CORFU2012

Corfu 16.09.2012

The 125 Gev Higgs in 2HDM

Maria Krawczyk (University of Warsaw)

in collaboration with I. Ginzburg, K. Kanishev (Novosibirsk U.), D.Sokołowska, G. Gil, B. Gorczyca (Świeżewska) J. Bogdanowicz (U. of Warsaw)

THE THEORY OF MATTER and STANDARD MODEL(S)

F. Wilczek, LEPFest, Nov.2000 (hep-ph/0101187)

Theory of Matter = SU(2), weak x U(1), weak x SU(3), color

Theory of Matter refers to the core concepts:

- quantum field theory
- gauge symmetry
- spontaneous symmetry breaking
- asymptotic freedom
- the assignments of the lightest quarks and leptons

Standard Models: Choose the number of Higgs (scalar) doublets SM=1HDM, <u>2HDM</u> (MSSM), 3HDM ... Note, that the lightest scalar is often SM-like

NonStandard Models are based on more radical assumptions.

Brout-Englert-Higgs mechanism Spontaneous breaking of EW symmetry $SU(2) \times U(1) \rightarrow U(1)_{QED}$ Standard Model **Doublet of SU(2):** $\Phi = (\Phi^+, V + H + i\zeta)^T$ Masses for W^{+/-}, Z (tree ρ =1), no mass for the photon Fermion masses via Yukawa interaction

Higgs particle H_{SM} - spin 0, neutral, CP even couplings to WW/ZZ, Yukawa couplings to fermions mass ↔ selfinteraction unknown **Brout-Englert-Higgs mechanism** Spontaneous breaking of EW symmetry $\overline{SU(2) \times U(1)} \rightarrow ?$ T.D. Lee 1973 **Two Higgs Doublet Models** Two doublets of SU(2) (Y=1, ρ =1) - Φ_1 , Φ_2 Masses for $W^{+/-}$, Z, no mass for photon? Fermion masses via Yukawa interaction various models: Model I, II, III, IV,X,Y,... 5 scalars: H+ and H- and neutrals: - CP conservation: CP-even h, H & CP-odd A - CP violation: h₁,h₂,h₃ with undefinite CP parity*

Sum rules (relative couplings to SM χ)

In models with two doublets:

- MSSM with decoupling of heavy Higgses \rightarrow LHC-wedge

- 2HDM (Mixed) with and without CP violation both h or H can be SM-like

- Dark 2HDM (Intert Doublet Model)

Signal strength per channel

uropean Strateg

Particle Physics

ETH Institute for

Particle Physics

Tevatron 2012

2HDM- great laboratory of BSM

- Mixed Model with a scalar sector as in MSSM
- \rightarrow the 125 GeV Higgs boson h or H (for CPconservation)
- Inert Doublet Model (IDM) contains DM, has one Higgs boson - the 125 GeV Higgs boson

If today (temp=0) the Inert phase what was in the past?

- Temp. evolution of the inert vacuum and sequences of
different vacua in the past (one, two and three phase
transitions)PRD 82(2010)Ginzburg, Kanishev, MK, Sokołowska
 - with leading T² corrections

- beyond T² corrections (to find strong enough first-order phase transition needed for baryogenesis) (*G. Gil Thesis'2011, G.Gil, P. Chankowski, MK 1207.0084 [hep-ph]*)

2HDM's SYMMETRIES!!!

Various models of Yukawa inter. typically with some Z2 type symmetry to avoid FCNC

<u>Model I</u> - only one doublet interacts with fermions <u>Model II</u> – one doublet with down-type fermions d, l other with up-type fermions u

Model III - both doublets interact with fermions Model IV (X) - leptons interacts with one doublet, quarks with the other Model Y - one doublet with down-type quarks d other with up-type quarks u and leptons Top 2HDM – top only with one doublet Fermiophobic 2HDM – no coupling to the lightest Higgs + Extra dim 2HDM models

2HDM Potential (Lee'73)

- $V = \frac{1}{2}\lambda_1(\Phi_1^{\dagger}\Phi_1)^2 + \frac{1}{2}\lambda_2(\Phi_2^{\dagger}\Phi_2)^2 + \lambda_3(\Phi_1^{\dagger}\Phi_1)(\Phi_2^{\dagger}\Phi_2)$
 - + $\lambda_4(\Phi_1^+\Phi_2)(\Phi_2^+\Phi_1) + \frac{1}{2} [\lambda_5(\Phi_1^+\Phi_2)^2 + h.c]$
 - + $[(\lambda_6(\Phi_1^+\Phi_1) + \lambda_7(\Phi_2^+\Phi_2))(\Phi_1^+\Phi_2) + h.c]$
 - $-\frac{1}{2}m_{11}^{2}(\Phi_{1}^{\dagger}\Phi_{1})-\frac{1}{2}m_{22}^{2}(\Phi_{2}^{\dagger}\Phi_{2})-\frac{1}{2}[m_{12}^{2}(\Phi_{1}^{\dagger}\Phi_{2})+h.c.]$
- Z₂ symmetry transformation: $\Phi_1 \rightarrow \Phi_1 \quad \Phi_2 \rightarrow \quad \Phi_2$ (or vice versa)

Hard Z₂ symmetry violation: λ_{6} , λ_{7} terms Soft Z₂ symmetry violation: m_{12}^2 term (Re $m_{12}^2 = \mu^2$) Explicit Z₂ symmetry in V: λ_{6} , λ_{7} , $m_{12}^2 = 0$

Z2 symmetry

Z₂ symmetry under transformation: $\Phi_1 \rightarrow \Phi_1$ $\Phi_2 \rightarrow - \Phi_2$ (SM → SM, eg. in Model I)

I will call D-symmetry, and denote Φ_1 as Φ_s and $\Phi_2 \rightarrow \Phi_D$

Extrema of the 2HDM potential with explicit Z₂ (D) symmetry

Ginzburg, Kanishev, MK, Sokołowska'09

- Finding extrema: $\partial V / \partial \Phi|_{\Phi = \langle \Phi \rangle} = 0$
- Finding minima \rightarrow global minimum = vacuum

Positivity (stability) constraints (V with real parameters)

$$\lambda_1 > 0, \quad \lambda_2 > 0, \quad R+1 > 0.$$
$$\lambda_{345} = \lambda_3 + \lambda_4 + \lambda_5, \quad R = \frac{\lambda_{345}}{\sqrt{\lambda_1 \lambda_2}}$$

Extremum fulfilling the positivity constraints with the lowest energy = vacuum **Possible extrema (vacuum) states** for V with explicit Z₂(D) The most general state $\langle \phi_S \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_S \end{pmatrix}, \quad \langle \phi_D \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} u \\ v_D \end{pmatrix} \quad \begin{array}{c} \mathsf{v}_{\mathsf{S}}, \, \mathsf{v}_{\mathsf{D}}, \, \mathsf{u} - \mathsf{real} \\ \mathsf{v}_{\mathsf{S}}, \, \mathsf{u} \geq \mathbf{0} \end{array}$ $v^2 = v_s^2 + v_p^2 + u^2 = (246 \text{ GeV})^2$ EWs $u = 0 v_{D} = v_{S} = 0$ EWs $u = 0 v_{D} = 0$ 1 Inert $u = 0 v_s = 0$ Inert-like $|_{2}$ $u = 0 v_{D} \neq v_{S} \neq 0$ Mixed (Normal, MSSM like) M

Charge Breaking

Ch

u≠0 v_□ =0

Various extrema (vacua) on (λ_4, λ_5) plane Positivity constrains: $\lambda_4 \pm \lambda_5 > - X$ $X = \sqrt{\lambda_1 \lambda_2 + \lambda_3} > 0$ Inert (Inert-like) $Y = M_{H^+}^2 2/v^2$ Charge **Breaking Ch** Mixed We fix $\lambda_4 + \lambda_5 < 0, \lambda_5 < 0$

Note the overlap of the Inert with M and Ch !

TODAY

2HDM with explicit Z_2 (D) symmetry $\Phi_{c} \rightarrow \Phi_{c} \quad \Phi_{D} \rightarrow - \Phi_{D}$ Model I (Yukawa int. with Φ_c only) Charge breaking phase Ch? photon is massive, el.charge is not conserved... $\rightarrow No$ Neutral phases: <u>Mixed M</u> ok, many data, but no DM **OK!** In agreement with accelerator <u>Inert I1</u> and astrophysical data (neutral DM) Inert-like I2 No, all fermions massless, no DM

Mixed Model (Model II Yukawa)

Masses

$$\begin{split} M_{H^{\pm}}^{2} &= -\frac{1}{2} (\lambda_{4} + \lambda_{5}) v^{2} \\ M_{A}^{2} &= -\lambda_{5} v^{2}, \\ M_{H}^{2} &= \frac{1}{2} (\lambda_{1} v_{S}^{2} + \lambda_{2} v_{D}^{2} + \sqrt{(\lambda_{1} v_{S}^{2} - \lambda_{2} v_{D}^{2})^{2} + 4\lambda_{345}^{2} v_{S}^{2} v_{D}^{2})} \\ M_{h}^{2} &= \frac{1}{2} (\lambda_{1} v_{S}^{2} + \lambda_{2} v_{D}^{2} - \sqrt{(\lambda_{1} v_{S}^{2} - \lambda_{2} v_{D}^{2})^{2} + 4\lambda_{345}^{2} v_{S}^{2} v_{D}^{2})} \end{split}$$

Relative couplings (tan $\beta = v_D/v_S$)

hbb.

htt

htt

$\cos(\beta - \alpha)$	$\sin(\beta - \alpha)$		
HW^+W^-	hW^+W^-		
HZZ	hZZ		

$= \sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha)$
$\sin(\beta - \alpha) + \cot\beta\cos(\beta - \alpha)$.

Relative couplings (respect SM) For neutral Higgs particles h_i , i = 1,2,3

$$\chi_j^{(i)} = \frac{g_j^{(i)}}{g_j^{\text{SM}}} \quad j = V, u, d$$

there are relations among couplings, eg. $\Sigma_i(\chi_j^{(i)})^2 = 1$, for j = V, u, d

pattern relation

$$\begin{aligned} (\chi_u^{(i)} + \chi_d^{(i)})\chi_V^{(i)} &= 1 + \chi_u^{(i)}\chi_d^{(i)}, \\ \text{or} \\ \chi_u^{(i)} - \chi_V^{(i)})(\chi_V^{(i)} - \chi_d^{(i)}) &= 1 - (\chi_V^{(i)})^2. \end{aligned}$$

Neutral Higgs bosons - couplings to gauge boson, and mass exclusion

LEP: 2HDM with Z2 symmetry

Light h OR light A in agreement with current data hZZ: $sin(\beta - \alpha)$ and hAZ: $cos(\beta - \alpha)$

Light scalar $h \to \text{small } k = sin^2(\beta - \alpha)$! H is SM like then !

$B \rightarrow X_s$ gamma decay M_{H^+} vs tan β

New 2012: M_{H+}> 380 GeV Misiak Gfitter 0811.0009[hep-ph]

Unitarity constraints on parameters of V (Z₂ symmetry)

Full scattering matrix macierz 25x25 for scalars (including Goldstone's)

in high energy limit

M1: G+H-, G-H+, hA, GA, GH, hH M2: G+G-, H+H-, GG, HH, AA, hh M3: Gh, AH M4: G+G, G+H, G+A, G+h, GH+, HH+, AH+, hH+ M5: G+G+, H+H+ M6: G+H+

Unitarity constraints \rightarrow |eigenvalues|< 8 π

Constraints for lambdas

 $0 \leqslant \lambda_1 \leqslant 8.38,$ $0 \leqslant \lambda_2 \leqslant 8.38,$ $-6.05 \leqslant \lambda_3 \leqslant 16.44,$ $-15.98 \leqslant \lambda_4 \leqslant 5.93,$ $-8.34 \leqslant \lambda_5 \leqslant 0.$

Couplings for dark particles in IDM _ $\lambda_{345} = \lambda_3 + \lambda_4 + \lambda_5$ $\lambda_{45} = \lambda_4 + \lambda_5$ $-8.10 \leqslant \lambda_{345} \leqslant 12.38,$ $-7.76 \leqslant \lambda_{345}^- \leqslant 16.45,$ $-8.28 \leqslant \frac{1}{2}\lambda_{45} \leqslant 0,$ $-7.97 \leqslant \frac{1}{2}\lambda_{45}^- \leqslant 6.08,$

Allowed region MH vs MH+

EWPT (pale regions)

constrained by mass not Yukawa!

Mixed Model B. Gorczyca, MSc Thesis, July 2011

Upper limits on masses

$$\begin{split} M_{H^{\pm}} &\leqslant 690 \, \mathrm{GeV}, \\ M_A &\leqslant 711 \, \mathrm{GeV}, \\ M_H &\leqslant 688 \, \mathrm{GeV}, \\ M_h &\leqslant 499 \, \mathrm{GeV}. \end{split}$$

<u>SM-like Mixed Model</u>

 $\begin{array}{l} g(hVV) {=} g(H_{SM} \ VV) \\ V {=} W, Z \\ 115 \leq M_{h} \leq 127 \ GeV \end{array}$

Limit on tan beta from lowest M_h value

Akeroyd, A. Arhrib, E. Naimi,

$$\begin{split} M_{H^{\pm}} &\leqslant 616 \, \text{GeV}, \\ M_A &\leqslant 711 \, \text{GeV}, \\ M_H &\leqslant 609 \, \text{GeV}, \end{split}$$

 $0.17 \leq \tan \beta \leq 6.10.$

Max Mh vs tan beta

For Mh = 125 GeV

$$0.2 \lesssim \tan \beta \lesssim 6.2.$$

Loop couplings hgg and h $\gamma \gamma$ For hgg - b and t important For h y y - t (b), W, H+ (in 2HDMs) Beyond SM: H^{\pm} , χ^{\pm} , \tilde{q} , \tilde{l} ...

W and t destructive interfence in SM, so...

LC-TH-2001-026

Identifying an SM-like Higgs particle at future colliders LC-TH-2003-089

I. F. GINZBURG¹, M. KRAWCZYK² AND P. OSLAND³

SM-like scenario. One of the great challenges at future colliders will be the SM-like scenario that no new particle will be discovered at the Tevatron, the LHC and electron-positron Linear Collider (LC) except the Higgs boson with partial decay widths, for the basic channels to fundamental fermions (up- and down-type) and vector bosons W/Z, as in the SM:

$$\frac{\Gamma_i^{\text{exp}}}{\Gamma_i^{\text{SM}}} - 1 \bigg| \lesssim \delta_i \ll 1. \quad , \text{ where } i = u, d, V.$$
 (1)

 $|\epsilon_i| \leq \delta_i$

Then for the relative couplings (vs SM)

$$\chi_i^{\text{obs}} = \pm (1 - \epsilon_i), \text{ with } |\epsilon_i| \ll 1.$$

for i = u, d, V.

Using pattern relation for 2HDM (II)

$$(\chi_u + \chi_d)\chi_V = 1 + \chi_u\chi_d.$$

solution $B \rightarrow$ "wrong" signs of fermion couplings

Both h and H maybe SM-like

Two solutions:

A – all couplings close to 1

B – one Yukawa coupling close to -1

Loop induced couplings gg, $\gamma\gamma$, $Z\gamma$ different for A and B

MH+=600 GeV

For h or H with mass 120 GeV

solution	basic couplings	$ \chi_{gg} ^2$	$ \chi_{\gamma\gamma} ^2$	$ \chi_{Z\gamma} ^2$
$A_{h\pm}/A_{H_{-}}$	$\chi_V \approx \chi_d \approx \chi_u \approx -1$	1.00	0.90	0.96
$B_{h\pm d}/B_{H-d}$	$\chi_V \approx -\chi_d \approx \chi_u \approx -1$	1.28	0.87	0.96
$B_{h\pm u}$	$\chi_V \approx \chi_d \approx -\chi_u \approx -1$	1.28	2.28	1.21

Collider. The observation of loop-induced couplings can distinguish models in the frame of the "current SM-like scenario" determined via currently measured coupling constants. Even at the Tevatron the solution B_{h+u} can easily be distinguished via a study of the process $gg \to \phi \to \gamma\gamma$ with rate about three times higher than that in the SM (the product

Inert Doublet Model

roday?

Symmetry under Z_2 transf. $\Phi_s \rightarrow \Phi_s \quad \Phi_p \rightarrow \Phi_p$ both in L (V and Yukawa interaction = Model I only Φ_s) and in the vacuum:

 $\langle \Phi_{s} \rangle = v$ $\langle \Phi_{D} \rangle = 0$ Inert vacuum I₁

Ma'78

Barbieri'06

Φ_s as in SM (BEH), with Higgs boson h (SM-like)
 Φ_D has no vev, with 4 scalars (no Higgs bosons!)
 no interaction with fermions (inert doublet)

Here Z_2 symmetry exact $\rightarrow Z_2$ parity, only Φ_D has odd Z_2 -parity \rightarrow The lightest scalar stable -a dark matter candidate $(\Phi_D \text{ dark doublet with dark scalars})$. $\Phi_1 \rightarrow \Phi_S$ Higgs doublet S $\Phi_2 \rightarrow \Phi_D$ Dark doublet D

Constraining Inert Doublet Model

- Positivity,extrema,vacua,pert. unitarity, S, T
- By considering properties of
 - the SM-like h, $M_h^2 = m_{11}^2 = \lambda_1 V^2$ 1112.5086[hep-ph] and talk)
 - the dark scalars D always in pairs!

$$\begin{split} M_{H+}^2 &= -\frac{m_{22}^2}{2} + \frac{\lambda_3}{2}v^2 \qquad \lambda_{345} \\ M_{H}^2 &= -\frac{m_{22}^2}{2} + \frac{\lambda_3 + \lambda_4 + \lambda_5}{2}v^2 \\ M_{A}^2 &= -\frac{m_{22}^2}{2} + \frac{\lambda_3 + \lambda_4 - \lambda_5}{2}v^2 \end{split}$$

(Ma'2006,..B. Świeżewska,

D couple to V = W/Z (eg. AZH, H⁻W⁺H), not DVV! Quartic selfcouplings D⁴ proportional to λ_2 hopeless to be measured at colliders! (\rightarrow D. Sokołowska talk) Couplings with Higgs: hHH ~ λ_{345} h H+H- = ~ λ_3

Inert Doublet Model with Mh=125 GeV

Analysis based on unitarity, positivity, EWPT constraints *Gorczyca'2011-12*

 $\begin{array}{l} M_H \leqslant 602 \, \mathrm{GeV}, \\ M_{H^{\pm}} \leqslant 708 \, \mathrm{GeV}, \\ M_A \leqslant 708 \, \mathrm{GeV}. \end{array}$

valid up to $|m_{22}^{2}| = 10^{4} \text{GeV}^{2}$

EWPT (pale regions)

IDM: decay width γγh

For negative λ_3 It maybe larger than in SM

Ma'2007 1.00(a) $h \rightarrow \gamma \gamma mode$ 0.98 SM 0.96 = 170 GeV m_o+ 0.94 $\mu_2 = 20 \text{ GeV}$ 0.92250 300 50 100200m_h (GeV)

$gg \rightarrow h \rightarrow \gamma\gamma in IDM$

$$R_{\gamma\gamma} = \frac{\sigma_h^{\gamma\gamma}}{\sigma_{h_{SM}}^{\gamma\gamma}} = \frac{\sigma(gg \to h) \times Br(h \to \gamma\gamma)}{\sigma(gg \to h)^{SM} \times Br(h \to \gamma\gamma)^{SM}} = \frac{Br(h \to \gamma\gamma)}{Br(h \to \gamma\gamma)^{SM}}$$

Arhrib at al

arXiv:1201.2644v2 [hep-ph]

Blue : R > 1 When $\lambda_3 < 0$ (and $\lambda_{345} < 0$

Evolution of the Universe in 2HDM– through different vacua in the past

Ginzburg, Ivanov, Kanishev 2009 Ginzburg, Kanishev, Krawczyk, Sokołowska 2010, Sokołowska 2011

We consider 2HDM with an explicit D (Z_2)

symmetry assuming that today the Inert Doublet Model describes reality

Yukawa interaction – Model I \rightarrow all fermions couple only to Φ_s

From the EW symmetric phase to the INERT phase in T2 approximation

- In the simplest T2 approximation only mass terms in V vary with temperature like T², while λ ' are fixed
- Various scenarios possible in one, two or three steps, with 1st or 2nd type phase transitions → *Sokołowska talk* Ginzburg, Kanishev, MK, Sokołowska Phys. Rev D 2010

Phase diagram (μ_1, μ_2)

$$\frac{l_i = m_{ii}^2 / \sqrt{\Lambda_i}}{R + 1 > 0}$$

Stability condition

3 regions of R

T2 corrections → rays from EW s to Inert phase

Phase diagrams

0>R>-1

1>R>0

R>1

Mixed vacuum impossible

0<R<1

Non-restoration of EW symmetry R <0 $C_1 \text{ or } C_2 < 0$

The only evolution with EW restoration in the past (and $R_{\gamma\gamma} > 1!$)

Transitions to the Inert phase beyond T2 corrections

We applied one-loop effective potential at T=0 (Coleman-Wienberg term) and temperature dependent effective potential at T \neq 0 (with sum of ring diagrams)

$$V_T^{(1L)}(v_1, v_2) = V_{\text{eff}}^{(1L)}(v_1, v_2) + \Delta^{(1L)} V_{T \neq 0}(v_1, v_2).$$

The one-loop effective potential $V_{\text{eff}}(v_1, v_2)$ is given in the Landau gauge by standard formula $V_{\text{eff}}^{(1L)} = V_{\text{tree}} + \frac{1}{64\pi^2} \sum_{E=11} C_s \left\{ \mathcal{M}_s^4 \left(\ln \frac{\mathcal{M}_s^2}{4\pi\mu^2} - \frac{3}{2} + \frac{2}{d-2} - \gamma_{\text{E}} \right) \right\} + \text{CT},$

number of states

counter terms \rightarrow

Fixing counterterms

We require that v1=v1(tree) and that h field propagator has a pole for tree-level mass-squared M_h^2

Then we put conditions on

 $λ_{345}$ (hHH), $λ_2$ (HHHH)

On the other hand λ_2 cannot be directly measured in the foreseeable future⁶ so its precise definition at the loop-level is not important. Here for simplicity we choose to subtract the divergences of $V_{\text{eff}}^{(1L)}$ proportional to v_2^4 and $v_1^2 v_2^2$ using the $\overline{\text{MS}}$ scheme. This fixes the combinations $\delta \lambda_2 + 2\lambda_2 \delta Z_2$ and $\delta \lambda_{345} + \lambda_{345} (\delta Z_1 + \delta Z_2)$. Once the latter counterterm is fixed the last necessary combination $\delta m_{22}^2 + m_{22}^2 \delta Z_2$ is determined by renormalizing the H^0 propagator on-shell. The counterterms $\delta \lambda_3$ and $\delta \lambda_5$ can be then used to enforce that the tree-level masses M_{A^0} and $M_{H^{\pm}}$ remain unchanged by one-loop corrections (they do not need to be determined explicitly).

One-loop temperature dependent effective potential

$$\Delta^{(1L)} V_{T\neq 0} = \frac{T^4}{2\pi^2} \sum_{\text{fields}} C_s \int_0^\infty dx \, x^2 \ln\left[1 - (-1)^{2s} \exp\left(-\sqrt{x^2 + \mathcal{M}_s^2/T^2}\right)\right].$$

For $T^2 \gg \mathcal{M}_s^2$ the contribution of \mathcal{M}_s^2 to (12) can be expanded:

$$\left(\Delta^{(1L)} V_{T \neq 0} \right)_B = |C_s| \left\{ -\frac{\pi^2}{90} T^4 + \frac{1}{24} T^2 \mathcal{M}_s^2 - \frac{T}{12\pi} |\mathcal{M}_s^3| - \frac{\mathcal{M}_s^4}{64\pi^2} \left(\ln \frac{\mathcal{M}_s^2}{T^2} - C_B \right) \right\}$$
$$\left(\Delta^{(1L)} V_{T \neq 0} \right)_F = |C_s| \left\{ -\frac{7\pi^2}{720} T^4 + \frac{1}{48} T^2 \mathcal{M}_s^2 + \frac{\mathcal{M}_s^4}{64\pi^2} \left(\ln \frac{\mathcal{M}_s^2}{T^2} - C_F \right) \right\}$$

 $(C_B = 5.40762, C_F = 2.63503)$. In the opposite limit $T^2 \ll \mathcal{M}_s^2$ one has

$$\left(\Delta^{(1L)}V_{T\neq 0}\right)_s = -|C_s| T^4 \left(\frac{|\mathcal{M}_s|}{2\pi T}\right)^{3/2} \left(1 + \frac{15}{8} \frac{T}{|\mathcal{M}_s|} + \dots\right) \exp\left(-\frac{|\mathcal{M}_s|}{T}\right),$$

both for B and F

Effective T=0 potential

Critical temperature T_{FW} : V at new minimum = V at $V_{1(s)} = V_{2(D)}$

MH=65 GeV MH+=MA= 500,450,400,300 GeVŨ

Phases at T=0

Xenon100 bound

Strength of the phase transition

We are looking for parameter space of IDM which allows for a strong first order phase transition $v(T_{EW})/T_{EW} > 1$

being in agreement with collider and astrophysical data

We focus on medium DM, with MH « v,heavy degenerated A and H+ and M_h=125 GeV

Results for v(T_{EW})/T_{EW} Mh=125 GeV, MH=65 GeV, λ 2=0.2

Xenon100 bound

T_{EW} as a function of λ_{345}

Role of Coleman-Weinberg

Conclusion

Strong first order phase transition in IDM possible for realistic mass of Higgs boson (125 GeV) and DM (~65 GeV) for 1/ heavy (degenerate) H+ and A with mass 275 -380 GeV 2/ low value of hHH coupling $|\lambda_{345}| < 0.1$ 3/ Coleman-Weinberg term important

Our results in agreement with recent papers on IDM Borach, Cline 1204.4722 Chowdhury et al 1110.5334 (DM as a trigger of strong EW PT) (on 2HDM Cline et al, 1107.3559 and Kozhusko..1106.0790)

Conclusions

- 2HDM a great laboratory for physics BSM
- In many Standard Models SM-like scenarios can be realized:

[Higgs mass >115 GeV, SM tree-level couplings]

- In models with two scalar doublets:
 - MSSM with decoupling of heavy Higgses LHC-wedge
 - 2HDM (Mixed) where both h or H can be SM-like
 - Intert Doublet Model only h can be SM-like

Evolution of Universe (Ginzburg.. 2010), DM (Ma.. 2007), Inflation (Gong .. 2012)

Yes, Photon Linear Collider can distinguish...

PLC

Γ (h → γ γ) ~ 3 %

For $M_h = 150$, 160 GeV additional cuts to

reduce $\gamma\gamma \rightarrow W^+W^-$

Corrected invariant mass distributions for signal and background events

FIG. 3: New result on spin-independent WIMP-nucleon scattering from XENON100: The expected sensitivity of this run is shown by the green/yellow band $(1\sigma/2\sigma)$ and the resulting exclusion limit (90% CL) in blue. For comparison, other experimental results are also shown [19–22], together with

MSSM: Precision at PLC Niezurawski et al., Spira et al

Covering the LHC wedge

Precision of $\sigma(\gamma\gamma
ightarrow A, H
ightarrow bar{b})$ mesurement

Results for $M_A = 300 \text{ GeV}$

Corrected invariant mass distributions

Results for $M_A = 200-350$ GeV

our previous results compared

PLC: Photon Linear Collider $\gamma \gamma$ and e γ

- Resonance production of C=+ states (eg. Higgs) Ginzburg et al
- Higher mass reach
- Polarised beams CP filter Gunion, Grzadkowski, Godbole, Zarnecki
- Η γ γ coupling sensitive to charged particles in theory (nondecoupling)
 Ginzburg et al., Gunion..
- Direct production of charged scalars, fermions and vectors higher cross section
 Monig,
- Pair production of neutral particles (eg. light-on-light) via loops Jikia, Gounaris...
- Study of hadronic interaction of the photon Godbole,Pancheri; MK Brodsky, deRoeck,Zerwas

Colliders signal/constraints for IDM

Barbieri et al '2006 for heavy h; Cao, Ma, Rajasekaren' 2007 for a light h, *later many others* EW precision data $(M_{H^+} - M_A)(M_{H^+} - M_H) = M^2, M = 120^{+20}_{-30}$ GeV

For $M_H = 50$ GeV, $\Delta(A, H) = 10$ GeV, $M_{H+} = 170$ GeV, $m_{22} = 20$ GeV

IDM – total width of h

IDM for DM benchmarks B1-3

D. Sokołowska; J. Bogdanowicz'11

GeV

D. Borach, J. Cline Inert Doublet DM with Strong EW phase transition 1204.4722[hep-ph]

PLC

Γ (h → γ γ) ~ 3 %

For $M_h = 150$, 160 GeV additional cuts to

reduce $\gamma\gamma \rightarrow W^+W^-$

Corrected invariant mass distributions for signal and background events

MSSM: Precision at PLC Niezurawski et al., Spira et al

Covering the LHC wedge

Precision of $\sigma(\gamma\gamma
ightarrow A, H
ightarrow bar{b})$ mesurement

Results for $M_A = 300 \text{ GeV}$

Corrected invariant mass distributions

Results for $M_A = 200-350$ GeV

our previous results compared

PLC: Photon Linear Collider $\gamma \gamma$ and e γ

- Resonance production of C=+ states (eg. Higgs) Ginzburg et al
- Higher mass reach
- Polarised beams CP filter Gunion, Grzadkowski, Godbole, Zarnecki
- Η γ γ coupling sensitive to charged particles in theory (nondecoupling)
 Ginzburg et al., Gunion..
- Direct production of charged scalars, fermions and vectors higher cross section
 Monig,
- Pair production of neutral particles (eg. light-on-light) via loops Jikia, Gounaris...
- Study of hadronic interaction of the photon Godbole,Pancheri; MK Brodsky, deRoeck,Zerwas

B. Gorczyca 2012 (IDM) Unitarity and S,T constraints $h\gamma\gamma > 1$ for MH+ below 200 GeV

Also Arhrib..2012