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Benefits of NLO
n Leading Order is often a quite crude approximation 

n normalization can float arbitrarily up and down by just 
changing αs (more so, the more jets in the final state)

n poor description of jets, no any internal substructure 
(1jet=1parton)

n poor control on shapes of distributions (but BSM searches 
rely heavily on a solid control of shapes to extrapolate 
backgrounds from control regions to signal regions)

n Next-to-Leading order is just “a better approximation” to data: 
experience at LEP and Tevatron teaches us that it is so. This is 
also manifest in reduced theory uncertainties (often estimated by 
varying renormalization and factorization scales)   

BUT: even at NLO the scale choice is an issue and different choices 
can lead to a different picture/contrasting conclusions



Scale choice at NLO
Bredenstein et al. 0905.0110, 1006.2653

Example where a scale choice leads to a different picture at NLO

ttbb important background to ttH with H → bb. Whether or not we can 
control this background to better than 20% makes a crucial difference 
(ttH is unique to measure the ttH Yukawa coupling)

µ0 = mt + mbb,cut/2 µ2
0 = mt

√
pt,bpt,b̄



Scale choice at NLO
Example where a scale choice leads to a different picture at NLO

Could quote many more examples. In general the problem is more 
severe as the number of jets increases (as more scales come into play) 

Bern et al. 0907.1984

W+ multi-jet processes are important backgrounds to SUSY searches 
at high transverse energies 



Scale choice at NLO
Often a “good scale” is determined a posteriori, either by requiring 
NLO corrections to be small, or by looking where the sensitivity to the 
scale is minimized

µ0 = mt + mbb,cut/2

µ2
0 = mt

√
pt,bpt,b̄

good scale bad scale
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Scale choice at NLO
Often a “good scale” is determined a posteriori, either by requiring 
NLO corrections to be small, or by looking where the sensitivity to the 
scale is minimized

Reason: bad scale ➠ large logs ➠ large NLO and large scale dependence

But we also know that large NLO  ➠  bad scale choice, since NLO 
corrections can have a “genuine” physical origin 
(new channels opening up, Sudakov logarithms, color factors, large gluon 
flux ... ) 

Furthermore, double logarithmic corrections can never be absorbed by 
a choice of scale (single log). So a “stability criterion” can be misleading.  



Scale prescriptions
• Principal of Minimal Sensitivity (PMS): choose the central scale so 

that the NLO correction vanishes. Then the scale dependence is 
minimized. PMS would work well if scale logarithms were the only 
source of large logarithms, but we know they are not.

• Brodsky, Lapage, Mackenzie (BML) suggested to resum as much as 
possible all β-function terms in NLO calculations (i.e. exactly in 
QED, nf terms in QCD) 

• Brodsky & Giustino: extend this to the Principal of Maximal 
Conformality: resum all non-conformal terms (β ≠ 0) (PMC)

•  ....    

But, hard to see how the associated theory uncertainty can be reliably 
estimated in the presence of spurious (forced) compensation mechanisms



Scale prescriptions

We are not trying to follow a similar approach here, instead we’ll argue 
that a scale choice should be discussed in conjunction with Sudakov 
form factors  

N.B. 
We know that the use of scale variation to asses theory uncertainties 
has serious limitations 
(e.g. it does not work in conformal invariant theories, it has no value in 
QED where photon polarization effects can be resummed exactly ...). 
In QCD it often works well in practice and it is simple. That is why it 
has become a standard.  



Scale choice at LO

LO calculations in matrix elements generators that follow the CKKW 
procedure are quite sophisticated in the scale choice: 
they use optimized/local scales at each vertex and Sudakov form factors 
at internal/external lines  

Catani,Krauss, Kuehn, Webber ’01
extension to hh collisions Krauss ’02 

Reminder: 
a Sudakov form factor encodes the probability of evolving from one 
scale to the next without branching



Recap of CKKW
The CKKW prescription in brief:

use the kt algorithm to reconstruct the most 
likely branching history 

evaluate each αs at the local transverse 
momentum of the splitting 

for each internal line include a Sudakov 
form factor Δ=D(Q0,Qi)/D(Q0,Qj) that 
encode the probability of evolving from 
scale Qi to scale Qj without emitting. For 
external lines include Δ=D(Q0,Qi) 

match to a parton shower to include 
radiation below Q0 
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Scale choice intervened with inclusion of Sudakov form factors 



Aim of this work 
The goal: formulate a procedure to compute the actual 
NLO corrections to matrix-element style LO calculations 
with Sudakov form factors, such that the procedure to fix 
the scale is unbiased and decided a priori

In particular, we focus on processes involving many scales (e.g. X
+multi-jet production) and on soft/collinear branchings, i.e. we focus on 
the region where it is more likely that associated jets are produced.  

Simplest example: H+1 jet production
The jet has most likely very small transverse momentum, and so has the 
Higgs. Therefore two very different scales are present mH and pT,H. 
These scales lead to incompatible results. 
(but we’ll show that there is no incompatibility once Sudakov form factors are properly 
taken into account) 



Scale choice: H+1 jet
• H  PWG: gluon-gluon fusion inclusive Higgs in POWHEG+PYTHIA
• HJ RUN: H+1jet in PWG+PYTHIA with running scale µR=µF=pT,H

• HJ FXD: H+1jet in PWG+PYTHIA with fixed scale µR=µF=MH

Ratio over inclusive productionSpectrum at default scale choice

☛ scale bands do not overlap☛ HJ results differ already at
     moderate pT,H



Two observations
1. A generic NLO cross-section has the form 

Adopting CKKW scales at LO, this becomes naturally  

and the scale choices µR’ and µR’’ are irrelevant for the scale 
cancelation. This can be achieved for instance by evaluating the virtual 
term at a single scale equal to the geometric average of the Born scales 

2. Sudakov corrections included at LO via the CKKW procedure lead 
to NLO corrections that need to be subtracted to preserve NLO 
accuracy 
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Arbitrariness
When trying to extend the CKKW procedure to NLO there is 
arbitrariness in 

1. the arguments of αs in the real and virtual term
2. the exact definition of the subtraction terms of the NLO terms in 

the Born Sudakovs
3. whether or not to include Sudakovs in the real and virtual 

Our guiding principle is that the virtues of the CKKW result at 
leading order are maintained once radiative corrections are included 

[This method is completely new, for simplicity we suggested one 
definite choice among various options, more experience will tell if other 
options are better... ]



The MINLO method
1. Find the CKKW clustering scales q1< ... < qn (and q0<q1 for the real 

term). Fix the hard scale of the process Q to the system invariant 
mass after clustering. Set Q0 to q1 (inclusive on radiation below q1)

2. Evaluate the n coupling constants at the scales qi (times a scale factor 
to probe scale variation)

3. Set µR in the virtual to the geometric average of these scales and µF to 
the softest scale q1 

4. Include Sudakov form factors for Born and NLO terms (for the real 
only after the first branching)

5. Subtract the NLO bit present in the CKKW Sudakov of the Born

6. The (n+1)th power of αs in the real and virtual is evaluated at the 
arithmetic average of the n αs in the Born term (corrections can be 
thought of as additive at each vertex)



Back to H+1j example
How is the mismatch between using       
αs(MH)2 αs(pT,H) or αs(pT,H)3 addressed 
when Sudakov form factors are included? 

MINLO/CKKW procedure suggests to use αs(MH)2 αs(pT,H)  supplemented 
by Sudakov form factors. We have two Sudakov factors, giving 

Which is equivalent to 

So, both choices are “fine” but one should not forget double logarithms in 
the Sudakov form factors, which are more important than the single logs 
in the scale choice.  

NLL Sudakov

LL Sudakov

Q0=pTQ=MH

Δ(Q0,Q0)=1

Δ(Q0,Q0)=1

Δ(Q0,Q) Δ(Q0,Q)



Properties of MINLO
MINLO satisfies the following requirements

the result is accurate at NLO, i.e. the scale dependence is NNLO

the accuracy in the Sudakov region is Leading Log (LL) or better, 
according to the form of the Sudakov used 

the smooth behaviour of the CKKW scheme in the singular regions 
is preserved 

X+n-jet cross-sections are finite even without jet cuts (do not need 
expensive generation cuts or Born suppression factors)

 X+n-jet cross-sections reproduce the inclusive cross-section 
accurate to LO (NB is finite rather than divergent!)

the procedure is simple to implement in any NLO calculation, i.e. 
the improvement requires only a very modest amount of work 

It is then interesting to see how the method fares in practice 



Phenomenology
To asses how the method fares in practice, we considered the following 
processes 

H+1jet, H+2jets, Z+1jet, Z+2jets. We implemented the latter 
process ourselves in POWHEG using the automated MadGraph4 
interface (available thanks to Rikkert Frederix) and taking virtual 
corrections from MCFM.

we compare the MINLO predictions to standard NLO results with 
a number of common scales used for these processes 

we compare the MINLO predictions with POWHEG results with 
(n-1) jets

We use a standard LHC setup, but since MINLO includes Sudakov 
form factors, we do not need to impose any jet cut. We generated 
hundreds of distributions, I’ll just show few simple examples here. 



H+1jet

• MINLO mimics POWHEG all the way down to very small pT,H 
where standard H+1j order results diverge

• MINLO uncertainty band compatible with POWHEG all the way 
down to low transverse momenta

• MINLO more compatible with fixed rather than running scales 
(surprising? No, running scale misses Sudakov) 



H+2jets

• without cuts impossible to compare to Standard NLO 
• again, MINLO uncertainty band compatible with POWHEG all 

the way down to low transverse momenta



H+2jets

• for the jet-resolution parameter y12 both MINLO and standard 
NLO are predictive, and mostly agree well at large merging scales 

• at small scales MINLO agrees better with POWHEG and has a 
better scale stability 

• standard NLO have unphysical behavior at small scales 



H+2jets

• running scale (HT) is outside the band of MINLO
• using HT/2 leads to much better agreement 
• HT/2 has become the preferred scale because it leads to an 

improved scale stability 
• the MINLO result confirms, independently, this choice



Conclusions
MINLO is a simple, definite procedure to assign scales in NLO 
calculations including Sudakov form factors to consistently account for 
distinct kinematical scales. It can be thought of an extension to NLO of 
the CKKW procedure. Key features are   

the results are well-behaved in the Sudakov region, where standard 
NLO results break down

away from the Sudakov region, the result is accurate at NLO (the 
scale dependence is NNLO)

MINLO agrees better with NLO using higher scale choices like 
HT/2. Tempting to interpret this as due to the fact that large scales 
(smaller couplings) compensate the lack of a genuine Sudakovs  

the procedure is simple to implement in any NLO calculation, i.e. 
the improvement requires only a very modest amount of work


