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Euclidean Gravity As Gauge Theory

On a Riemannian manifold M of dimension d, the spin
connection wis an S0(d)-valued one-form and can be
identified with an SO(d) gauge field:

w-w =AoA™P+AdA™! where A€ S0(d).
First introduce the d-dimensional Clifford algebra
{VAJVB} — 25AB’ A,B —_ 1’...’d_

Then the SO(d) Lorentz generators are given by J48 = i[yA,yB]
satisfying Lorentz algebra

UAB’]CD] — _(5AC]BD _ 5AD]BC _ 5BC]AD + 5BD]AC)_




The SO(d)-valued spin connection is defined by

1
® = wp J4% where w,p = wyap dx™ are one-forms on M.

Then the SO(d)-valued Riemann curvature tensor is
defined by

R=dw+wAw (1)
1

1
=3 Rup)?F = 2 (dwpp + wac Awep) J4°

1
=2 (Runas)*?) dx™ A dx®

_ AB1 M N
=7 [(Oywnap — On Wpap + ©pac Oneg — ©nac Pucg) 77 1dx™ A dx




Now we introduce an SO(d)-valued gauge field defined by
A = A°T, where A% = A%, dx™ (a =1, d(d_l)) are connection
one-forms on M and T, are Lie algebra generators of SO(d)
satisfying

[Ta:Tb] = _fabc Te.

The identification we want to make is then given by

(UZ% G)AB]ABEAZAa Ta. (2)




In terms of gauge theory variables, the curvature tensor is given
by

F=dA+ANAA (3)
=FaT = |dA“ 1 CAD A AC) T

= a — _Efbc A

_1 a a M N

— % [(00A%G — OnASy — fre Al AS) T | dox™ A dxV.




Lie group homomorphisms

S0(3) = SU(2)
S0(4)=SU2), xSU(2)r
S0(5) = Sp(2)

S0(6) = SU(4)




Clifford and Exterior Algebras

>Clifford algebra Cl(d) is isomorphic to the exterior algebra
NM = B¢, AFT'M

Cld) = A*M = @Y., A'T'M

where the chirality operator I'“*! corresponds to the Hodge operator «: AKT*M —
AY*T*M and Cl(d) is generated by the Dirac algebra

(T, r’\y=26%1,
d
Where n = ZIEJ. More precisely, the Clifford algebra may be thought of as

a quantization of the exterior algebra in the same sense that the Weyl algebra
Is a quantization of the symmetric algebra.




4-dimensional Einstein Gravity

The Hodge *x-operator acts on a vector space APT*M and defines an
automorphism of A?T*M with eigenvalues +1. Therefore, we have
the decomposition

A2T*M = A @ A3

Where AT = PLA2 T*Mand Py =2 (1 £ +).

The above Hodge decomposition can harmoniously be incorporated
with the group isomorphism Spin(4) = SU(2), X SU(2).

This feature is a mystique of 4 dimensions:

S0(4) is the only non-simple Lorentz group and one can define a
self-dual 2-form !




The ‘t Hooft symbols n%zand 7%, take a superb mission
consolidating the Hodge decomposition and the Lie algebra
isomorphism so(4) = su(2); x su(2)g, which intertwines the group
structure of the index a and a with the spacetime structure of the
indices A, B.

The 't Hooft matrices are two independent spin s =
representations of SU(2) Lie algebra.

A deep geometrical meaning of the 't Hooft symbols is to specify

the triple (1,],K) of complex structures of R* = C%as the simplest
hyper-Kahler manifold for a given orientation.

The triple complex structures (1,/,K) form a quaternion which can
be identified with the SU(2) generators T¢ and T2.




Since the group SO(4) is a direct product of normal subgroups
SU(2), and SU(2)g, i.e. SO(4) = SU(2);, X SU(2)g, the four dimensional
Euclidean gravity, when formulated as the SO(4) gauge theory, will
basically be two copies of SU(2) gauge theories.

This structure can explicitly be realized by considering the following
decomposition for spin connections

WpAB = Ag(x;)a Nap + Az(w_)a ﬁgB (4)
and Riemann curvature tensor

Rynap= Fﬂg})a Nap + anu_v)a ﬁgB: (5)

where

Fay = 0nAS — oA + |45, 43|,




It turns out that Aﬁ})a and Aﬁ,;)a are SU(2); and SU(2)r gauge fields
and F\P%and FS)% are their field strengths.

Question: What is the Einstein equation from the gauge theory
formulation ?

RAB_%5ABR+A5AB :0 <~ ?
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+ja ] +ia
Nas Tt al P o (1.8)
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nhaeg Bt — 0 (111}
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Mac Mg = e Tpe- (1.13)
s e e = Sacan” — Sannge” — dpenbhp + Srpnhes (1.14)
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Tlas =n35: T2 as = g (1.15) |
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. i 0 : = .
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Lemma If Mis an oriented 4-manifold, the Hodge *-operation is an
involution of A°T*M which decomposes the two forms into self-dual
and anti-self dual parts, A> T*M = A @ A3. The Riemann curvature 2-
form can then be written as Eq.(5). With the decomposition (5), the
Einstein equation

1
RAB_E 5ABR+A5AB=0

for the 4-manifold Mis equivalent to the self-duality equation of Yang-
Mills instantons

+ 1 +
FA(E?) — +_8AB CD F(gﬁ)

where F V%4, = FL)%4 = 24,




Proof: Let us further decompose the SU(2) field strengths

FX) = EMEY FY in Eq.(5) according to the group structure of
SO(4) = SU(Z)L X SU(2) g:

ng)a = (++) Nap + f(+ o) M55
F( = ( +) Nap + fcib—)ﬁgB

Then we get the following decomposition of the Riemann curvature
tensor in Eq.(5)

Rapcp= f(++) N%s1CD +f(+ o) n4slicp + f( 1) Tapnep + f(——)ﬁABWCD

The symmetry property of Riemann curvature tensor, Rigcp = Repap
leads to the following relation between coefficients

f& = 8% fE = 6L = 18




The first Bianchi identity ¢4’ Rgpr = 0 further constrains the
cofficients

0690 = f(——) 59,

The above result can be applied to the Ricci tensor R4z = Rscpc and
the Ricci scalar R = R4, to vyield

Ryp = (f(ibﬂ 54 + f(fib—) 5ab} Sap + 2 f(+ ) n4cises
R=4(f&n8% + f22, 6.

Hence the Einstein tensor G, = Rap —% 8,5 R has 10 independent
components given by

Gap= 2 f&5 nicic — 2f (erb+)5 P Sap.




The condition for the Einstein manifold satisfying R,z = A 8,5 is given
by

g - A :
(cﬂ)aab — f(cib_) sab — = f(‘jf"_) = 0. (6)

Therefore the curvature tensor for an Einstein manifold reduces to

Ragco = Fyn'“ nép + FA(g)a'ﬁE‘D -
= &0 nienén + fE A T0D (7)
with coefficients satisfying (6).

It is obvious that the SUA2) field strengths in Eq. (7) satisfy
the self-duality equation

) _ 41, ¢p gD
up = T3 & fop QED.




It is also easy to show the Yang-Mills equations

As a consequence, we arrive at an interesting result that any
Einstein manifold with or without a cosmological constant always
arises as the sum of SU(2), instantons and SU(2)y anti-instantons.
It explains why an Einstein manifold is stable because two kinds of
instantons belong to different gauge groups, one in SU(2); and
the other in SU(2)g, and so they cannot decay into a vacuum.

20 (Riemann) = 10 (Weyl) + 10 (Ricci).

Among the 20 components of Riemann tensors, only 10
components represented by the Weyl tensor are gravitational
degrees of freedom which are not determined by matter
distributions and the remaining 10 components given by the Ricci
tensor are matter degrees of freedom which are determined by
matter distribution through the Einstein equations.



So it will be interesting to see how the energy-momentum tensor of
matter fields in the Einstein equation

RAB_%SAB R + A5AB =8n G TAB (8)

deforms the structure of an Einstein manifold described by (7).
To be specific, consider the Einstein-Yang-Mills theory where the
energy-momentum tensor of Yang-Mills gauge fields is given by

2 1 cp

Tap =—5T71 | FacFpc — 4 04 FepF -
A Iym _ . :

The Yang-Mills field strength F,5 in the adjoint representation of

gauge group G can similarly be decomposed according to the Lorentz
group SO(4)

Fap = fyMap + f(fi) Tap-




Then the energy-momentum tensor is given by

4 . _.
T — T a a a a .
ABT 2 r (f(+) f(—) ) Naclbc
Finally the Einstein equation (8) can be written as the form

a ah A 167G
f&0 = [0, 8% =3, f&Y = S T (f& &), 9)

The Einstein equations written in the form (9) show us a crystal-clear
picture how (non-)Abelian gauge fields deform the structure of the
Einstein manifold. They introduce a mixing of SU(2), and SU(2)x
sectors without disturbing the conformal structure and the instanton

structure described by Eq. (7). This will not be the case for other fields
such as scalar and Dirac fields.




Since Einstein manifolds carry a topological information in the form of
Yang-Mills instantons as was shown using the gauge theory
formulation of Euclidean gravity, it will be interesting to see how the
topology of spacetime fabric is encoded into the local structure of
gauge fields. In particular, the representation (7) provides us a
powerful way to prove some inequalities about topological invariants
for a compact Einstein manifold without boundary. The Euler

characteristic y(M) and the Hirzebruch signature (M) for a compact
manifold M are, respectively, given by

1
x(M) = f eABCP Ryp ARep
32m? Jy,

1

= o d'xVg [((++)) +((——))]20'

(M) =

f

w 4xVT [( &%) = (1E2) ]




Hitchin-Thorpe inequality

x(M)—ET(M)=izf dxya(fe,) 2 0

where the equality hold iff f(_ ~y=0, i.e., M is half-flat (a gravitational
instanton).

We can deduce the following relation for the topological numbers:

(M) = (M) + x-(M)=m € Z
t(M) =3 (M) —x-(M) =ne L,

where

1
X+(M) 271_2 y d x‘\/_ ( (++)) 2 01

y_(M) = ﬁ y d x\/_( __))220.



This inequality means that

X+(M)=2m;-3n20’ X_(M)=2m;3n20' (9)

Furthermore the Poincareé duality implies that
x(M) = (M) (mod 2),

thatis, m =n (mod 2). Therefore the topological numbers (m,n)
should be placed on an even integer lattice, i.e.,

(m,n) =(even, even) or (odd, odd)

satisfying the inequality (9).




Mi(m,n)

K3(24,16)
Page(4,0)
S2 x 82(4,0)
T° x 5%(2,0)

$4(2,0)
CP%(3,1)

T7%(0,0)
St x §%(0,0)




Generalizations to Higher Dimensions

In 4 dimensions,
gravitational instantons = SU(2) Yang-Mills instantons.

SO0(4) = holonomy group of orientable Riemannian manifolds
SU(2), x SU(2)g = gauge group of Yang-Mills theory
— SU(2) = holonomy group of Calabi-Yau 2-folds

= gauge group of Yang-Mills instantons.

In 6 dimensions,
Calabi-Yau 3-folds = SU(3) Hermitian Yang-Mills instantons

SO0(6) = holonomy group of orientable Riemannian manifolds
SU(4) = gauge group of Yang-Mills theory

— SU(3) = holonomy group of Calabi-Yau 3-folds

= gauge group of Hermitian Yang-Mills instantons.



In 6 dimensions, the 2-forms A°T*M can be classified by
the w -Hodge operator

1, =x (¢ Aw):A’T*M - A'T*M - A’T*M.
A2T*M = A2 @ A2 @ A2,

where w is the Kahler 2-form of the Calabi-Yau 3-fold.
Then A%is an eigenvector space of =, with eigenvalue -1, i.e.,

* FA = _FA AR
which is called the Hermitian Yang-Mills (HYM) equation.
The vector space A4 will be isomorphic to the su(3) Lie algebra which
supports the claim that

Calabi-Yau 3-folds = SU(3) Hermitian Yang-Mills instantons satisfying
the HYM (or Donaldson-Uhlenbeck-Yau) equation.




In 7 dimensions, | expect that a similar story will appear.
In this case the 2-forms A?T*M can be classified
by the w —-Hodge operator
x,=* (s Aw): A’T*M —» A°T*M - A’T*M.
A*T*M = A2 P A%,

where w is the nondegenerate positive 3-form of the G,-manifold.
Then A%, is an eigenvector space of %, with eigenvalue -1, i.e.,

*FA =_FA N w,

which is called the Donaldson-Thomas equation.
The vector space A%, will be isomorphic to the Lie algebra of G,.

Thus maybe G,-manifolds = G, Yang-Mills instantons satisfying the
Donaldson-Thomas equation.
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