Andrea Borghese

A geometric bound on F-term inflation

Based on: A.B., D.Roest, I.Zavala, [1203.2909]
A geometric bound on F-term inflation

\[S = \int d^4x \sqrt{-g} \left[\frac{1}{2} R - \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \right] \]
predictions on cosmological observables are (so far) perfectly consistent with observations
[Guth, 81; Linde, 82]

predictions on cosmological observables are (so far) perfectly consistent with observations

\[S = \int d^4x \sqrt{-g} \left[\frac{1}{2} R - \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V(\phi) \right] \]

IS IT POSSIBLE TO EMBED INFLATION IN A UV-COMPLETE THEORY?
A geometric bound on F-term inflation

IS IT POSSIBLE TO EMBED INFLATION IN A UV-COMPLETE THEORY?

4 dimensional lagrangians
A geometric bound on F-term inflation

IS IT POSSIBLE TO EMBED INFLATION IN A UV-COMPLETE THEORY?

4 dimensional lagrangians

Inflationary lagrangians
A geometric bound on F-term inflation

Is it possible to embed inflation in a UV-complete theory?
A geometric bound on F-term inflation

Is it possible to embed inflation in a UV-complete theory?

4 dimensional lagrangians

Inflationary lagrangians

Supergravity lagrangians

4 dimensional lagrangians
A geometric bound on F-term inflation

Is it possible to embed inflation in a UV-complete theory?

String Theory

Low energy limit

10 dimensional Supergravity

4 dimensional lagrangians

Inflationary lagrangians

Compactification

CORFÙ 22/09/12
IS IT POSSIBLE TO EMBED INFLATION IN A UV-COMPLETE THEORY?

STRING THEORY

low energy limit

10 dimensional Supergravity

compactification

Supergravity lagrangians

Supergravity is like a bridge between the EFT of inflation and the UV complete theory
SUPERGRAVITY SPECTRA

dozen of scalar fields

during inflation we have a deSitter (dS) space-time in which SUSY is broken completely

non-supersymmetric configurations high probability of tachyonic directions (no stable dS vacua in $\mathcal{N} = 4, 8$)
SUPERGRAVITY SPECTRA
dozens of scalar fields

during inflation we have a deSitter (dS) space-time in which SUSY is broken completely

non-supersymmetric configurations high probability of tachyonic directions
(no stable dS vacua in $\mathcal{N} = 4, 8$)

H^2 Hubble scale
(during inflation is given by the value of the scalar potential)

m^2 inf inflaton mass

m^2 other scalars

A geometric bound on F-term inflation
SUPERGRAVITY SPECTRA

dozens of scalar fields

during inflation we have a deSitter (dS) space-time in which SUSY is broken completely

non-supersymmetric configurations high probability of tachyonic directions (no stable dS vacua in $\mathcal{N} = 4, 8$)

other scalars
Hubble scale (during inflation is given by the value of the scalar potential)
inflaton mass

m^2

H^2

m_{INF}^2
SUPERGRAVITY SPECTRA

dozens of scalar fields

during inflation we have a deSitter (dS) space-time in which SUSY is broken completely

non-supersymmetric configurations
high probability of tachyonic directions
(no stable dS vacua in $\mathcal{N} = 4, 8$)

H^2
other scalars
Hubble scale
(during inflation is given by the value of the scalar potential)

m^2_{\inf}
inflaton mass

A geometric bound on F-term inflation
SCALARS ARRANGE THEMSELVES IN MANIFOLDS

for $\mathcal{N} > 2$ they are coset manifolds

for $\mathcal{N} = 1,2$ they are complex manifolds such as Hodge-Kähler, special Kähler or quaternionic-Kähler
SCALARS ARRANGE THEMSELVES IN MANIFOLDS

for $\mathcal{N} > 2$ they are coset manifolds
for $\mathcal{N} = 1, 2$ they are complex manifolds such as Hodge-Kähler, special Kähler or quaternionic-Kähler

SGOLDSTINI

Super-Higgs mechanism $= \text{Higgs mechanism} \ " + 1/2 "$

For every broken SUSY we have a spin-1/2 field called Goldstino

the Goldstini are “eaten up” by the gravitini
the gravitini eventually become massive

$\eta^i \propto N^i_a \chi^a$

$i = 1, \ldots, \mathcal{N}$

a labels spin-1/2 fields
sGoldstini are the supersymmetric partners of Goldstini

\[\eta^i \propto N^i_a \chi^a \]

\[\varepsilon^j \]

\[\tilde{\eta}^{ij} \propto N^{ij}_\alpha \phi^\alpha \]

\(\mathcal{N}^2 \) directions in the scalar manifold

\(\alpha \) labels the scalar fields
A geometric bound on F-term inflation

sGoldstini are the supersymmetric partners of Goldstini

\[\eta^i \propto N^i_\alpha \chi^\alpha \]

\[\tilde{\eta}^{ij} \propto N^{ij}_\alpha \phi^\alpha \]

- \(N = 1 \):
 - One complex direction corresponding to two real scalar d.o.f.

- \(N = 2 \):
 - 4 complex directions
 - 1 anti-symmetric
 - 1 anti-symmetric
correspond to a
correspond to a
gauge direction
gauge direction
and 3 symmetric and 3 symmetric

- \(N = 8 \):
 - 64 complex directions
 - 28 anti-symmetric
 - 36 symmetric
 - 36 symmetric
are real scalar d.o.f.

\(\mathcal{N}^2 \) directions in the scalar manifold
\(\alpha \) labels the scalar fields
sGoldstini are the supersymmetric partners of Goldstini

\[\eta^i \propto N^i_a \chi^a \]
\[\tilde{\eta}^{ij} \propto N^{ij}_\alpha \phi^\alpha \]

\(\mathcal{N} = 1 \)

One complex direction corresponding to two real scalar d.o.f.

\(\mathcal{N} = 2 \)

4 complex directions
1 anti-symmetric correspond to a gauge direction
and 3 symmetric

\(\mathcal{N} = 8 \)

64 complex directions
28 anti-symmetric correspond to gauge directions
36 symmetric are real scalar d.o.f.

Used to check perturbative stability of critical points in 4D supergravity

[Gomez-Reino, Scrucca, 06-07; Gomez-Reino, Louis, Scrucca, 08; A.B., Roest, 10; A.B., Linares, Roest, 11]
A geometric bound on F-term inflation

\[\mathcal{N} = 1 \quad \text{only chiral-multiplets} \]

theory completely specified by

\[V(\phi) = e^K \left(-3 W \bar{W} + K^{\alpha \bar{\beta}} D_{\alpha} W D_{\bar{\beta}} \bar{W} \right) \]

Kähler potential \(\mathcal{K} = \mathcal{K}(\phi^\alpha, \bar{\phi}^{\bar{\alpha}}) \)

super potential \(\mathcal{W} = \mathcal{W}(\phi^\alpha) \)

\[N_\alpha = e^{K/2} D_\alpha \mathcal{W} \]

two real directions

[Covi, Gomez-Reino, Gross Louis, Palma, Scrucca, 08]
A geometric bound on F-term inflation

$\mathcal{N} = 1$ only chiral-multiplets

theory completely specified by

$V(\phi) = e^{\mathcal{K}} \left(-3 \mathcal{W} \overline{\mathcal{W}} + \mathcal{K}^{\alpha \overline{\beta}} D_{\alpha} \mathcal{W} D_{\overline{\beta}} \overline{\mathcal{W}} \right)$

$m_{sG}^2 = \frac{1}{2} (m_1^2 + m_2^2)$

$\eta_{sG} \equiv \frac{m_{sG}^2}{V} \leq \frac{2}{3\gamma} + \frac{4}{\sqrt{3}} \frac{1}{\sqrt{1+\gamma}} \sqrt{\epsilon} + \frac{\gamma}{1+\gamma} \epsilon - \frac{1+\gamma}{\gamma} \tilde{R}$

Kähler potential $\mathcal{K} = \mathcal{K}(\phi^\alpha, \overline{\phi}^{\overline{\alpha}})$

super potential $\mathcal{W} = \mathcal{W}(\phi^\alpha)$

$N_\alpha = e^{\mathcal{K}/2} D_{\alpha} \mathcal{W}$

two real directions

[Covi, Gomez-Reino, Gross, Louis, Palma, Scrucca, 08]
A geometric bound on F-term inflation

\[\mathcal{N} = 1 \text{ only chiral-multiplets} \]

theory completely specified by

\[V(\phi) = e^K \left(-3 \mathcal{W}\overline{\mathcal{W}} + K^{\alpha \bar{\beta}} \mathcal{D}_\alpha \mathcal{W} \mathcal{D}_{\beta} \overline{\mathcal{W}} \right) \]

Kähler potential \(\mathcal{K} = \mathcal{K}(\phi^\alpha, \phi^{\bar{\alpha}}) \)

super potential \(\mathcal{W} = \mathcal{W}(\phi^\alpha) \)

Kähler potential

\[m_{sG}^2 = \frac{1}{2} (m_1^2 + m_2^2) \]

two real directions

| \[\eta_{sG} \equiv \frac{m_{sG}^2}{V} \leq \frac{2}{3\gamma} + \frac{4}{\sqrt{3}} \frac{1}{\sqrt{1+\gamma}} \sqrt{\epsilon} + \frac{\gamma}{1+\gamma} \epsilon - \frac{1+\gamma}{\gamma} \tilde{R} \] |

| \[\gamma \equiv \frac{V}{3|m_{3/2}|^2} \] |

| \[\tilde{R} = \mathcal{R}_{\alpha \bar{\beta} \gamma \delta} \hat{N}^\alpha \hat{N}^{\bar{\beta}} \hat{N}^\gamma \hat{N}^\delta \] |

| \[\epsilon \equiv \frac{\mathcal{K}^{\alpha \bar{\beta}} \mathcal{D}_\alpha V \mathcal{D}_{\bar{\beta}} V}{2V^2} \] |

Ratio between Hubble scale and gravitino mass

sectional curvature related to the plane spanned by sGoldstino directions

first slow-roll parameter

[Covi, Gomez-Reino, Gross Louis, Palma, Scrucca, 08]
A geometric bound on F-term inflation

\[\eta_{sG} \equiv \frac{m_{sG}^2}{V} \leq \frac{2}{3\gamma} + \frac{4}{\sqrt{3}} \frac{1}{\sqrt{1+\gamma}} \sqrt{\epsilon} + \frac{\gamma}{1+\gamma} \epsilon - \frac{1+\gamma}{\gamma} \tilde{R} \]
A geometric bound on F-term inflation

\[\eta_{sG} \equiv \frac{m_{sG}^2}{V} \leq \frac{2}{3\gamma} + \frac{4}{3\sqrt{1+\gamma}} \sqrt{\epsilon} + \frac{\gamma}{1+\gamma} \epsilon - \frac{1+\gamma}{\gamma} \tilde{R} \]

\[\gamma \equiv \frac{V}{3|m_{3/2}|^2} \quad \text{take the limit} \quad \gamma \to \infty \]

\[\eta_{sG} \leq \epsilon - \tilde{R} \]
A geometric bound on F-term inflation

\[\eta_{sG} \equiv \frac{m_{sG}^2}{V} \leq \frac{2}{3\gamma} + \frac{4}{\sqrt{3}} \frac{1}{\sqrt{1+\gamma}} \sqrt{\epsilon} + \frac{\gamma}{1+\gamma} \epsilon - \frac{1+\gamma}{\gamma} \tilde{R} \]

\[\gamma \equiv \frac{V}{3|m_{3/2}|^2} \]

take the limit \(\gamma \to \infty \)

\[\eta_{sG} \leq \epsilon - \tilde{R} \]

single field inflation implies \(\eta_{sG} \geq \frac{1}{2} \)

slow-roll inflation implies \(\epsilon \ll 1 \)

canonical kinetic terms for all scalars imply \(\tilde{R} = 0 \)
A geometric bound on F-term inflation

\[\eta_{sG} \equiv \frac{m_{sG}^2}{V} \leq \frac{2}{3\gamma} + \frac{4}{\sqrt{3}} \sqrt{1 + \gamma} \sqrt{\epsilon} + \frac{\gamma}{1 + \gamma} \epsilon - \frac{1 + \gamma}{\gamma} \tilde{R} \]

\[\gamma \equiv \frac{V}{3|m_{3/2}|^2} \quad \text{take the limit} \quad \gamma \rightarrow \infty \]

\[\eta_{sG} \leq \epsilon - \tilde{R} \]

\(\sqrt{ } \) single field inflation implies \(\eta_{sG} \geq \frac{1}{2} \)

\(\sqrt{ } \) slow-roll inflation implies \(\epsilon \ll 1 \)

canonical kinetic terms for all scalars imply \(\tilde{R} = 0 \)
A geometric bound on F-term inflation

\[\eta_{sG} \equiv \frac{m_{sG}^2}{V} \leq \frac{2}{3\gamma} + \frac{4}{\sqrt{3}} \frac{1}{\sqrt{1+\gamma}} \sqrt{\epsilon} + \frac{\gamma}{1+\gamma} \frac{\epsilon}{\gamma} - \frac{1+\gamma}{\gamma} \tilde{R} \]

\[\gamma \equiv \frac{V}{3|m_{3/2}|^2} \quad \text{take the limit } \gamma \rightarrow \infty \]

\[\eta_{sG} \leq \epsilon - \tilde{R} \]

single field inflation implies \(\eta_{sG} \geq \frac{1}{2} \)

\(\sqrt{\text{ slow-roll inflation implies } \epsilon \ll 1} \)

\(\sqrt{\text{ canonical kinetic terms for all scalars imply } \tilde{R} = 0} \)
A geometric bound on F-term inflation

GENERALISATION TO EXTENDED SUPERGRAVITY

\[\mathcal{N} = 1 \quad \eta_{sG} \equiv \frac{m_{sG}^2}{V} \leq \frac{2}{3\gamma} + \frac{4}{\sqrt{3}} \frac{1}{\sqrt{1+\gamma}} \sqrt{\epsilon} + \frac{\gamma}{1+\gamma} \epsilon - \frac{1+\gamma}{\gamma} \tilde{R} \]

Andrea Borghese
GENERALISATION TO EXTENDED SUPERGRAVITY

\[\mathcal{N} = 1 \]

\[\eta_{sG} \equiv \frac{m_{sG}^2}{V} \leq \frac{2}{3\gamma} + \frac{4}{\sqrt{3}} \frac{1}{\sqrt{1+\gamma}} \sqrt{\varepsilon} + \frac{\gamma}{1+\gamma} \varepsilon - \frac{1+\gamma}{\gamma} \bar{R} \]

a similar bound can be obtained in the case of extended supergravities

\[\mathcal{N} = 2 \]

\[\eta_{sG} \leq c_0 (f(\gamma) + g(\gamma) \bar{R}) + c_{1/2} \frac{1}{\sqrt{1+\gamma}} \sqrt{\varepsilon} + c_1 \frac{\gamma}{1+\gamma} \varepsilon \]

\[\mathcal{N} = 8 \]
VIABILITY OF INFLATION IN F-TERM SUPERGRAVITY

- Geometry is tightly entangled with dynamics of scalar fields

Constraints on inflationary dynamics:
- average sGoldstino mass is bounded from above by first slow roll parameter and geometric data

- Similarities in the analysis for minimal and extended supergravity
THANK YOU!

Andrea Borghese

A geometric bound on F-term inflation