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Motivations: Noncommutative geometry

General relativity and Quantum theory together imply space-time
structure at Planck scale do not conform to conventional notions
of geometry.
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Motivations: Noncommutative geometry

General relativity and Quantum theory together imply space-time
structure at Planck scale do not conform to conventional notions
of geometry.

Need for these changes were pointed out by Sergio Doplicher.
mentioned by Podles in Lectures on quantum groups ascribing to
Werner Nahm. Stems from existence of horizons. Extra
dimensional spacetimes with higher dimensional ‘Planck scale’
O(Tev) will make the spacetimes fuzzy.

We will explore implications of these fuzzy geometries.
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It seems difficulties in defining geometry at infinitesimal distances were
anticipated much earliar.
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It seems difficulties in defining geometry at infinitesimal distances were
anticipated much earliar.

Quote..

....it seems that empirical notions on which
the metrical determinations of space are
founded, the notion of a solid body and a
ray of light cease to be valid for the
infinitely small. We are therefore quite at
liberty to suppose that the metric relations
of space in the infinitely small do not
conform to hypotheses of geometry; and
we ought in fact to suppose it, if we can
thereby obtain a simpler explanation of
phenomena....
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It seems difficulties in defining geometry at infinitesimal distances were
anticipated much earliar.

Quote..

....it seems that empirical notions on which
the metrical determinations of space are
founded, the notion of a solid body and a
ray of light cease to be valid for the
infinitely small. We are therefore quite at
liberty to suppose that the metric relations
of space in the infinitely small do not
conform to hypotheses of geometry; and
we ought in fact to suppose it, if we can
thereby obtain a simpler explanation of
phenomena....

From

“On the hypotheses
which lie at the
bases of geometry”,
Bernhard Riemann,
1854 (from the
translation by W K
Clifford).
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Fuzzy CP1
,CP2

, S1 ⊗ R,, Fuzzy torus...
∑

X2

i = R2 along with [Xi,Xj] = iǫijkXk. Representations of
SU(2) algebra provide a basis to describe functions on fuzzy
sphere.

The fact S2 = CP1 is a coadjoint orbit is useful in quantising this

space. This can be extended to CP2 =
SU(3)

SU(2)⊗U(1)
and any

CPn.

Fuzzy torus: U,V,U V = eiθ V U. Finite dimensional
representations can be constructed for this algebra for rational θ.

Fuzzy cylinder: Z, eiφ; [Z, eiφ] = iα eiφ. Such geometry appears for
a model for Noncommutative blackhole.
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Higgs algebra

Higgs algebra defined by:
[X+,X−] = αZ+ βZ3, [X±,Z] = ±X+. Equation for Casimir can
be given as:

C =
1

2
[{X+,X−}+ g(Z) + g(Z− 1)] , (1)

where g(Z) is:

g(Z) = C0 +
α

2
Z(Z+ 1) +

β

4
Z2(Z+ 1)2. (2)

For C0 = µ2, α = −2(2µ + 1), and β = 4 The Casimir reduces to
the expression: X2 + Y2 + (Z2 − µ)2.

Equating the Casimir to 1 and plotting the function for different
values of µ we see interesting topolgy change:

trg@imsc.res.in (IMSc) Fuzzy geometries 10th Sept 2011 6 / 21



Higgs manifold and topology change

Figure: Surface plots depicting the change in topology for µ = 0, 1, 1/2.
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Fuzzy cylinder geometry

NC cylinder is defined by the relations
[
Z, eiφ

]
= αeiφ (3)

where Z is hermitian and eiφ is unitary.

The geoemtry of BTZ black hole (which is also near horizon
geometry of many blackholes) is obtained by quotionting SL(2,R)
by a discrete subgroup of its isometry.The noncommutative BTZ
black hole is obtained by a deformation of SL(2,R) which respects
the quotienting. The coordinate operators r, φ and t satisfy the
algebra

[Z, eiφ̂] = αeiφ̂ [̂r, t̂] = [̂r, eiφ̂] = 0 , (4)

The noncommutative cylinder algebra also belongs to the class of
the κ-Minkowski algebra
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Matrix representation of NC Cylinder

Since we are interested in simulations we have to discretise NC
cylinder we consider the spin J irreducible representation (IRR) of
the SU(2) Lie algebra,

[X+,X−] = 2Z, [X±,Z] = ∓ X±. (5)

But when we use the finite dimensional representations of SU(2)
we cannot have unitary eiφ. For this we decompose X+ as product
of hermitian and unitary operators:

X+ = eiφ R (6)

In the above, eiφ is unitary, and R is a positive hermitian,
necessarily singular, matrix which commutes with Z (and is thus
diagonal).
We have since, R commutes with Z,

[Z,X+] = [Z, eiφ] R = eiφ R (7)
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Scalar fields on fuzzy spheres

Let Φ be a scalar field on a fuzzy sphere defined by spin

j =
N − 1

2
representation. It is given by a N ×N matrix. The

action is given by:

S =
4π

N
Tr {Φ[Li[Li,Φ]} + R2{rΦ2 + λΦ4 }

Possible ground states characterised by Φ = 0,Φ 6= 0,Tr Φ = 0.
correseponding to uniform and nonuniform or stripe phases.

Continuum limit: N −→ ∞. Planar limit: R −→ ∞. One gets
commutative planar or noncommutative planar (Moyal) depending

on
R2

N
−→ ∞ or finite.

If we have a complex scalar field Φ then global U(1) symmetry
can be broken contrary to the expectation from
Coleman-Mermin-Wagner theorem in the NC limit. This is due to
the nonlocality of NC geometries.
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O(3) fields on fuzzy spheres

If we have (three) scalar fields Φi with global O(3) symmetry then
of topological ‘hedgehog’ solutions bring new stabilty.
The action in this case is:

S(Φ) =
4π

N
Tr[

∑

i

| [Li,Φ] |2 + R2(r|Φ|2

+iβǫijkΦiΦjΦk + λ(|Φ|2)2 + µ|
[
Φi,Φj

]
|2)]

The above action has metastable configurations with topological
obstructions:

Φi = αLi, with α =

√
2|r|
λ

N2 − 1

In the above we have assumed β = 0, µ = 0 for simplicity.
We study through simulations the net effect of topological nature
of the background configuration and non-locality on fluctuations
with winding number one configuration.
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Simulations on fuzzy geometries

All the above geometries which are described finite size matrices
are amenable for simulations. We use “pseudo-heat bath”
updating method in our numerical simulations.
In our simulations, for each choice of parameters, we choose an
initial configuration.
Fluctuations around this configuration are then generated by the
above updating method. Since this configuration is a variational
solution to minimising the classical action, it will thermalise as we
update/include the thermal fluctuations.
We also use over-relaxation to reduce the auto correlation of the
configurations generated in the Monte-Carlo history.
In simulations, the condensate will not maintain its exact form
along the Monte Carlo history. The configuration can evolve into
different random SU(2) rotated configurations. To overcome this,
one defines an observable made of Φ′s which is invariant under
the SU(2) rotations.

trg@imsc.res.in (IMSc) Fuzzy geometries 10th Sept 2011 12 / 21



Details of simulations for a field Φ

In the “pseudo-heatbath” algorithm, given a Φ we update the
elements of this matrix one at a time using the probability
distribution,

P
(
Φij

)
= e−S(Φij)

where S
(
Φij

)
= α

(
Φij − A

)2
+ λB

(
Φij − C

)4
,

A,B,C, α are constants suitably adjusted.

To study the phase diagram and transitions we measure
observables such as: Tr(Φ), Tr(Φ2), Tr(S) at various values
rR2 for different choices of (N, λR2).
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Phase diagram and triplepoint

We show the phase diagram for N = 25 in the λR2 vs rR2 plane with
the triple point.
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Details of simulations for O(3) field Φ

We define the observable,

Aij =
1

N2
Tr(LiΦj),M =

√
A†A

M projects out the l = 1 angular momentum mode.
Analysing the statistical behavior of M will show the stability of the
initial configuration.
For the commutative limit we fixed R2 and considered higher
values of N. We did not observe any change in the distribution of
M. The average value, and the fluctuations of M remain the same
(FIG 1). As for N = 48 the l = 1 configuration also decays for
N = 64. This result suggests topological configuration is not stable
in the commutative limit.

For the noncommutative limit we fixed
R2

N
and increased N.Except

for the lowest N = 48 the state did not decay during the entire run
for higher N (FIG 2)
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O(3) field Φ Commutative and Noncommutative limits
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Figure: Commutative (FIG 1) and Noncommutative (FIG 2) limits

We also computed the fluctuations of M to see any possible scaling
with the cut-off N and find χ =

〈
M2

〉
− 〈M〉2 decrease with N like

∼ N−4.
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Fields on fuzzy cylinder

Scalar fields on such a background can be described by the
action:

S = T̃r
(
| [Z,Φ] |2 + | e−iφ[eiφ,Φ] |2 + V(Φ)

)

V(Φ) = rΦ2 + cΦ4

for a hermitian field Φ.
This action has a problem of instability. The source of this comes
from trace T̃r(Φ4) = Tr((PΦ)Φ2(ΦP)) cannot contain any quartic
(nor cubic) term for the variables Φi 2J = Φ2J i. It can be cured by
constraining Φ = PΦP

With this new choice of the field the action becomes:

S = TrJ′
(
| [Z̃,Φ] |2 + | [ẽiφ,Φ] |2 + V(Φ)

)

where J′ = J − 1/2 is the reduced angular momentum, while ẽiφ

and Z̃ are the matrices obtained from eiφ and Z by removing the
last line and column.
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Simulation results for fuzzy cylinder

The model has four parameters (µ, λ, r,N). The goal is to explore
the parameter space for various phases of Φ. The temperature (T)
is regulated by varying the parameter µ.
µ ≪ 1 corresponds to low temperatures when the fluctuations are
small and we get uniform phase.
At high temperatures, µ ≫ 1, the thermal fluctuations lead the
system to the disorder phase.
At intermediate temperatures we get the non-uniform or stripe
phases. Due to the non-trivial topology of the cylinder (the first
homotopy group being non-trivial), one can have a more complex
phase structure.
The phases can be characterised by the observables mu = Tr(Φ),
mz = Tr(ΦZ), mx = Tr(Φeiφ).
We did not observe the phase with stripes going along the
cylinder as ground state for any choice of µ but phase with stripes
going around the cylinder for some µ.
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Stripes on fuzzy cylinder
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Figure: Uniform (FIG 3) and Nonuniform (FIG 4) phases on NCCYLINDER
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Disorder and stripe on fuzzy cylinder
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Figure: Disorder (FIG 5) and Stripe (FIG 6) phases on NCCYLINDER
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Conclusions

Fuzzy geometries allow nonuniform phases breaking symmetries
like translations.

Topological obstructions enhances the stabilty of such symmetry
broken phases.

Given extra dimensional spaces to be described by effective
Planck scales which O(TeV) the NC geometry and the phase
structures will have interesting phenomenological implications.
Based on the papers:

◮ 0906.1660, 0801.4479, 0706.0695
◮ Topological stability of broken symmetry on fuzzy spheres, S Digal,

TRG, hep-th:1108.3320
◮ Phase structure of fuzzy black holes, S Digal, TRG, K S Gupta, X

Martin, hep-th:
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