rm B}h^2=0.02260\pm0.00053$

* $\Omega_{\rm DM}$ / $\Omega_{\rm B}$ ~ 5 In conventional WIMP picture, asymmetry generation and dark matter annihilation are independent processes

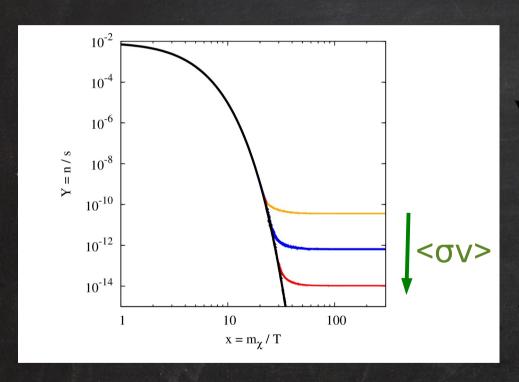
WIMPs: thermal production



Thermal equilibrium

The number density of DM decreases with time.

WIMPs: thermal production



Due to the expansion of the Universe DM particles **fall out of equilibrium** and cannot annihilate any more.

A Relic Density of DM is obtained which remains constant.

WIMPs: thermal production

Due to the expansion of the Universe DM particles **fall out of equilibrium** and cannot annihilate any more.

A particle with very weak interactions decouples earlier, having a larger relic density.

A Relic Density of DM is obtained which remains constant.

A particle with stronger interactions keeps in equilibrium for longer, and is more diluted.

 $<\sigma v> = 3.10^{-26} \text{ cm}^3 / \text{ s}$

Generation of the Baryon Asymmetry: Sakharov conditions

* B-number violation

If baryon number is conserved, the BAU can only reflect asymmetic initial conditions.

Generation of the Baryon Asymmetry: Sakharov conditions

* B-number violation

If baryon number is conserved, the BAU can only reflect asymmetic initial conditions.

* C and CP violation

The interactions which produce more baryons than antibaryons will not be counterbalanced by interactions which produce more antibaryons than baryons.

Generation of the Baryon Asymmetry: Sakharov conditions

* B-number violation

If baryon number is conserved, the BAU can only reflect asymmetic initial conditions.

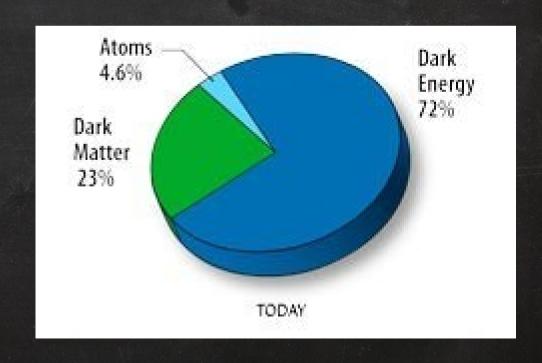
* C and CP violation

The interactions which produce more baryons than antibaryons will not be counterbalanced by interactions which produce more antibaryons than baryons.

* Departure from thermal equilibrium

Otherwise compensation between processes increasing and decreasing the baryon number.

Motivations


* Dark Matter (DM) relic abundance

Thermal relic density of a particle with weak scale mass and couplings $\Omega_{DM}h^2 = 0.1123 \pm 0.0035$

* Baryonic Mater abundance

Baryonic matter abundance is determined by a matter-antimatter asymmetry $\Omega_{\rm B}h^2=0.02260\pm0.00053$

* $\Omega_{\rm DM}$ / $\Omega_{\rm B}$ ~ 5 In conventional WIMP picture, asymmetry generation and dark matter annihilation are independent processes

Motivations

- * Dark Matter (DM) relic abundance
 - Thermal relic density of a particle with weak scale mass and couplings $\Omega_{DM}h^2 = 0.1123 \pm 0.0035$
- * Baryonic Mater abundance

Baryonic matter abundance is determined by a matter-antimatter asymmetry $\Omega_{\rm B}h^2=0.02260\pm0.00053$

* $\Omega_{\rm DM}$ / $\Omega_{\rm B}$ ~ 5

Independently determined? Common origin?

It seems natural to consider models where the **Dark Matter** and the **Baryon Asymmetry of the Universe** (BAU) share a common origin.

Asymmetric Dark Matter...

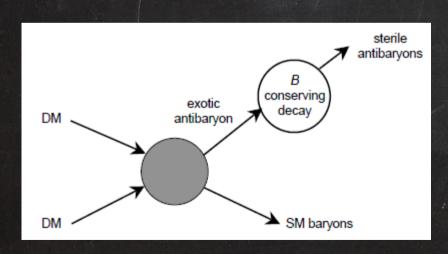
- * DM abundance is determined by a matter-antimatter asymmetry in a dark sector, which in turn is connected to the baryon asymmetry in the visible sector.
- * DM relic density is set by the baryon asymmetry and not by the properties of thermal freeze-out

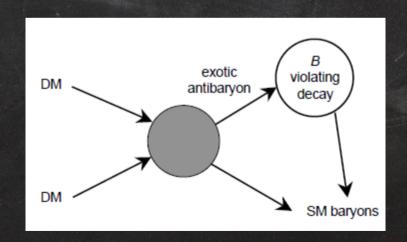
Hooper, March-Russel & West '04; Farrar & Zaharijas '05; Kitano, Murayama & Ratz '08; Kaplan, Luty & Zurek '09; Cohen & Zurek '09; Cai, Luty & Kaplan '09; An, Chen, Mohapatra & Zhang '09; Cohen, Phalen, Pierce & Zurek '10; Shelton & Zurek '10; Davoudiasi, Morrissey, Sigurdson & Tulin '10; Haba & Matsumoto '10; Chun '10; Gu, Lindner, Sarkar & Zhang '10; Blennow, Dasgupta, Fernández-Martínez & Rius '10; Allahverdi, Dutta & Sinha '10; Dutta & Kumar '11; Falkowski, Ruderman & Volanski '11; Buckley '11; Iminniyaz, Drees & Chen '11; March-Russel & McCullough '11; Davoudiasl, Morrisey, Sigurdson & Tulin '11; Cui, Randall & Shuve '11; Arina & Sahu '11; Blum, Efrati, Grossman, Nir & Riotto '12; Tulin, Yu & Zurek '12; Davoudiasl & Mohapatra '12, Feng, Nath & Peim '12; Ellwanger & Mitropoulos '12; Okada & Seto '12...

... but also Symmetric Dark Matter

It's also possible to have some features of **symmetric** DM while also establishing a connection between the DM and baryon abundances

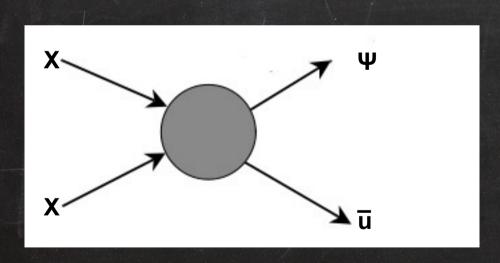
DM annihilation generates a baryon asymmetry


- * Baryomorphosis McDonald, 1009.3227 and 1108.4653
 - * Dark Matter Assimilation D'Eramo, Fei & Thaler, 1111.5615
- * Wimpy Baryogenesis
 Cui, Randall & Shuve, 1112.2704


A WIMPy baryogenesis miracle

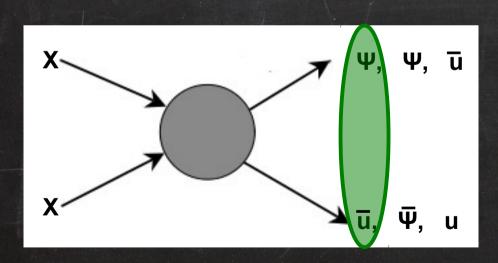
Cui, Randall, Shuve, 1112.2704

- * WIMP 'miracle'
 Conventional WIMP DM at weak-scale, thermal relic abundance
- * WIMPy baryogenesis 'miracle'


 DM annihilation generates the baryon asymmetry

- * WIMP 'miracle'
 Conventional WIMP DM at weak-scale, thermal relic abundance
- * WIMPy baryogenesis 'miracle'

 DM annihilation generates the baryon asymmetry

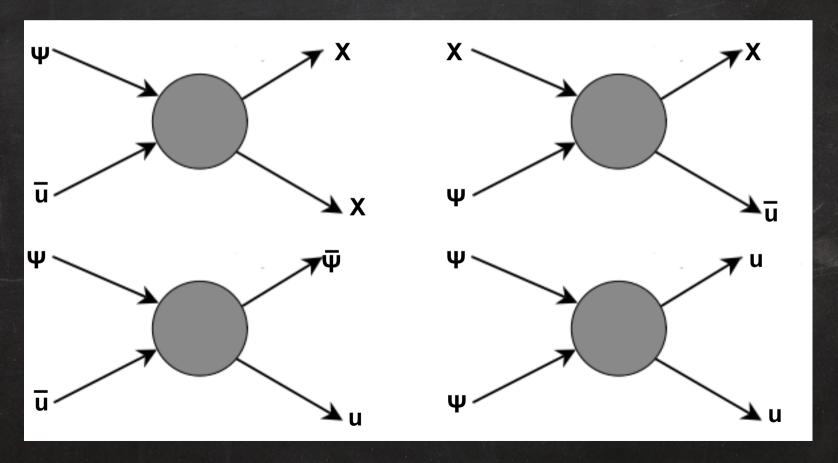


Effective Lagrangian: dimension 6 operators

$$\mathcal{L} \supset \frac{1}{\Lambda^2} \sum_i \lambda_i^2 \mathcal{O}_i.$$

- * WIMP 'miracle'
 Conventional WIMP DM at weak-scale, thermal relic abundance
- * WIMPy baryogenesis 'miracle'

 DM annihilation generates the baryon asymmetry

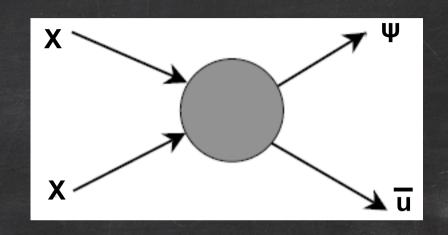


Effective Lagrangian: dimension 6 operators

$$\mathcal{L} \supset \frac{1}{\Lambda^2} \sum_i \lambda_i^2 \mathcal{O}_i.$$

* Washout processes

DM annihilation are also source of washout
Pure washout processes



* Particle content

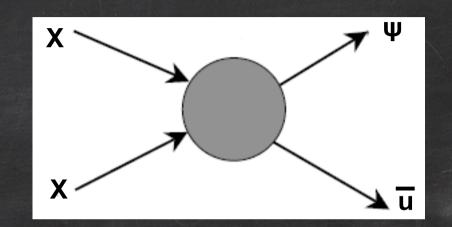
X: WIMP
Dirac fermion

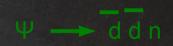
Ψ: 'exotic quark'
color triplet
vector-like pair
anomaly-cancellations
m_ω≥ 800 GeV

n: sterile singlet massless

* X stable

* $XX \rightarrow \psi u$


Minimal solution: **Z**₄ **symmetry**


* Particle content

X: WIMP
Dirac fermion

Ψ: 'exotic quark'
color triplet
vector-like pair
anomaly-cancellations
m_ψ≥ 800 GeV

n: sterile singlet massless

	$SU(3)_c$	$SU(2)_L$	$Q_{U(1)_y}$	$Q_{U(1)_B}$	\mathbb{Z}_4
X	1	1	0	0	+i
\bar{X}	1	1	0	0	-i
ψ	3	1	+2/3	+1/3	-1
$ar{\psi}$	$\bar{3}$	1	-2/3	-1/3	-1
n	1	1	0	0 or +1	-1
\bar{u}	$\bar{3}$	1	-2/3	-1/3	+1
$ar{d}$	$\bar{3}$	1	+1/3	-1/3	+1

* Effective Lagrangian, dim 6 operators

$$\mathcal{L} \supset \frac{1}{\Lambda^2} \sum_i \lambda_i^2 \mathcal{O}_i.$$

DM annihilation + washout: $XX \rightarrow \psi \bar{u}$

$$\lambda_1^2(XX)(\psi\bar{u}) + \lambda_2^2(\bar{X}\bar{X})(\psi\bar{u}) + \lambda_3^2(X^{\dagger}X^{\dagger})(\psi\bar{u}) + \lambda_4^2(\bar{X}^{\dagger}\bar{X}^{\dagger})(\psi\bar{u}) + \lambda_5^2(\bar{X}^{\dagger}\bar{\psi}^{\dagger})(X\bar{u}) + \lambda_6^2(X^{\dagger}\bar{\psi}^{\dagger})(\bar{X}\bar{u})$$

* Effective Lagrangian, dim 6 operators

$$\mathcal{L} \supset \frac{1}{\Lambda^2} \sum_i \lambda_i^2 \mathcal{O}_i.$$

DM annihilation + washout: $XX \rightarrow \psi \bar{u}$

$$\lambda_1^2(XX)(\psi\bar{u}) + \lambda_2^2(\bar{X}\bar{X})(\psi\bar{u}) + \lambda_3^2(X^{\dagger}X^{\dagger})(\psi\bar{u}) + \lambda_4^2(\bar{X}^{\dagger}\bar{X}^{\dagger})(\psi\bar{u}) + \lambda_5^2(\bar{X}^{\dagger}\bar{\psi}^{\dagger})(X\bar{u}) + \lambda_6^2(X^{\dagger}\bar{\psi}^{\dagger})(\bar{X}\bar{u})$$

DM annihilation into quarks: XX → u u

$$\lambda_7^2(X\bar{u})(X^{\dagger}\bar{u}^{\dagger}) + \lambda_8^2(\bar{X}\bar{u})(\bar{X}^{\dagger}\bar{u}^{\dagger})$$

* Effective Lagrangian, dim 6 operators

$$\mathcal{L} \supset \frac{1}{\Lambda^2} \sum_i \lambda_i^2 \mathcal{O}_i.$$

DM annihilation + washout: $XX \rightarrow \psi \bar{u}$

$$\lambda_1^2(XX)(\psi\bar{u}) + \lambda_2^2(\bar{X}\bar{X})(\psi\bar{u}) + \lambda_3^2(X^{\dagger}X^{\dagger})(\psi\bar{u}) + \lambda_4^2(\bar{X}^{\dagger}\bar{X}^{\dagger})(\psi\bar{u}) + \lambda_5^2(\bar{X}^{\dagger}\bar{\psi}^{\dagger})(X\bar{u}) + \lambda_6^2(X^{\dagger}\bar{\psi}^{\dagger})(\bar{X}\bar{u})$$

DM annihilation into quarks: XX → ū u

$$\lambda_7^2(X\bar{u})(X^{\dagger}\bar{u}^{\dagger}) + \lambda_8^2(\bar{X}\bar{u})(\bar{X}^{\dagger}\bar{u}^{\dagger})$$

DM annihilation into exotic quarks: $XX \rightarrow \bar{\psi} \psi$

$$\lambda_{13}^2(X\bar{X})(\psi\bar{\psi}) + \lambda_{14}^2(X^{\dagger}\bar{X}^{\dagger})(\psi\bar{\psi})$$

$$+\lambda_{15}^2(X\psi)(\bar{X}\bar{\psi}) + \lambda_{16}^2(X^{\dagger}\bar{\psi}^{\dagger})(X\bar{\psi}) + \lambda_{17}^2(\bar{X}^{\dagger}\bar{\psi}^{\dagger})(\bar{X}\bar{\psi}) + \lambda_{18}^2(X^{\dagger}\psi^{\dagger})(X\psi) + \lambda_{19}^2(\bar{X}^{\dagger}\psi^{\dagger})(\bar{X}\psi)$$

* Effective Lagrangian, dim 6 operators

$$\mathcal{L} \supset \frac{1}{\Lambda^2} \sum_i \lambda_i^2 \mathcal{O}_i.$$

DM annihilation + washout: $XX \rightarrow \psi \bar{u}$

$$\lambda_1^2(XX)(\psi\bar{u}) + \lambda_2^2(\bar{X}\bar{X})(\psi\bar{u}) + \lambda_3^2(X^{\dagger}X^{\dagger})(\psi\bar{u}) + \lambda_4^2(\bar{X}^{\dagger}\bar{X}^{\dagger})(\psi\bar{u}) + \lambda_5^2(\bar{X}^{\dagger}\bar{\psi}^{\dagger})(X\bar{u}) + \lambda_6^2(X^{\dagger}\bar{\psi}^{\dagger})(\bar{X}\bar{u})$$

DM annihilation into quarks: XX → ū u

$$\lambda_7^2(X\bar{u})(X^{\dagger}\bar{u}^{\dagger}) + \lambda_8^2(\bar{X}\bar{u})(\bar{X}^{\dagger}\bar{u}^{\dagger}) + \lambda_8^2(\bar{X}\bar{u})(\bar{X}^{\dagger}\bar{u}^{\dagger})$$

DM annihilation into exotic quarks: $XX \rightarrow \bar{\psi} \psi$

$$\lambda_{13}^2(X\bar{X})(\psi\bar{\psi}) + \lambda_{14}^2(X^{\dagger}\bar{X}^{\dagger})(\psi\bar{\psi})$$

$$+\lambda_{15}^2(X\psi)(\bar{X}\bar{\psi}) + \lambda_{16}^2(X^{\dagger}\bar{\psi}^{\dagger})(X\bar{\psi}) + \lambda_{17}^2(\bar{X}^{\dagger}\bar{\psi}^{\dagger})(\bar{X}\bar{\psi}) + \lambda_{18}^2(X^{\dagger}\psi^{\dagger})(X\psi) + \lambda_{19}^2(\bar{X}^{\dagger}\psi^{\dagger})(\bar{X}\psi)$$

Pure washout: Ψ Ψ→ u u

$$\lambda_9^2(\psi\psi)(\bar{u}\bar{u}) + \lambda_{10}^2(\psi\bar{u})(\psi^{\dagger}\bar{u}^{\dagger}) + \lambda_{11}^2(\bar{\psi}^{\dagger}\bar{\psi}^{\dagger})(\bar{u}\bar{u}) + \lambda_{12}^2(\bar{\psi}^{\dagger}\bar{u}^{\dagger})(\bar{\psi}\bar{u})$$

Our approach:

* Reasonable, simplifying assumptions

λ_s coupling for all s-channel DM annihilation (into quark + exotic quark) operators

λ_τ coupling for all t-channel DM annihilation (into quark + exotic quark) operators

λ_{wo} coupling for all pure washout operators

Our approach:

* Reasonable, simplifying assumptions

λ_s coupling for all s-channel DM annihilation (into quark + exotic quark) operators

 λ_T coupling for all t-channel DM annihilation (into quark + exotic quark) operators

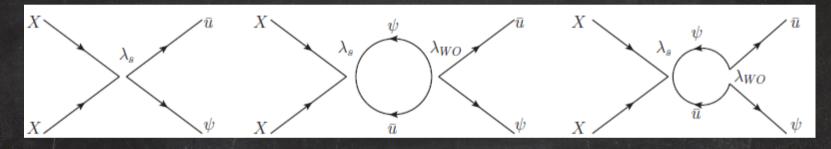
λ_{wo} coupling for all pure washout operators

and:

 λ_7 , λ_8 couplings for annihilation into quarks

 λ_{ψ} coupling for annihilation into exotic quarks

Sakharov conditions


- * B-number violation

 Explicitly violated in DM annihilation
- * C and CP violation
 Physical CP phases in annihilation amplitudes
 Interference of tree and loop diagrams
- * Departure from thermal equilibrium Provided by DM freeze-out

Generation of the asymmetry

$$\epsilon = \frac{\sigma(XX \to \psi \bar{u}) + \sigma(\bar{X}\bar{X} \to \psi \bar{u}) - \sigma(XX \to \psi^{\dagger}\bar{u}^{\dagger}) - \sigma(\bar{X}\bar{X} \to \psi^{\dagger}\bar{u}^{\dagger})}{\sigma(XX \to \psi \bar{u}) + \sigma(\bar{X}\bar{X} \to \psi \bar{u}) + \sigma(XX \to \psi^{\dagger}\bar{u}^{\dagger}) + \sigma(\bar{X}\bar{X} \to \psi^{\dagger}\bar{u}^{\dagger})}$$

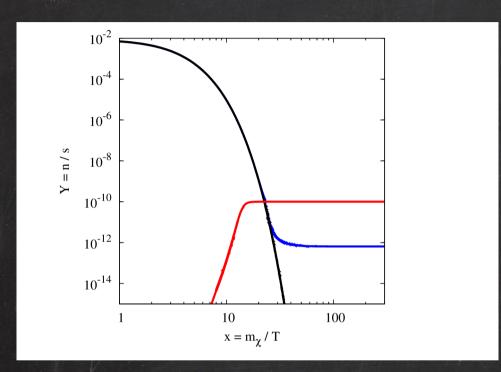
For the s-channel we have:

Interference of tree and loop diagrams!
And a similar story for the s-channel operators...

$$\epsilon \propto \frac{{\rm Im}(\lambda_{WO}^2)}{\Lambda^2} \frac{(s-m_\psi^2)^2}{16\pi s}$$

Boltzmann equations

* DM density

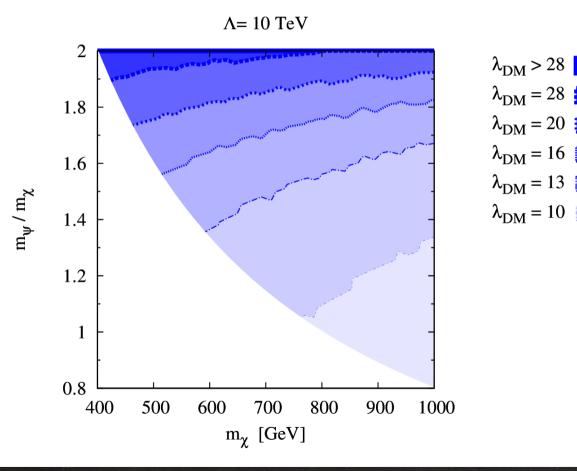

$$\frac{dY_X}{dx} = -\frac{2s(x)}{x H(x)} \langle \sigma_{\rm ann} v \rangle \left[Y_X^2 - (Y_X^{\rm eq})^2 \right],$$

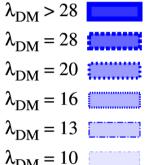
* Baryon asymmetry

$$\frac{dY_{\Delta B}}{dx} = \frac{\epsilon \, s(x)}{x \, H(x)} \, \langle \sigma_{\rm ann} v \rangle \left[Y_X^2 - (Y_X^{\rm eq})^2 \right] - \frac{s(x)}{x \, H(x)} \, \langle \sigma_{\rm washout} v \rangle \frac{Y_{\Delta B}}{2Y_{\gamma}} \prod_i Y_i^{\rm eq}. \label{eq:delta_B}$$

 \sim + ϵ · WIMP annihilation rate - Y_{AB} · washout rate

DM & BAU

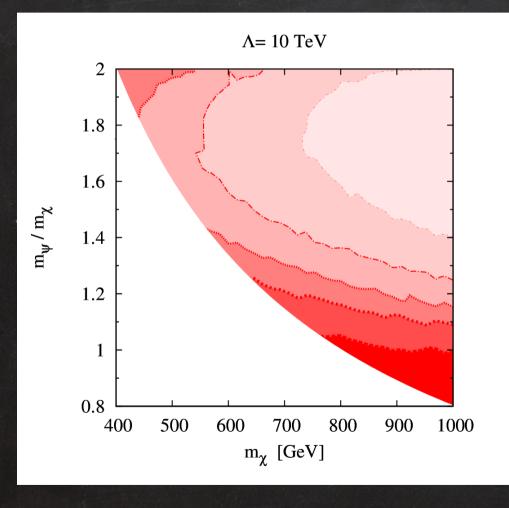


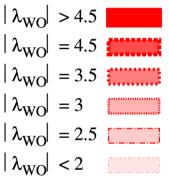

Washout plays a critical role!

"If washout processes freeze out before WIMP freezeout, then a large baryon asymmetry may accumulate, and its final value is proportional to the WIMP abundance at the time that washout becomes inefficient."

 $\sigma(Washout) << \sigma(DM annihilation)$ or $m_{\psi} > m_{\chi}$

$$\lambda_{_{DM}} \equiv \lambda_{_{S}} = \lambda_{_{T}}$$



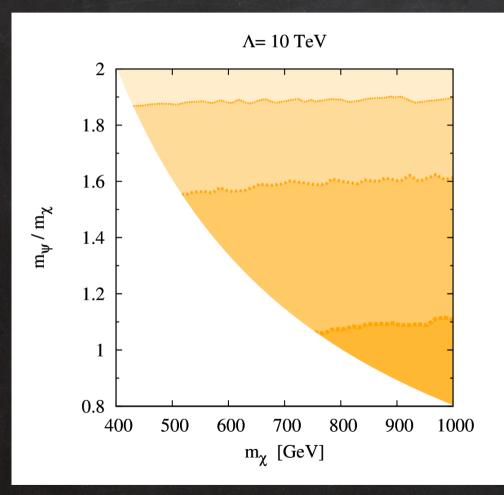


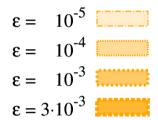
Possible to accommodate WMAP measurements of the DM relic density...

Cosmological bounds: BAU

 $Re(\lambda_{WO}) = Im(\lambda_{WO})$

Possible to accommodate WMAP measurements of the DM relic density...

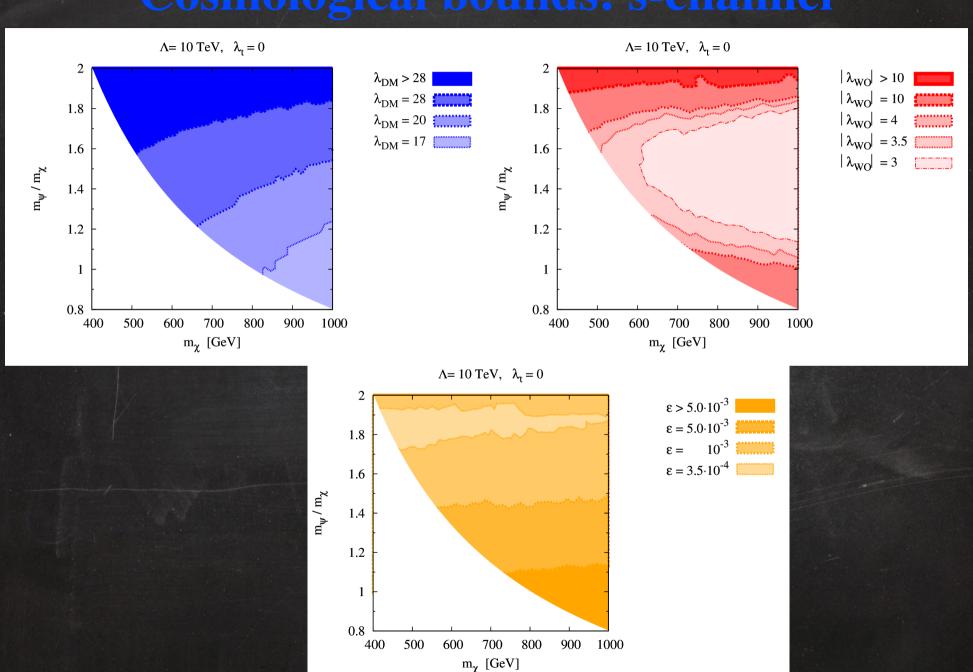

and the BAU


with order unity couplings and weak scale dark matter

with $\varepsilon \sim 10^{-3}$

Cosmological bounds: BAU

$$\lambda_{WO} \equiv \text{Re}(\lambda_{WO}) = \text{Im}(\lambda_{WO})$$

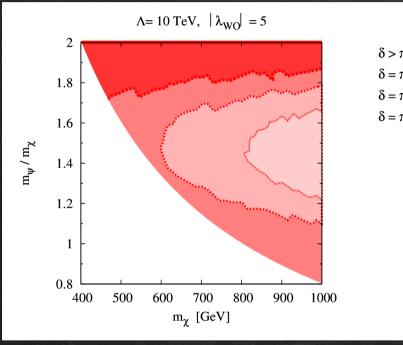


Possible to accommodate WMAP measurements of the DM relic density...

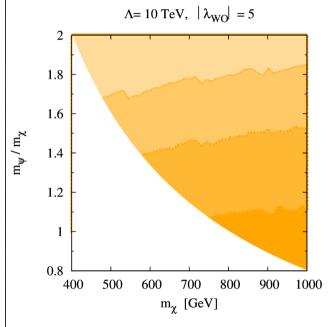
and the BAU

with order unity couplings and weak scale dark matter

Cosmological bounds: s-channel



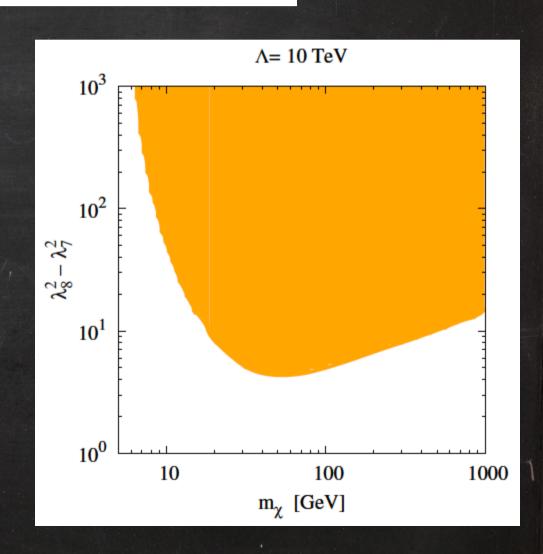
Uni Bonn


Nicolás BERNAL

Cosmological bounds: CP-phase

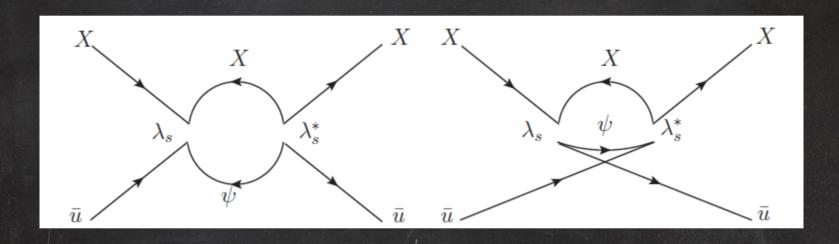
$\lambda_{WO} \equiv |\lambda_{WO}| \text{ Exp[i \delta]}$

Direct detection bounds


$$\frac{1}{\Lambda^2}(\lambda_7^2(X\bar{u})(X^\dagger\bar{u}^\dagger) + \lambda_8^2(\bar{X}\bar{u})(\bar{X}^\dagger\bar{u}^\dagger) + \text{h.c.})$$

These operators contribute to

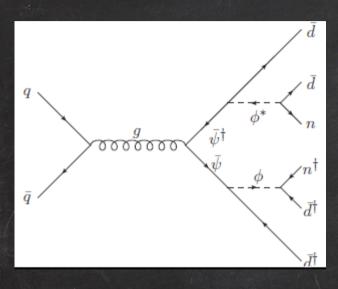
- * DM annihilation into a pair of quarks
- * to SI and SD direct detection already at tree level


$$\lambda_7, \lambda_8 < 1$$

Xenon100 with 225 live days

Direct detection bounds

Can we constrain λ_s and λ_t looking at one-loop contributions to direct detection?

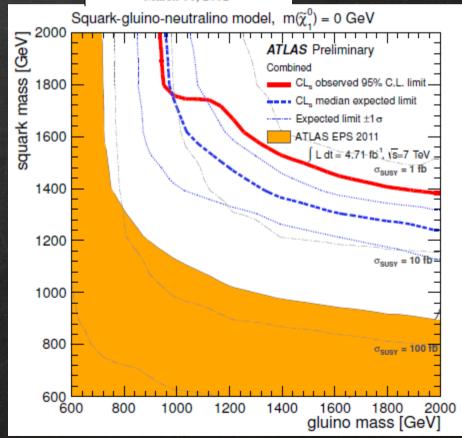


The 2 diagrams cancel!

Similar story for t-channel operators.

No bounds λ_s and λ_t from direct detection

LHC bounds



- * 4 jets + missing E_T
- * Different group theory factors
- * Current LHC bound: m_ψ ≥ 800 GeV m_χ ≥ 400 GeV

ATLAS NOTE

ATLAS-CONF-2012-033

March 11, 2012

Conclusions

- * WIMPy baryogenesis is an interesting mechanism that relates the baryon asymmetry to the WIMP thermal relic density, at the EW scale.
- * Incorporates baryogenesis by annihilation (often overlooked).
- * We present a general effective model including **all** the possible dim 6 operators compatibles with the symmetries.
- * For the models we considered the mechanism works in a good portion of the parameter space, with couplings of order 1.
- * We studied cosmological bounds coming from the DM relic density and the Baryon Asymmetry of the Universe.
- * We studied the bounds coming from the latest DM searches and from the LHC.