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|x1 − x2|2∆

For a conformal field theory, symmetry is sufficient to fix the 
space-time dependence of the one-, two- and three-point 
correlation functions. E.g. scalar primary operators, 

Conformal correlation functions

The non-trivial dependence on the coupling comes via the 
anomalous dimension and the structure constants. In principle all 
other correlation functions can be determined via the OPE. 



• For N = 4 SYM in the planar limit there are additional hidden 
symmetries. 

• Perturbative dilatation operator can be mapped to an integrable 
spin chain Hamiltonian...

Integrability 

 ...and via AdS/CFT the theory is dual to strings described by an 
integrable 2-d sigma-model. 

[Minahan & Zarembo]

O = Tr[ΦΦΨΦ . . .ΦΨΦ] |O〉 = | ↓↓↑↓ . . . ↓↓↑↓〉

D · O = ∆(λ)O H |O〉 = E(λ)|O〉



Tr[ΦΦΨΦ . . .ΦΨΦ]

Tr[ΦΦΦ . . . ΦΦ]

• Anomalous dimensions correspond to the energies of physical 
strings, e.g. CPO corresponds to a point-like BMN string

R × S
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⊂ AdS5 × S

5

,

• In general we can then consider magnon like excitations about 
the vacuum,



Anomalous Dimensions
For “long” single trace operators/infinite volume string states/
spin-chain states we can solve for the spectrum by means of the 
asymptotic Bethe ansatz. 
A given operator is characterized by excitations with momenta 
{pi}...

eipiL =
∏

i!=j

S(pi, pj) ETot =
∑

i

E(pi)

pi

&

For short states we can also find all order results (though more 
technically complicated c.f. talk of S. Frolov).



Can we find similar results for cabc?
• The calculation of two-point functions made use of the relation 

to the eigenvalues of dilatation op./string energies.

• No similar relation for structure constants and so we need to 
directly calculate the correlation functions. 

Progress in this direction at strong coupling using semiclassical 
methods: Janik et al 1002.4613, Buchbinder 1002.1716, Buchbinder and Tseytlin 1005.4516, 
Zarembo 1008.1059, Costa et al 1008.1070 ....

We will recast and extend some of these results and explain how 
to systematically go beyond the leading approximation

Key Idea: Make use of light-cone gauge formalism for Green-
Schwarz string correlation function.

Structure Constants 



with              &

Simplest case: two string vertex operators located at the 
boundary of AdS5 at positions x1 and x2 source a string which 
propagates into the bulk

Holographic Correlation Functions
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 String w.s. and target space both have Eucl. signature.
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Tr[ΦΦΦ . . .ΦΦ](!a) ⇔
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Uquad. der.

n

Holographic BMN Correlation Functions

Polyakov/Tseytlin

: a 6-d vector which defines the plane of rotations in the S5

Uquad. der. : prefactor quadratic in derivatives

• When Δ~√λ and J~√λ we can interpret the vertex op. as contributing boundary 
terms to the worldsheet action at times τ1 & τ2. 

• We can find the saddle point approx. to the path integral by solving the 
equations of motion including boundary terms: generically the w.s. is complex 
so we consider a complexified AdS space. 

• This classical solution is not a physical string, rather it’s a tunnelling 
amplitude. It can be found by analytically continuing the physical BMN string 
solution.

For point-like, BMN, string: 



• The string worldsheet has the usual diffeo- and Weyl-invariance and it is useful 
(particularly later) to fix a gauge. 

• Pick two-boundary coordinates and make the complex combinations 

• Then the gauge we use is 

the ws metric is diagonal                                           . 

Important point: going to light-cone gauge solves the Virasoro constraints, in the 
path-integral this implies that all vertex operators must describe physical, on-
shell states or equivalently that the energy of the string states are related to their 
charges e.g. angular momentum
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hab = diag(z2, z−2)

AdS Light-cone Gauge  

∆ = E = E(J, S, ....) ∆BMN = Ji.e.



Saddle point for two BMN vertex operators is particularly simple in AdS light-
cone gauge
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This is simply an AdS geodesic 

and for a solution it is required that:

Evaluating the exp. of the action on the solution the bulk action is zero and the 
boundary action is finite and equal to 

z

x0



Saddle point for three BMN vertex operators can be made from three two pt 
functions...

...which satisfy the e.o.m. everywhere (but is not smooth). Minimizing the full 
action including the boundary terms determines the intersection. For generic 
{n1, n2, n3} there is a solution if 

If all three strings rotate in the same plane we find an additional constraint

z

x0

(zint, x
0
int)

〈V1(!x1,n1)V2(!x2,n2)V3(!x3,n3)〉

n1 · n2 != 0 , n1 · n3 != 0 , n2 · n3 != 0

∆1 = ∆2 + ∆3i.e. extremal correlator



where                                               and cyclic perm.
 
In the our limit where the charges are large and generic,

this is the same result found for CPOs at weak and strong coupling using 
supergravity.

To find the sphere wavefunction dependence we would need in principle to make 
the replacement in the vertex operators

In the non-extremal case we find (with                    ) 

(
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|z|

)J

→ Y (ẑ)
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(
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Lee, Minwalla, Rangamani and Seiberg, hep-th/9806074

Ji ∼

√

λ , αi ∼

√

λ

SO(6) spherical harm. 



With caveats we can generalise this calculation to a wider class of strings states 
e.g. circular strings which wind around the sphere. 
Starting from the physical string solution we can analytically continue 

and interpret this as the saddle-point for the two-point function. 

• We can write down vertex operators which source this solution - however this 
only determines exponentially large part and moreover is non-unique. 

• There exist two proposals Buchbinder 1002.1716 & Ryang 1011.3573.
• Can find a three point solution which is sourced by these vertex ops., answer 

is essentially the same in both cases. 
• Now the bulk action is non-vanishing however it combines with the boundary 

action to give a finite result. 
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Holographic non-BPS Correlation Functions



Another direction is to consider the corrections to the saddle-point approx. by 
studying the fluctuations about the classical solution. Furthermore this allows us 
to study near-BMN, or excited strings. 
To do this we need to include 

• corrections to vertex operators.
• corrections to the saddle-point evaluation of the path-integral.

Expanding about the BMN string solution (for the eight transverse l.c. coords.)

we find the fluctuation action describes eight massive bosons

which only depends on the total charge and not on the boundary positions or the 
orientation on the sphere. Similarly for the fermions. 

• Thus the fluctuations correspond to massive harmonic oscillators. 
• Necessary to use decompactification limit. 
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∆
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Quantum Corrections
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We can apply the standard path-integral light-cone functional methods

The corrections to the vertex operators are encoded in the wavefunctions

to leading order.
Integrate out the coordinate fluctuations by introducing the w.s. Greens function

or equivalently its Neumann coefficients           .

〈V1(τ1) . . . VN (τN )〉 =

N e−Scl−Bcl

∫

∏
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∏
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andandand

Functional Methods
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andandand

similar terms from fermions.
Here we essentially find the same result as in plane-wave LCSFT [Spradlin & 
Volovich, Pankiewicz, Stefanski, Chu et al, also Dobashi,Shimada,Yoneya and many others] 
which are closely related to flat-space results but with

N
ij
mn = δ

ij
δmn −

√

ωi,mωj,n(X(i)T Γ−1
X

(j))mn

[Spradlin & Volovich, He et al, Lucietti et al]

Neumann coefficients are given by 



|MN〉 = δMN +
1

2
λaλbγMN

ab + · · · +
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(λa . . . λh)εab...gh

Q−

=

∫
dσ e−ix−/2Q−

p.p

S =

∑
|MN〉∂X

M
∂̄X

N

Prefactor

andandand

It is long known that in l.c. gauge, string amplitudes can’t be calculated
as overlap functions of vertex operators but that insertions factors must be 
placed at the string interaction points (required for super-Poincare symmetry). 
For flat space Green-Schwarz string this is described by,

Fermionic fluctuations

Analogous factor found in plane-wave LCSFT, [Spradlin&Volovich, Pankiewicz, Chu et 
al, Di Vecchia et al, Lee & Russo, Dobashi and Yoneya, Shimada, many others]. 
Constrained by plane-wave symmetries.
In our calculation the same object arises (due to gauge fixing), however

there is non-locality or non-trivial co-product structure. 
In the strict decompactification limit this effect can be neglected. 

[Mandlestam ’74, ’86]



• Considered the strong coupling/semiclassical string calculation of 3pt 
functions for certain operators with large charges:  Δ~√λ and J~√λ. 

• For BMN strings we reproduce the known results for three CPO and including 
fluctuations we produce the results of plane-wave LCSFT.  

• Advantages of method: 
 we can apply similar fluctuation analysis to more general classical 

solutions (e.g. not restricted to extremal correlators).
 can systematically include subleading corrections perturbatively

quartic terms in the fluctuation action
mixing of vertex operators
Corrections to prefactor

 In principle we would like to make use of symmetries to make exact predictions
 e.g.  it is known that the exact ws propagator is

all-order Neumann coeff. in terms of generalised µ-deformed Gamma functions?
 

ωp =
√
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→

√
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Conclusions

N
ij
mn = δ

ij
δmn −

√
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X

(j))mn


