Strongly Coupled Anisotropic Plasma in AdS/CFT

Dimitrios Giataganas

Claude Leon Postdoctoral Fellow, Witwatersrand University, Johannesburg, South Africa

Based on the results of the paper arXiv:1202.4436 JHEP hep-th, hep-ph and ongoing work.

Talk given at: 18th European Workshop in String Theory, Corfu, 25 September 2012

Dimitris Giataganas

Strongly Coupled Anisotropic Plasma in AdS/CFT

Introduction	Drag Force	The Jet Quenching	Conclusions.

Short talk, therefore non conventional presentation:

- Motivation
- Brief Results
- Theory and Results

Why are we looking at these anisotropic theories?

The motivation:

- The expansion of the plasma along the longitudinal beam axis at the earliest times after the collision results to momentum anisotropic plasmas.
- Properties of the supergravity solutions, that are dual to the anisotropic theories. for example, see talks of J. Erdmenger
- There exist several results for observables in weakly coupled anisotropic plasmas. Do their predictions carry on in the strongly coupled limit models?

[Dumitru, Martinez, Rebhan, Romatschke, Strickland,...]

The main question we answer accurately here is: How the inclusion of anisotropy modifies the results on several observables in our dual QGP compared to the isotropic theory? Introduction

Static Potential.

Drag Force

The Jet Quenching

Conclusions

How does the anisotropic Quark Gluon Plasma looks?

Answer: Momentum and Pressure anisotropy. Anisotropic parameters can be introduced

$$\xi := rac{\left\langle p_{\perp}^2
ight
angle}{2 \left\langle p_{\parallel}^2
ight
angle} - 1 \;, \qquad \Delta := rac{P_{\perp}}{P_{\parallel}} - 1 \;.$$

[Romatschke, Strickland,2003]

where $p_{\parallel,\perp}$ are the average longitudinal, transverse momenta of the particles with respect to the anisotropic direction. $P_{\parallel,\perp}$ refers to pressures.

ie: Anisotropy in the momentum space:

What have we calculated?

Answer:Observables using Heavy Quark Probes in an anisotropic holographic plasma.

- The static potential and static force.
- The drag force.
- The jet quenching.
- •We study the observables dependence on the anisotropy.
- •We compare the results along the different directions(obtaining dimensionless quantities) and the isotropic theory.
- •We answer the question if there is a possibility for more "quantitative" predictions for a QGP using this set up.

What have we found?

- All the results depend on the particular spatial direction considered and the anisotropic parameter.
- Decrease of static potential and force compared to isotropic theory.
- Increase of the drag force above a critical velocity.
- Existence of three different jet quenching parameters, all enhanced compared to the isotropic theory.

Introduction

Static Potential.

Drag Force

The Jet Quenchin

Conclusions.

How does the anisotropy is introduced?

• Introduction of additional branes.

[Azeyanagi, Li, Takayanagi, 2009]

• Which equivalently leads to the following deformation diagram.

How does the background looks?

The metric in string frame

[Mateos, Trancanelli, 2011]

$$ds^2 = rac{1}{u^2} \left(-\mathcal{FB} \, dx_0^2 + dx_1^2 + dx_2^2 + \mathcal{H} dx_3^2 + rac{du^2}{\mathcal{F}}
ight) + \mathcal{Z} \, d\Omega_{S^5}^2 \, .$$

The functions $\mathcal{F}, \mathcal{B}, \mathcal{H}$ depend on the radial direction u and the anisotropy. The anisotropic parameter is α with units of inverse length. In sufficiently high temperatures, $T \gg \alpha$, and imposed boundary conditions the Einstein equations can be solved analytically:

$$\begin{aligned} \mathcal{F}(u) &= 1 - \frac{u^4}{u_h^4} + \alpha^2 \frac{1}{24u_h^2} \left[8u^2(u_h^2 - u^2) - 10u^4 \log 2 + (3u_h^4 + 7u^4) \log \left(1 + \frac{u^2}{u_h^2}\right) \right] \\ \mathcal{B}(u) &= 1 - \alpha^2 \frac{u_h^2}{24} \left[\frac{10u^2}{u_h^2 + u^2} + \log \left(1 + \frac{u^2}{u_h^2}\right) \right], \quad \mathcal{H}(u) = \left(1 + \frac{u^2}{u_h^2}\right)^{\frac{\alpha^2 u_h^2}{4}} \end{aligned}$$

The isotropic limit $\alpha \to 0$ reproduce the well know result of the isotropic D3-brane solution (dual to $\mathcal{N} = 4$ finite sYM solution).

Static Potential.

Drag Force

The Jet Quenching

Conclusions.

The metric can be expressed in α , T parameters through

1

$$u_h = \frac{1}{\pi T} + \alpha^2 \frac{5\log 2 - 2}{48\pi^3 T^3}$$

The pressures can be found from the expectation value of the stress tensor, where the elements $\langle T_{11} \rangle = \langle T_{22} \rangle = P_{x_1x_2}$ denote the pressure along the x_1 and x_2 directions and $\langle T_{33} \rangle = P_{x_3}$ is the pressure along the anisotropic direction. The analytic expression read

$$P_{x_1x_2} = \frac{\pi^2 N_c^2 T^4}{8} + \alpha^2 \frac{N_c^2 T^2}{32}.$$
$$P_{x_3} = \frac{\pi^2 N_c^2 T^4}{8} - \alpha^2 \frac{N_c^2 T^2}{32}.$$

 $P_{x_3} < P_{x_1x_2}$

resembling the plasma pressure anisotropies.

Reminder of the notation:

- $Q_{\parallel}:=Q_{\mathbf{x}_3}=Q_{\textit{anisotropic}}$, anisotropic, parallel, longitudinal, direction of collision.
- $Q_{\perp} := Q_{x_1 \text{ or } x_2}$, transverse direction.
- Q_{iso} , isotropic theory, $\alpha = 0, \mathcal{N} = 4sYM$.

$$rac{Q_{\parallel}}{Q_{\perp}}=?, \quad rac{Q_{\parallel}}{Q_{iso}}=?,...$$

 $\downarrow \downarrow \downarrow \downarrow$

Static Potential in the anisotropic background.

• We consider a string world-sheet (au,σ) of the following form.

String Configuration $x_0 = au, \qquad x_p = \sigma, \qquad u = u(\sigma) \; .$

The x_p is the direction where the pair is aligned: $x_p = x_2 =: x_{\perp}$ pair along transverse direction, $x_p = x_3 =: x_{\parallel}$ pair along parallel direction to anisotropy.

In general the ${\sf length}$ of the two endpoints of the string on the boundary is given by

$$L = 2 \int_{\infty}^{u_0} \frac{du}{u'} = 2 \int_{u_0}^{\infty} du \sqrt{\frac{-g_{uu}c_0^2}{(g_{00}g_{pp} + c_0^2)g_{pp}}} \; .$$

Which should be inverted as $u_0(L)$. The normalized energy of the string is

$$2\pi \alpha' V = c_0 L + 2 \left[\int_{u_0}^{\infty} du \sqrt{-g_{uu}g_{00}} \left(\sqrt{1 + \frac{c_0^2}{g_{\rho\rho}g_{00}}} - 1 \right) - \int_{u_h}^{u_0} du \sqrt{-g_{00}g_{uu}} \right]$$

[Sonnenschein 2000;...; D.G...]

In the anisotropic case we get:

- $V_{\parallel} < V_{\perp} < V_{iso}$ when the comparison is done with LT keeping α , T fixed.
- $\alpha_1 < \alpha_2 \Rightarrow V_{\parallel_2}$. Increase of anisotropy, leads to decrease of the static potential.
- The critical length of the string beyond the quarks are not bounded is decreased in presence of anisotropy as $L_{c\parallel} < L_{c\perp} < L_c$ iso.

Reminder

The static force need to be calculated and has been. Static potential has a non-physical constant.

 $F_{Q\bar{Q},anisotropic} < F_{Q\bar{Q},isotropic}$

Introduction		Drag Force	The Jet Quenching	Conclusions.
_				

Drag Force.

In AdS/CFT the drag force of a single quark moving in the anisotropic plasma can be represented by a trailing string from the boundary where the probe quark moves with the constant speed, to the horizon of the black hole. [Herzog, Karch, Kovtun, Kozcaz, Yaffe; Gubser, 2006] In radial gauge the trailing string motion along the $x_p := x_{\parallel,\perp}$ directions described by:

String Configuration

$$x_0 = \tau, \qquad u = \sigma, \qquad x_p = v\tau + \xi(u) ,$$

where v is the constant speed of the quark in the boundary along the x_p direction.

	Drag Force	The Jet Quenching	Conclusions.

Calculating the momentum flowing from the boundary to the bulk we can find the drag force for any background to be

$${\sf F}_d = -\Pi^1_u = -\sqrt{\lambda} rac{\sqrt{-g_{00}g_{pp}}}{(2\pi)}\Bigert_{u=u_0}$$

where here u_0 is given by

 $(g_{uu}(g_{00}+g_{pp}v^2))|_{u=u_0}=0$.

In the gravity dual description the jet quenching can be calculated from the minimal surface of a world-sheet which ends on an orthogonal Wilson loop lying along the light-like lines.

$$\langle W(\mathcal{C}) \rangle = \exp^{-\frac{1}{4\sqrt{2}}\hat{q}L_{\perp}^{2}L_{-}}$$

[Liu,Rajagopal,Wiedermann,2006]

• The parameter is a measure of energy loss of the quark.

|--|

• We go to the light-cone coordinates as $\sqrt{2}x^{\pm} = x_0 \pm x_p$ where i, p, k = 1, 2, 3

String configuration

$$x_{-} = \tau, \quad x_{k} = \sigma, \quad u = u(\sigma)$$

 $x_+, x_{p \neq k}$ are constant,

The indices k, p denote a chosen direction.

By calculating the on-shell action, canceling the divergences and applying approximations we obtain

$$\hat{q}_{p(k)} = \frac{\sqrt{2}}{\pi \alpha'} \left(\int_0^{u_h} \frac{1}{g_{kk}} \sqrt{\frac{g_{uu}}{g_{--}}} \right)^{-1}.$$

Three different parameters.

ĝ	xp	x _k	Energetic parton along	Momentum broadening along
$\hat{q}_{\perp(\parallel)}$	x_{\perp}	x	x_{\perp}	x_{\parallel}
$\hat{q}_{\parallel(\perp)}$	x	x_{\perp}	x	x_{\perp}
$\hat{q}_{\perp(\perp)}$	$x_{\perp,1}$	$x_{\perp,2}$	$x_{\perp,1}$	x _{⊥,2}

 $ullet \hat{q}_{\parallel(\perp)} > \hat{q}_{\perp(\parallel)} > \hat{q}_{\perp(\perp)} > \hat{q}_{iso}.$

• Enhancement of the jet quenching in presence of anisotropy!

Generic Remark

The static potential, the drag force and the jet quenching have known formulas for any generic background! for example [1202.4436, D.G.] No need to calculate each time the quantities for new backgrounds- just need to apply the formulas.

Introduction		Drag Force	The Jet Quenching	Conclusions.
Other Ex	tensions.			

- Extensions of the jet quenching and the drag force calculations to generic directions and larger anisotropies have been done. [Chernicoff, Fernandez, Mateos, Trancanelli, 2012a,b,c].
- Results agree for small anisotropies. Their results change for larger anisotropies but also the inequality of pressures does differ.

Attempt for "quantitative" predictions.

The anisotropic parameter α in supergravity model and the parameter ξ measuring the anisotropy in weakly coupled plasmas can be related by

$$T \gg \alpha \Rightarrow \xi \ll 1 \Rightarrow \xi \simeq \frac{5\alpha^2}{8\pi^2 T^2} \; .$$

Using any comparison normalization scheme (direct or fixed energy or entropy density scheme)

$\xi_{\rm aSYM}\gtrsim\xi$.

In our model $\xi \ll 1$; so for $\xi \simeq 1$ values that correspond to the QCD anisotropic plasma, our set up is not valid for a quantitative approach.

Only qualitative results in presence of anisotropy. Still Very interesting!

Introduction	Drag Force

Conclusions.

We have calculated several observables using a IIB supergravity solution in the dual anisotropic finite temperature ${\cal N}=4$ sYM plasma.

- The Static Potential and Force.
- The Drag Force.
- The Jet Quenching.

We have found clear qualitative results for the observables in the anisotropic plasma.

Work in progress:

• Anisotropic holographic baryon.

eg. extension of [Lozano, Picos, Siampos, DG 2012]

- k-strings.
- \bullet Inclusion of flavors \rightarrow many interesting applications.

eg. [Erdmenger, Evans, Kirsch, Threlfall 2007]

Introduction

Drag Force

The Jet Quenching

Conclusions.

Anisotropic momentum distribution function in weakly coupled plasmas

The anisotropic distribution function that can be written as

$$f_{aniso} = c_{norm}(\xi) f_{iso}(\sqrt{\mathbf{p}^2 + \xi(\mathbf{p} \cdot \mathbf{n})^2})$$

where

[Romatschke, Strickland, 2003]

$$\xi = \frac{\left\langle \boldsymbol{p}_T^2 \right\rangle}{2 \left\langle \boldsymbol{p}_L^2 \right\rangle} - 1$$

and ${\bf n}$ the unit vector along the anisotropic direction.

Introduction	Drag Force	

To relate ξ and α we use the pressures

$$\Delta := \frac{P_T}{P_L} - 1 = \frac{P_{x_1 x_2}}{P_{x_3}} - 1 \; .$$

Using the anisotropic distribution function:

[Martinez, Strickland, 2009]

$$\Delta = \frac{1}{2}(\xi - 3) + \xi \left((1 + \xi) \frac{\arctan \sqrt{\xi}}{\sqrt{\xi}} - 1 \right)^{-1}$$

Using the supergravity model

$$\Delta = rac{lpha^2}{2\pi^2 \mathcal{T}^2} \; .$$

Introduction	Drag Force	The Jet Quenching

For

$$T \gg \alpha \Rightarrow \xi \ll 1 \Rightarrow \xi \simeq \frac{5\alpha^2}{8\pi^2 T^2}$$
.

Conclusions

Supposing we trust the estimation of the anisotropic parameter $\xi \simeq 1$ obtained from

$$\xi = \frac{10\eta}{T\tau s}$$

and using any comparison normalization scheme (direct or fixed energy or entropy density scheme)

$\xi_{\rm aSYM}\gtrsim\xi$.

In our model $\xi \ll 1$ so for $\xi \simeq 1$ values that correspond to the QCD anisotropic plasma, our approximations are not valid.

We have calculated several observables using a IIB supergravity solution in the dual anisotropic finite temperature ${\cal N}=4$ sYM plasma.

- The static potential:
 - • $V_{\parallel} < V_{\perp} < V_{iso}$.
 - $\alpha_1 < \alpha_2 \Rightarrow V_{\parallel_1} > V_{\parallel_2}.$
- The drag Force:
 - $F_{\parallel} > F_{iso}$ and $F_{\parallel} > F_{\perp}$.
 - $F_{\perp} > F_{iso}$ for $v > v_c \simeq 0.9$, while below this velocity $F_{\perp} < F_{iso}$.
- The jet quenching:
 - $ullet \ \hat{q}_{\parallel(\perp)} > \hat{q}_{\perp(\parallel)} > \hat{q}_{\perp(\perp)} > \hat{q}_{\perp(\perp)} > \hat{q}_{ ext{iso}}.$

• In weak coupling has been observed enhancement of the jet quenching as $\hat{q}_{\perp(\parallel)} > \hat{q}_{\perp(\perp)}$ in agreement with our results. [Dumitru, Nara, Schenke, Strickland; Baier, Mehtar-Tani, 2008,..].

Introduction
Incoduction

Static Potential.

Drag Force

The Jet Quenchir

Conclusions.

$$\begin{split} P(k_{\perp}) &= \int d^2 x_{\perp} \, e^{-ik_{\perp} \cdot x_{\perp}} \, \mathcal{W}_{\mathcal{R}}(x_{\perp}) \\ \mathcal{W}_{\mathcal{R}}(x_{\perp}) &= \frac{1}{d\left(\mathcal{R}\right)} \left\langle \operatorname{Tr} \left[W_{\mathcal{R}}^{\dagger}[0, x_{\perp}] \, W_{\mathcal{R}}[0, 0] \right] \right\rangle \\ W_{\mathcal{R}}\left[x^+, x_{\perp} \right] &\equiv P \left\{ \exp \left[ig \int_0^{L^-} dx^- \, A_{\mathcal{R}}^+(x^+, x^-, x_{\perp}) \right] \right\} \\ \hat{q} &\equiv \frac{\langle k_{\perp}^2 \rangle}{L} = \frac{1}{L} \int \frac{d^2 k_{\perp}}{(2\pi)^2} k_{\perp}^2 P(k_{\perp}) \end{split}$$