CMSSM with Yukawa Quasi-Unification

Karagiannakis Nikos

Physics Division General Department Polytechnic School Aristotle University of Thessaloniki

Based on "CMSSM with Yukawa quasi-unification revisited" by N. Karagiannakis, G. Lazarides, C. Pallis (Physics Letters B in press and also in arXiv:1107.0667 [hep-ph])

Karagiannakis Nikos

Physics Division, General Department, Polytechnic School, A.U.TH.

11th Hellenic School and Workshops on Elementary Particle Physics and Gravity

From CMSSM to ... CMSSM with 'asymptotic' Yukawa quasi-Unification

Physics Division, General Department, Polytechnic School, A.U.TH.

11th Hellenic School and Workshops on Elementary Particle Physics and Gravity

Karagiannakis Nikos

CMSSM with 'asypmtotic' quasi-Yukawa Unification

- Based on Pati-Salam Group $SU(4)_c \times SU(2)_L \times SU(2)_R$
- $sign(\mu) > 0$
- LSP is neutralino $\tilde{\chi}$ (mostly bino)
- Free parameters (tanβ is restricted) :

 $M_{1/2}$: gaugino mass m_0 : scalar mass A_0 : trilinear scalar coupling constant

Karagiannakis Nikos

Physics Division, General Department, Polytechnic School, A.U.TH.

CMSSM with 'asypmtotic' quasi-Yukawa Unification

quasi-YU relations

Karagiannakis Nikos

Physics Division, General Department, Polytechnic School, A.U.TH.

11th Hellenic School and Workshops on Elementary Particle Physics and Gravity

35

40

Cosmological and Phenomenological Restrictions (95% c.l.)

• SM Fermion Masses \overline{DR} b quark mass $2.745 \le m_b (M_Z)^{\overline{DR}} / GeV \le 3.13$ b quark central value mass $m_t (M_Z) = 2.84 GeV$ t quark central pole mass $M_t = 173 GeV$ t quark running mass $m_t (m_t) = 164.6 GeV$ τ lepton mass $m_t (M_Z) = 1.748 GeV$ • Cold Dark Matter considerations LSP abundance $\Omega_{LSP} h^2 \le 0.12$

Karagiannakis Nikos

Physics Division, General Department, Polytechnic School, A.U.TH.

Cosmological and Phenomenological Restrictions (95% c.l.)

- Branching Ratio BR(b->sy) $2.84 \times 10^{-4} \le BR(b \rightarrow s\gamma) \le 4.2 \times 10^{-4}$
- Branching Ratio BR(B_s-> $\mu^+\mu^-$) $BR(B_s \rightarrow \mu^+\mu^-) \le 5.8 \times 10^{-8}$
- Branching Ratio BR(B_u -> $\tau\nu$) $0.52 \le BR(B_u \rightarrow \tau v) \le 2.04$
- Muon Anomalous Magnetic Moment (e⁺e⁻ & τ-decay)

 $12.7 \times 10^{-10} \le \delta \alpha_{\mu} \le 44.7 \times 10^{-10} \qquad 2.9 \times 10^{-10} \le \delta \alpha_{\mu} \le 36.1 \times 10^{-10}$

Collider Bounds

lightest CP-even neutral Higgs boson mass $m_h \ge 114.4 \, GeV$

Karagiannakis Nikos

Physics Division, General Department, Polytechnic School, A.U.TH.

Restrictions on LSP

Karagiannakis Nikos

Physics Division, General Department, Polytechnic School, A.U.TH.

RGE

Karagiannakis Nikos

Physics Division, General Department, Polytechnic School, A.U.TH.

11th Hellenic School and Workshops on Elementary Particle Physics and Gravity

Restrictions in the M_{1/2} - A_0/M_{1/2} plane

Karagiannakis Nikos

Physics Division, General Department, Polytechnic School, A.U.TH.

11th Hellenic School and Workshops on Elementary Particle Physics and Gravity

Karagiannakis Nikos

Physics Division, General Department, Polytechnic School, A.U.TH.

11th Hellenic School and Workshops on Elementary Particle Physics and Gravity

Karagiannakis Nikos

Physics Division, General Department, Polytechnic School, A.U.TH.

11th Hellenic School and Workshops on Elementary Particle Physics and Gravity

Karagiannakis Nikos

Physics Division, General Department, Polytechnic School, A.U.TH.

11th Hellenic School and Workshops on Elementary Particle Physics and Gravity

Karagiannakis Nikos

Physics Division, General Department, Polytechnic School, A.U.TH.

11th Hellenic School and Workshops on Elementary Particle Physics and Gravity

Karagiannakis Nikos

Physics Division, General Department, Polytechnic School, A.U.TH.

11th Hellenic School and Workshops on Elementary Particle Physics and Gravity

SI and SD $\tilde{\chi} - p$ cross sections vs mLSP (A₀/M_{1/2}=0.7,0,-0.8)

Karagiannakis Nikos

Physics Division, General Department, Polytechnic School, A.U.TH.

Conclusions

- Small range of parameters
- Consistent with cosmological and phenomenological constraints
- For $A_0 = 0$ we find :

 $365.9 \le m_{LSP} / GeV \le 607.4 \quad 118.1 \le m_h / GeV \le 120.6$

• In the overall allowed region we find :

 $-2.55 \le A_0 / M_{1/2} \le 3.21 \quad 341 \le m_{LSP} / GeV \le 677 \quad 117 \le m_h / GeV \le 122.2$

• Accessible in future CDM direct experiments (SI $\tilde{\chi} - p$ cross sections) From the overall upper bound of the LSP (variation of f and Δ within 1σ) :

$$\sigma_{\tilde{\chi}p}^{SI} \ge 4.3(3.6) \times 10^{-11} \, pb \quad \sigma_{\tilde{\chi}p}^{SD} \ge 1.5(1.4) \times 10^{-8} \, pb$$

Karagiannakis Nikos

To Pf. Lazarides, Dr. Pallis and all the people here in Corfu2011

Thank you!

Karagiannakis Nikos

Physics Division, General Department, Polytechnic School, A.U.TH.

11th Hellenic School and Workshops on Elementary Particle Physics and Gravity