

Highlights from recent CMS results

Joao Varela

CMS Deputy Spokesperson LIP Lisbon

Summer School and Workshop on the Standard Model and Beyond Corfu, September 13, 2012

- Jets, W&Z, top
- Higgs
- SUSY
- Other searches
- Prospects

On behalf of the CMS Collaboration

- Bunch crossing events have ~30 p-p collisions
 - p-p inelastic ~ 70 mb x Inst luminosity 7 Hz/nb = 5E8 collisions/s
 - ~ 1400/3600*4E7= 1.5E7 crossings/s
- High multiplicity
 - ~1-2 thousand low energy charged particles per crossing
 - ~1-2 thousand low energy photons per crossing
- Challenge to reconstruction of hard collisions
 - jets and missing ET reconstruction
 - lepton isolation
- Assignment of particles to primary vertex:
 - particle flow reconstruction
 - neutral energy: event-by-event energy subtraction

Particle-based isolation

Sum energy of particles in ΔR cone around the lepton

Pile-up contribution:

- Negligible for charged hadrons (vertexing)
- Neutrals corrected w/global energy density (ρ)

2011-12 Datasets: Standard Model

Standard model: Jets, γ^*/Z

Inclusive jet and dijets:

- NLO QCD describes data over ~9 orders of magnitude!
- 1-2% JES.
- Constrains gluon PDF up to x=0.6

Differential Drell-Yan cross section:

 2.5M μμ pairs tests NNLO cross sections and PDFs

CMS-TOP-12-006/7

Single top production

CMS-TOP-11-021

CMS: s = 70.2 ± 5.2 (stat.) ± 10.4(syst.) ± 3.4(lumi.) pb CMS Physics Highligths, J. Varela

$m_{top} = 173.3 \pm 0.5 \text{ (stat)} \pm 1.3 \text{ (syst)} \text{ GeV}$

Differential cross section in top pairs

CMS Preliminary, 1.14 fb⁻¹ at \s=7 TeV

- Test SM predictions in differential distributions
 - Constrain MC predictions
 - Sensitivity to new physics
- New in 2012

Sept. 13, 2012

- Unfold detector effects
- MC describes data well
- Both I+jets and dilepton ____ channels

TOP-11-013

 MadGraph - MC@NLO - POWHEG

Data

CMS Preliminary, 1.14 fb⁻¹at\s=7 TeV

0.6

-1.5 -1 -0.5 0 0.5 1 1.5 2 n^{r and r}

 $\boldsymbol{\eta}^{\text{lepton}}$

CMS Preliminary, 1.14 fb¹ at \s=7 TeV

Data

• Differential measurement of top charge asymmetry at the LHC; no evidence for deviations from the SM

$R=B(t\rightarrow Wb)/B(t\rightarrow Wq)$

- Number of b-tagged jets depend on R and b-tagging efficiency
- Measurement is fully datadriven
 - b-tagging multiplicity is parametrized as function of R, ϵ_{b} , ϵ_{q} , top contributions
 - fraction of well reconstructed t → Wq is estimated from lepton-jet invariant mass spectrum
- Result

R=0.98±0.04 95% CL R>0.85

TOP-11-029

- Measure the W helicity fractions in tt lepton+jets
 - Use the $cos(\theta^*)$ distribution
 - θ* = angle between the charged lepton in the W rest frame and the W in the top rest frame

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta^*} = \frac{3}{8}\left(1-\cos\theta^*\right)^2 F_L + \frac{3}{8}\left(1+\cos\theta^*\right)^2 F_R + \frac{3}{4}\sin^2\theta^* F_0.$$

- Sensitive to anomalous couplings in the Wtb vertex
- CMS results
 - Use 2.2fb⁻¹ and μ +jets events
 - Set limits on anomalous couplings in the Wtb vertex

-0.6 -0.4 -0.2

0.2

0.4 0.6

-0.

2011-12 Datasets: Higgs

 – LHC [~127, 600] GeV arXiv:1202.1408 (ATLAS) arXiv:1202.1488 (CMS)

5 decay modes exploited

- High mass: WW, ZZ
- Low mass: bb, ττ, WW, ZZ, γγ
- Low mass region is very rich but also very challenging: main decay modes (bb, ττ) are hard to identify in the huge background
- Very good mass resolution (1%): H→γγ and H→ZZ→4I

Highest sensitivity in
γγ and ZZ, since those
modes exploit the
excellent mass
resolution (~1%) of
CMS.

CMS Experiment at the LHC, CERN Data recorded: 2012 May 13 20:08:14.621490 GMT Run/Event: 194108 / 564224000

H →γγ candidate

Sept. 13, 2012

ø

- Multi-Variate Analysis (MVA) for photon ID and event classification
 - Divide events into non-overlapping samples of varying S/B based on properties of the reconstructed photons and presence of di-jets from VBF process
- Cross check with cut-based analysis
 - MVA and cut-based results consistent
 - MVA gives 15% better sensitivity

	_		-		-				-
Event		SM I	Background						
categories							$\sigma_{\rm eff}$	FWHM/2.35	$m_{\gamma\gamma} = 125 \text{GeV}$
0		Events	ggH	VBF	VH	ttH	(GeV)	(GeV)	(events/GeV)
7 TeV, 5.1 fb ⁻¹	BDT 0	3.2	61%	17%	19%	3%	1.21	1.14	3.3 ± 0.4
	BDT 1	16.3	88%	6%	6%	—	1.26	1.08	37.5 ± 1.3
	BDT 2	21.5	92%	4%	4%	_	1.59	1.32	74.8 ± 1.9
	BDT 3	32.8	92%	4%	4%	_	2.47	2.07	193.6 ± 3.0
	Dijet tag	2.9	27%	72%	1%	-	1.73	1.37	1.7 ± 0.2
8 TeV, 5.3 fb ⁻¹	BDT 0	6.1	68%	12%	16%	4%	1.38	1.23	7.4 ± 0.6
	BDT 1	21.0	87%	6%	6%	1%	1.53	1.31	54.7 ± 1.5
	BDT 2	30.2	92%	4%	4%	-	1.94	1.55	115.2 ± 2.3
	BDT 3	40.0	92%	4%	4%	-	2.86	2.35	256.5 ± 3.4
	Dijet tight	2.6	23%	77%	_	-	2.06	1.57	1.3 ± 0.2
	Dijet loose	3.0	53%	45%	2%	_	1.95	1.48	3.7 + 0.4
· · · ·									

Fitted Signal Strength

Combined best fit signal strength (m_H =125 GeV): σ/σ_{SM} = 1.56±0.43 x SM

Best fit signal strength consistent between different classes

p-values

Significance based on local p-value: 4.1σ Significance based on global p-value: 3.2σ (110-150) GeV

 Sum of mass distributions for each event class, weighted by S/(S+B)

MS

CMS Experiment at the LHC, CERN Data recorded: 2012-May-27 23:35:47.271030 GMT Run/Event: 195099 / 137440354

Results from H->ZZ->4I

1000 C

- Background models:
 - irreducible ZZ^(*)
 - Estimated using simulation
 - Corrected for data/simulation scale
- Event selection:

requires the highest possible efficiencies (lepton Reco/ID/Isolation).

- reducible Z+jets, ttbar, WZ
 - Estimated from control samples

Mass distribution for the four leptons (two pairs of electrons, or two pairs of muons, or the pair of electrons and the pair of muons).

Channel	4e	4μ	2e2µ	4ℓ
ZZ background	2.7 ± 0.3	5.7 ± 0.6	7.2 ± 0.8	15.6 ± 1.4
Z + X	$1.2^{+1.1}_{-0.8}$	$0.9^{+0.7}_{-0.6}$	$2.3^{+1.8}_{-1.4}$	$4.4^{+2.2}_{-1.7}$
All backgrounds (110 < $m_{4\ell}$ < 160 GeV)	4.0 ± 1.0	6.6 ± 0.9	9.7 ± 1.8	20 ± 3
Observed (110 < $m_{4\ell}$ < 160 GeV)	6	6	9	21
Signal ($m_{\rm H} = 125 {\rm GeV}$)	1.36 ± 0.22	2.74 ± 0.32	3.44 ± 0.44	7.54 ± 0.78
All backgrounds (signal region)	0.7 ± 0.2	1.3 ± 0.1	1.9 ± 0.3	3.8 ± 0.5
Observed (signal region)	1	3	5	9

Matrix Element Likelihood Analysis:

uses kinematic inputs for signal to background discrimination $\{m_1, m_2, \theta_1, \theta_2, \theta^*, \Phi, \Phi_1\}$

$$\mathbf{K}_{\mathsf{D}} = \left[1 + \frac{\mathcal{P}_{\mathsf{bkg}}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})}{\mathcal{P}_{\mathsf{sig}}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})}\right]^{-1}$$

- For the signal, use a fully analytic parameterization
- For the use a simulation of the process $q\overline{q}$ \rightarrow $ZZ/Z\gamma$

K_D discriminant versus m₄₁

- Data points shown with per-event mass uncertainties
- Six simultaneous twodimensional maximum likelihood fits for each value of m_H , in the variables m_{41} and K_D .

Data w.r.t. background expectation

2D fit results:

- The minimum local p value occurs at m_H = 125.6 GeV and has a significance of 3.2 (expected 3.8).
- The best-fit signal strength for a SM
 Higgs boson mass
 hypothesis of 125.6
 GeV is 0.7+0.4-0.3

Data w.r.t 126 GeV Higgs Expectation

WW->llvv channel: a broad excess in the mass distribution of 1.5 sigma is observed.

VH->Vbb

Compatible with either

Sept. 11,252GeV Higgs

No significant departure from SM background or signal from a background-only expectation

Η->ττ

Combined results

By dataset

By mode

Decay mode/combination	Expected (σ)	Observed (σ)
$\gamma\gamma$	2.8	4.1
ZZ	3.6	3.1
$\tau\tau + bb$	2.4	0.4
$\gamma\gamma + ZZ$	4.7	5.0
$\gamma\gamma + ZZ + WW$	5.2	5.1
$\gamma\gamma + ZZ + WW + \tau\tau + bb$	5.8	5.0

Overall significance 5.0σ versus 5.8σ expected.

Model independent mass measurement from the two high-resolution channels:

 m_{χ} = 125.3 ± 0.6 GeV

The combined 68% CL contour assumes that the relative event yields among the three channels are those expected from the standard model

SM Higgs exclusion

40

2011-12 Datasets: SUSY

The initial SUSY program at CMS was designed to be

- 1. Generic
 - Signature based searches not tuned to a particular SUSY model
- 2. Broad
 - Cover many possible signatures
 - Use different methods
 - eg: 4 methods/variables for the all hadronic channel (α_{T} , MHT, MT2, razor)
 - Counting as well as shapes
- 3. Robust
 - Background estimated from data as much as possible

Generic approach: search for strongly produced (heavy) sparticles, which decay via cascades

- Fully hadronic final state
- Final states with leptons
 - 1 lepton
 - 2 leptons
 - Same-sign
 - Opposite sign, but not Z
 - Z
 - Multileptons
- Final states with photons
 - 1 photon
 - 2 photons

- Assume stable LSP: all final states with E_t^{miss}
- In almost all cases "lepton" also means τ
- Most of these searches have a version with b-tags

CMSSM interpretation

SMS interpretation

- Search for stops and sbottoms in gluino decays
 - Relatively light stops are needed for naturalness
 - In natural SUSY the gluino cannot be too heavy
 - If the other squarks are very heavy, then the gluino will decay into sbottoms and stops with high BR
- Search for direct stop and sbottom pair production
 - To close the loophole that the "gluino is too heavy"
- Existing "generic" searches can be re-interpreted in this context
- New targeted searches are being developed for pair production

Extend the gluino exclusion in these scenarios by ~ 60 GeV

Early 8 TeV results

More dedicated searches in the works

EWK production

Models with decays into sleptons

Models with decays into W and Z

- Trilepton + MET final states
- Same-sign dileptons

- $Z \rightarrow \ell \ell + \ell + MET$
- $Z \rightarrow \ell \ell + W/Z \rightarrow jet-jet + MET$
- Four leptons

New 7 TeV result

2011-12 Datasets: Exotica

Z' in 2011 Data?

- Search for Z-like narrow resonances decaying to dileptons
- Interesting features in dilepton spectra
 - around 2σ each for CMS & ATLAS in e+ μ
 - similar in scale to 2011 Higgs excess

[hep-ex 1206.1849]

CMS EXO-12-015

Limits on the combined 7 TeV and 8 TeV data from 2011+2012

- M(Z'_{SSM}) > 2590 GeV at 95% C.L.
- $M(Z'_{\psi}) > 2260 \text{ GeV} \text{ at } 95\% \text{ C.L.}$

Excess just below 1 TeV all but gone in CMS data

- Z' might couple preferentially to third-generation fermions
 - 5 fb-1 at \sqrt{s} = 7 TeV
 - Study: $|_{e}|_{\mu}$, $|_{e}|_{h}$, $|_{\mu}|_{h}$, $|_{h}|_{h}$
 - plot effective (visible) mass

• Backgrounds:

- DY Z \rightarrow | |, W+jets, tt, VV, QCD
- estimated from data where possible

M(Z'ssm)	expected	observed
CMS	> 1.1 TeV	> 1.4 TeV
ATLAS	> 1.4 TeV	> 1.3 TeV

[CMS EXO-11-031, hep-ex 1206.1725]

Boosted top pairs

- Boosted top events
 - Pioneered by CMS
 - Strong limits on Kaluza-Klein gluons and Z' -like objects decaying to top pairs

Dijets in 8 TeV Data

- Search for dijet resonance in smoothly falling mass spectrum
 - leading jet mass m_{jj} > 0.9-1 TeV from trigger and other constraints
 - Background estimated from smooth functional fit

[CMS PAS EXO-12-016]

Sept. 13, 2012

GMSB with Displaced Photon

- GMSB (SUSY) decays typically include many jets
- Selection: photon with $E_T > 100$, three jets with $p_T > 35$
 - relaxed ECAL timing and shower-shape cuts
 - E_T^{miss} and ECAL timing main discriminants

Much-improved sensitivity to long-lived neutralino

 Look for missing energy and radiated jet (photon)

- Monojet Selection:
 - Leading jet pT > 120 GeV, $|\eta| < 2$
 - allow a second jet if not back-to-back
 - veto isolated leptons
- Backgrounds and Uncertainties
 - $Z + (jets/\gamma) \rightarrow vv+(jets/\gamma)$
 - W + (jets/ γ) --> Iv+(jets/ γ)
 - smaller backgrounds from top, QCD, noncollision
- Missing Energy (ETmiss) to distinguish signal

Spin-dependent couplings

 Limits extend well below Direct DM (DD) searches

Spin-independent couplings

- competitive at low masses where nuclear recoil imposes a threshold for detection in DD case

Prospects

LHC Schedule

Scenario	L (fb ⁻¹)	E (TeV)
LHC (2012)	30	8
LHC (2021)	300	14
HL-LHC	3000	14
HE-LHC	300	33

LHC 2012

psMELA =
$$\left[1 + \frac{\mathcal{P}_{0^-}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})}{\mathcal{P}_{0^+}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})}\right]^{-1}$$

Very preliminary!

Expected separation between 0⁺ and 0⁻ hypotheses:

- 1.6σ with July 2012 sample
- 3.1σ with 5+30 fb⁻¹ sample expected by end of 2012 run
- 4.4σ combining ATLAS and CMS

CMS Projection

CMS Projection

Would like to see example of Higgs coupling to a 2nd generation fermion.

needed to see signal in $H \rightarrow \mu \mu$

- Probing the Higgs potential itself is an essential piece of the future program.
- Do this through the study of multiple Higgs production.
- Most straightforward approach uses

 $gg \rightarrow HH \rightarrow W^{+}W^{-}W^{+}W^{-} \rightarrow \ell^{\pm}\nu jj\ell^{\pm}\nu jj$

but this runs out of gas for $M_H < 140 \text{ GeV}$

• For lower M_H=125 GeV use

$$gg \rightarrow HH \rightarrow \bigcirc b\overline{b}\gamma\gamma \\ \bigcirc b\overline{b}\mu\mu$$

Likely needs the 33 TeV machine

- Impressive performance of the standard model describing the LHC data. This is a tribute to decades of hard and rigorous theoretical work.
- Discovery of new boson with Higgs-like properties at 125 GeV is a major accomplishment for the field. Much remains to be done to confirm (or refute) the Higgs interpretation.
- CMS probed a wide variety of SUSY-motivated final states. Nothing found so far, but developed detailed understanding of BG. Transitioning to targeted searches optimized for specific models (e.g. natural SUSY, RPV)
- Nothing found either in many other searches for new physics.
- CMS will work hard to exploit every possible corner of phase space: no stone should be left unturned.

BACKUP

 Thus far in 2012, CMS has recorded 93% of the luminosity delivered by the LHC. Of that 85% is certified as "golden" (good for physics).

The fraction of working channels is >98%

Stable particles in the event are reconstructed by a sophisticated algorithm that combines information from all sub-detectors.

This exploits the fine-grained nature of CMS.

Sept. 13, 2012

Light monitoring corrections are used to greatly improve the temporal stability.

Photons (EM Calorimetry)

2012 HLT 5E33 Menu Highlights

(Unprescaled) Object	Trigger Threshold (GeV) @ 5E33
Single Muon	40 (eta < 2.1)
Single Isolated muon	24 (eta < 2.1)
Double muon	(17, 8)
Single Electron	80 (30 GeV for "parked" data)
Single Electron +pfMHT	32
Double Electron	(17, 8)
Single Photon	135
Double Photon	(36, 22)
Muon + Ele x-trigger	(17, 8), (5, 5, 8), (8, 8, 8)
Single PFJet	320
QuadJet	80
Six Jet	(4 x 60, 2 x 20)
PFMET	150
HT 13, 2012	750 CMS Physics Highligths, J. Varela

Jet Studies with 2011 Dataset

CMS Preliminary, √s=7 TeV

 $\sigma = 165.8 \pm 2.2(\text{stat}) \pm 10.6(\text{syst.}) \pm 7.8(\text{lum.})\text{pb}$

- Multi-Variate Analysis (MVA) for photon ID and event classification
 - Divide events into non-overlapping samples of varying S/B based on properties of the reconstructed photons and presence of di-jets from VBF process
- Cross check with cut-based analysis
 - MVA and cut-based results consistent
 - MVA gives 15% better sensitivity
- Primary vertex selection (needed for M_{vv} calculation)
 - Highest sum of associated tracks PT
 - Consistency with di-photon kinematics (p_T balance etc.)
 - reconstructed from photon conversion into e⁺e⁻ pair

- Tau pair mass (I+h and II decays)
- Two categories: non-b-tagged and b-tagged (to enhance $bb\Phi$) ullet

CMS searches have excluded light squarks and gluinos up to ~ 1 TeV

Search for SUSY in Z+jets events

CMS Physics Highligths, J. Varela

Dilepton analyses split into off and on Z resonance:

• Different backgrounds and different model sensitivity

Complementary search methods based on orthogonal data control samples:

MET and; Jet-Z-Balance = $\left|\sum_{\text{jets}} \vec{p}_T\right| - \left|\vec{p}_T^{(Z)}\right| = \left|-E_T^{\text{miss}} - \vec{p}_T^{(Z)}\right| - \left|\vec{p}_T^{(Z)}\right|$

tt background predicted from shapes in e μ events and M(ee)/M($\mu\mu$) sideband data Z+artificial MET predicted from data-derived MET resolution templates. Z+artificial JZB predicted from symmetry in negative \rightarrow positive tails of JZB.

Depending on the nature of χ^0 , single or double photon final states can dominate

Exclude gluino masses below 460 GeV (assuming 100% BR into three jets)

 Search for a new heavy gauge boson W' decaying to a charged lepton (µ or e) and v

$$M_{\mathrm{T}} = \sqrt{2 \cdot p_{\mathrm{T}}^{\ell} \cdot E_{\mathrm{T}}^{\mathrm{miss}} \cdot (1 - \cos \Delta \phi_{\ell, \nu})}$$

- Many models possible
 - right-handed W' bosons with standard-model couplings
 - left-handed W' bosons including interference
 - Kaluza-Klein W'KK-states in split-UED
 - Excited chiral boson (W*)

М(W'ssм) 95% CL	Luminosity	Expected	Observed
ATLAS e+µ, 2011	4.7	> 2.55 TeV	> 2.55 TeV
CMS e+µ, 2012	3.7	> 2.80 TeV	> 2.85 TeV
CMS e+µ, 2011+2012	5.0 + 3.7	> 2.85 TeV	> 2.85 TeV

Heavy Neutrino in 8 TeV

[CMS PAS EXO-12-017]

 We search for the decay of W_R → µµjj and eejj, as in a Left-Right Symmetric Model

- Selection
 - Lepton $p_T > 60/40$ GeV, motivated by W decay
 - Jet p_T > 40 GeV
 - M(II) > 200 GeV to reduce DY+jets.
- Background
 - Top: data-driven from eµjj
 - DY+jets: normalised to data, MC shape in Z peak
 - QCD: data-driven fake rate
 - VV, Single top: from MC

- Search assumes small W_R - W_L and N_l - N_l [,] mixing angles, only one lepton channel kinematically accessible
- Primary Systematic Uncertainties
 - Signal Eff.: 6-10% from lepton
 - Background: ~50% from DY+jets shape, ~16% from top shape

For $M(N)=M(W_R)/2$; $M(W_R) > 2.8 \text{ TeV}$

[CMS PAS EXO-12-017]

Ν

- Hypothetical BH would evaporate into many high-p_T objects
 - Estimate by S_T , the p_T sum of physics objects with $p_T > 50 \text{ GeV}$
- Main background of QCD estimated by fit to n=2 distribution

$$S_T = \sum_{j,e,\mu,\gamma,MET} p_T$$

- Normalised for each multiplicity bin separately at S_T = 1.8–2.2 TeV
- Model-independent limits vs S_T and multiplicity

Large improvement in sensitivity (~10-20%) with respect to 2011 analysis

[CMS PAS EXO-12-009]

